GNU Emacs Manual

GNU Emacs Manual

Fourteenth Edition, Updated for Emacs Version 21.3.

Richard Stallman

Copyright (© 1985, 1986, 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.

Fourteenth Edition
Updated for Emacs Version 21.3,
March 2002

ISBN 1-882114-06-X

Published by the Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “The GNU Manifesto”,
“Distribution” and “GNU GENERAL PUBLIC LICENSE”, with the Front-Cover texts
being “A GNU Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

Cover art by Etienne Suvasa.

Preface 1

Preface

This manual documents the use and simple customization of the Emacs editor. The
reader is not expected to be a programmer; simple customizations do not require program-
ming skill. But the user who is not interested in customizing can ignore the scattered
customization hints.

This is primarily a reference manual, but can also be used as a primer. For complete
beginners, it is a good idea to start with the on-line, learn-by-doing tutorial, before reading
the manual. To run the tutorial, start Emacs and type C-h t. This way you can learn
Emacs by using Emacs on a specially designed file which describes commands, tells you
when to try them, and then explains the results you see.

On first reading, just skim chapters 1 and 2, which describe the notational conventions of
the manual and the general appearance of the Emacs display screen. Note which questions
are answered in these chapters, so you can refer back later. After reading chapter 4, you
should practice the commands there. The next few chapters describe fundamental tech-
niques and concepts that are used constantly. You need to understand them thoroughly,
experimenting with them if necessary.

Chapters 14 through 19 describe intermediate-level features that are useful for all kinds
of editing. Chapter 20 and following chapters describe features that you may or may not
want to use; read those chapters when you need them.

Read the Trouble chapter if Emacs does not seem to be working properly. It explains
how to cope with some common problems (see Section 33.2 [Lossage], page 410), as well as
when and how to report Emacs bugs (see Section 33.3 [Bugs|, page 414).

To find the documentation on a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual is available as a printed book and also as an Info file. The Info file is for on-
line perusal with the Info program, which will be the principal way of viewing documentation
on-line in the GNU system. Both the Info file and the Info program itself are distributed
along with GNU Emacs. The Info file and the printed book contain substantially the same
text and are generated from the same source files, which are also distributed along with
GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many Emacs editors, all
sharing common principles of organization. For information on the underlying philosophy
of Emacs and the lessons learned from its development, write for a copy of AI memo 519a,
“Fmacs, the Extensible, Customizable Self-Documenting Display Editor,” to Publications
Department, Artificial Intelligence Lab, 545 Tech Square, Cambridge, MA 02139, USA.
At last report they charge $2.25 per copy. Another useful publication is LCS TM-165,
“A Cookbook for an Emacs,” by Craig Finseth, available from Publications Department,
Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139, USA. The
price today is $3.

This edition of the manual is intended for use with GNU Emacs installed on GNU and
Unix systems. GNU Emacs can also be used on VMS, MS-DOS (also called MS-DOG),

Windows NT, and Windows 95 systems. Those systems use different file name syntax; in
addition, VMS and MS-DOS do not support all GNU Emacs features. We don’t try to

2 GNU Emacs Manual

describe VMS usage in this manual. See Appendix E [MS-DOS], page 451, for information
about using Emacs on MS-DOS.

Distribution 3

Distribution

GNU Emacs is free software; this means that everyone is free to use it and free to redis-
tribute it on certain conditions. GNU Emacs is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of GNU Emacs that they might get from
you. The precise conditions are found in the GNU General Public License that comes with
Emacs and also appears following this section.

One way to get a copy of GNU Emacs is from someone else who has it. You need not
ask for our permission to do so, or tell any one else; just copy it. If you have access to the
Internet, you can get the latest distribution version of GNU Emacs by anonymous FTP;
see the file ‘etc/FTP’ in the Emacs distribution for more information.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the GNU Emacs received from them under the usual
terms of the General Public License. In other words, the program must be free for you
when you get it, not just free for the manufacturer.

You can also order copies of GNU Emacs from the Free Software Foundation on CD-
ROM. This is a convenient and reliable way to get a copy; it is also a good way to help
fund our work. (The Foundation has always received most of its funds in this way.) An
order form is included in the file ‘etc/0ORDERS’ in the Emacs distribution, and on our web
site in http://www.gnu.org/order/order .html. For further information, write to

Free Software Foundation

59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
USA

The income from distribution fees goes to support the foundation’s purpose: the devel-
opment of new free software, and improvements to our existing programs including GNU
Emacs.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation
to support our work. Donations to the Free Software Foundation are tax deductible in the
US. If you use GNU Emacs at your workplace, please suggest that the company make a
donation. If company policy is unsympathetic to the idea of donating to charity, you might
instead suggest ordering a CD-ROM from the Foundation occasionally, or subscribing to
periodic updates.

Contributors to GNU Emacs include Per Abrahamsen, Jay K. Adams, Joe Arceneaux,
Boaz Ben-Zvi, Jim Blandy, Terrence Brannon, Frank Bresz, Peter Breton, Kevin Broadey,
Vincent Broman, David M. Brown, Bill Carpenter, Hans Chalupsky, Bob Chassell, James
Clark, Mike Clarkson, Glynn Clements, Andrew Csillag, Doug Cutting, Michael DeCorte,
Gary Delp, Matthieu Devin, Eri Ding, Carsten Dominik, Scott Draves, Viktor Dukhovni,
John Eaton, Rolf Ebert, Stephen Eglen, Torbjorn Einarsson, Tsugumoto Enami, Hans
Henrik Eriksen, Michael Ernst, Ata Etemadi, Frederick Farnback, Fred Fish, Karl Fogel,
Gary Foster, Noah Friedman, Keith Gabryelski, Kevin Gallagher, Kevin Gallo, Howard

4 GNU Emacs Manual

Gayle, Stephen Gildea, David Gillespie, Bob Glickstein, Boris Goldowsky, Michelangelo
Grigni, Michael Gschwind, Henry Guillaume, Doug Gwyn, Ken’ichi Handa, Chris Hanson,
K. Shane Hartman, John Heidemann, Markus Heritsch, Karl Heuer, Manabu Higashida,
Anders Holst, Kurt Hornik, Tom Houlder, Lars Ingebrigtsen, Andrew Innes, Michael K.
Johnson, Kyle Jones, Tomoji Kagatani, Brewster Kahle, David Kaufman, Henry Kautz,
Howard Kaye, Michael Kifer, Richard King, Larry K. Kolodney, Robert Krawitz, Sebas-
tian Kremer, Geoff Kuenning, David Kagedal, Daniel LaLiberte, Aaron Larson, James
R. Larus, Frederic Lepied, Lars Lindberg, Eric Ludlam, Neil M. Mager, Ken Manheimer,
Bill Mann, Brian Marick, Simon Marshall, Bengt Martensson, Charlie Martin, Thomas
May, Roland McGrath, David Megginson, Wayne Mesard, Richard Mlynarik, Keith Moore,
Erik Naggum, Thomas Neumann, Mike Newton, Jurgen Nickelsen, Jeff Norden, Andrew
Norman, Jeff Peck, Damon Anton Permezel, Tom Perrine, Jens Petersen, Daniel Pfeif-
fer, Fred Pierresteguy, Christian Plaunt, Francesco A. Potorti, Michael D. Prange, Ashwin
Ram, Eric S. Raymond, Paul Reilly, Edward M. Reingold, Rob Riepel, Roland B. Roberts,
John Robinson, Danny Roozendaal, William Rosenblatt, Guillermo J. Rozas, Ivar Rummel-
hoff, Wolfgang Rupprecht, James B. Salem, Masahiko Sato, William Schelter, Ralph Schle-
icher, Gregor Schmid, Michael Schmidt, Ronald S. Schnell, Philippe Schnoebelen, Stephen
Schoef, Randal Schwartz, Manuel Serrano, Stanislav Shalunov, Mark Shapiro, Richard Shar-
man, Olin Shivers, Espen Skoglund, Rick Sladkey, Lynn Slater, Chris Smith, David Smith,
Paul D. Smith, William Sommerfeld, Michael Staats, Sam Steingold, Ake Stenhoff, Peter
Stephenson, Jonathan Stigelman, Steve Strassman, Jens T. Berger Thielemann, Spencer
Thomas, Jim Thompson, Masanobu Umeda, Neil W. Van Dyke, Ulrik Vieth, Geoffrey
Voelker, Johan Vromans, Barry Warsaw, Morten Welinder, Joseph Brian Wells, Rodney
Whitby, Ed Wilkinson, Mike Williams, Steven A. Wood, Dale R. Worley, Felix S. T. Wu,
Tom Wurgler, Eli Zaretskii, Jamie Zawinski, lan T. Zimmermann, Reto Zimmermann, and
Neal Ziring.

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

6 GNU Emacs Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program,” below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification.”) Each licensee is
addressed as “you.”

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 7

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

GNU Emacs Manual

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Fach version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version,” you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 9

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

10 GNU Emacs Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 20yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 11

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

12

GNU Emacs Manual

Appendix A: GNU Free Documentation License 13

Appendix A GNU Free Documentation License

Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

14

GNU Emacs Manual

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix A: GNU Free Documentation License 15

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

16

GNU Emacs Manual

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

M. Delete any section entitled “Endorsements.” Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix A: GNU Free Documentation License 17

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications.” You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

18 GNU Emacs Manual

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU
Free Documentation License."
If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Introduction 19

Introduction

You are reading about GNU Emacs, the GNU incarnation of the advanced,
self-documenting, customizable, extensible real-time display editor Emacs. (The ‘G’ in
‘GNU’ is not silent.)

We say that Emacs is a display editor because normally the text being edited is visible
on the screen and is updated automatically as you type your commands. See Chapter 1
[Screen], page 21.

We call it a real-time editor because the display is updated very frequently, usually after
each character or pair of characters you type. This minimizes the amount of information
you must keep in your head as you edit. See Chapter 4 [Basic Editing], page 33.

We call Emacs advanced because it provides facilities that go beyond simple insertion
and deletion: controlling subprocesses; automatic indentation of programs; viewing two or
more files at once; editing formatted text; and dealing in terms of characters, words, lines,
sentences, paragraphs, and pages, as well as expressions and comments in several different
programming languages.

Self-documenting means that at any time you can type a special character, Control-h,
to find out what your options are. You can also use it to find out what any command does,
or to find all the commands that pertain to a topic. See Chapter 7 [Help], page 53.

Customizable means that you can change the definitions of Emacs commands in little
ways. For example, if you use a programming language in which comments start with
‘<xx’ and end with ‘**>’, you can tell the Emacs comment manipulation commands to use
those strings (see Section 22.5 [Comments|, page 235). Another sort of customization is
rearrangement of the command set. For example, if you prefer the four basic cursor motion
commands (up, down, left and right) on keys in a diamond pattern on the keyboard, you
can rebind the keys that way. See Chapter 32 [Customization], page 377.

Extensible means that you can go beyond simple customization and write entirely new
commands, programs in the Lisp language to be run by Emacs’s own Lisp interpreter. Emacs
is an “on-line extensible” system, which means that it is divided into many functions that
call each other, any of which can be redefined in the middle of an editing session. Almost
any part of Emacs can be replaced without making a separate copy of all of Emacs. Most
of the editing commands of Emacs are written in Lisp; the few exceptions could have been
written in Lisp but are written in C for efficiency. Although only a programmer can write
an extension, anybody can use it afterward. If you want to learn Emacs Lisp programming,
we recommend the Introduction to Emacs Lisp by Robert J. Chassell, also published by
the Free Software Foundation.

When run under the X Window System, Emacs provides its own menus and convenient
bindings to mouse buttons. But Emacs can provide many of the benefits of a window system
on a text-only terminal. For instance, you can look at or edit several files at once, move
text between files, and edit files while running shell commands.

20

GNU Emacs Manual

Chapter 1: The Organization of the Screen 21

1 The Organization of the Screen

On a text-only terminal, the Emacs display occupies the whole screen. On the X Window
System, Emacs creates its own X windows to use. We use the term frame to mean an entire
text-only screen or an entire X window used by Emacs. Emacs uses both kinds of frames
in the same way to display your editing. Emacs normally starts out with just one frame,
but you can create additional frames if you wish. See Chapter 17 [Frames], page 163.

When you start Emacs, the entire frame except for the top and bottom is devoted to the
text you are editing. This area is called the window. At the top there is normally a menu
bar where you can access a series of menus; then there may be a tool bar, a row of icons
that perform editing commands if you click on them. Below this, the window begins. The
last line is a special echo area or minibuffer window, where prompts appear and where you
can enter information when Emacs asks for it. See below for more information about these
special lines.

You can subdivide the large text window horizontally or vertically into multiple text
windows, each of which can be used for a different file (see Chapter 16 [Windows|, page 157).
In this manual, the word “window” always refers to the subdivisions of a frame within
Emacs.

The window that the cursor is in is the selected window, in which editing takes place.
Most Emacs commands implicitly apply to the text in the selected window (though mouse
commands generally operate on whatever window you click them in, whether selected or
not). The other windows display text for reference only, unless/until you select them. If
you use multiple frames under the X Window System, then giving the input focus to a
particular frame selects a window in that frame.

Each window’s last line is a mode line, which describes what is going on in that window.
It appears in inverse video, if the terminal supports that; its contents normally begin with
‘-—:-- xscratch*’ when Emacs starts. The mode line displays status information such as
what buffer is being displayed above it in the window, what major and minor modes are in
use, and whether the buffer contains unsaved changes.

1.1 Point

Within Emacs, the terminal’s cursor shows the location at which editing commands will
take effect. This location is called point. Many Emacs commands move point through the
text, so that you can edit at different places in it. You can also place point by clicking
mouse button 1.

While the cursor appears to point at a character, you should think of point as between
two characters; it points before the character that appears under the cursor. For example,
if your text looks like ‘frob’ with the cursor over the ‘b’; then point is between the ‘o’ and
the ‘b’. If you insert the character ‘!’ at that position, the result is ‘fro!b’, with point
between the ‘!’ and the ‘b’. Thus, the cursor remains over the ‘b’, as before.

Sometimes people speak of “the cursor” when they mean “point,” or speak of commands
that move point as “cursor motion” commands.

Text-only terminals have only one cursor, and when output is in progress it must appear
where the output is being displayed. This does not mean that point is moving. It is only
that Emacs has no way to show you the location of point except when the terminal is idle.

22 GNU Emacs Manual

If you are editing several files in Emacs, each in its own buffer, each buffer has its own
point location. A buffer that is not currently displayed remembers where point is in case
you display it again later.

When Emacs displays multiple windows, each window has its own point location. On
text-only terminals, the cursor shows the location of point in the selected window. On
graphical terminals, Emacs shows a cursor in each window; the selected window’s cursor
is solid, and the other cursors are hollow. Either way, the cursor or cursors tell you which
window is selected. If the same buffer appears in more than one window, each window has
its own position for point in that buffer, and (when possible) its own cursor.

See Section 11.13 [Cursor Display], page 90, for customization options that control dis-
play of the cursor or cursors.

The term “point” comes from the character ‘.’, which was the command in TECO
(the language in which the original Emacs was written) for accessing the value now called
13 : 7

point.

1.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo area. It is used
to display small amounts of text for several purposes.

Echoing means displaying the characters that you type. Outside Emacs, the operating
system normally echoes all your input. Emacs handles echoing differently.

Single-character commands do not echo in Emacs, and multi-character commands echo
only if you pause while typing them. As soon as you pause for more than a second in
the middle of a command, Emacs echoes all the characters of the command so far. This
is to prompt you for the rest of the command. Once echoing has started, the rest of the
command echoes immediately as you type it. This behavior is designed to give confident
users fast response, while giving hesitant users maximum feedback. You can change this
behavior by setting a variable (see Section 11.12 [Display Custom], page 89).

If a command cannot be executed, it may display an error message in the echo area. Error
messages are accompanied by beeping or by flashing the screen. The error also discards any
input you have typed ahead.

Some commands display informative messages in the echo area. These messages look
much like error messages, but they are not announced with a beep and do not throw away
input. Sometimes the message tells you what the command has done, when this is not
obvious from looking at the text being edited. Sometimes the sole purpose of a command
is to show you a message giving you specific information—for example, C-x = displays a
message describing the character position of point in the text and its current column in
the window. Commands that take a long time often display messages ending in ‘. ..’ while
they are working, and add ‘done’ at the end when they are finished.

Echo-area informative messages are saved in an editor buffer named ‘*Messages*’. (We
have not explained buffers yet; see Chapter 15 [Buffers], page 149, for more information
about them.) If you miss a message that appears briefly on the screen, you can switch to
the ‘*Messages*’ buffer to see it again. (Successive progress messages are often collapsed
into one in that buffer.)

Chapter 1: The Organization of the Screen 23

The size of ‘*Messages*’ is limited to a certain number of lines. The variable message-
log-max specifies how many lines. Once the buffer has that many lines, each line added at
the end deletes one line from the beginning. See Section 32.2 [Variables|, page 379, for how
to set variables such as message-log-max.

The echo area is also used to display the minibuffer, a window that is used for reading
arguments to commands, such as the name of a file to be edited. When the minibuffer is
in use, the echo area begins with a prompt string that usually ends with a colon; also, the
cursor appears in that line because it is the selected window. You can always get out of the
minibuffer by typing C-g. See Chapter 5 [Minibuffer|, page 43.

1.3 The Mode Line

Each text window’s last line is a mode line, which describes what is going on in that
window. When there is only one text window, the mode line appears right above the echo
area; it is the next-to-last line in the frame. The mode line starts and ends with dashes.
On a text-mode display, the mode line is in inverse video if the terminal supports that; on
a graphics display, the mode line has a 3D box appearance to help it stand out.

Normally, the mode line looks like this:
-cs:ch buf (major minor)--line--pos------

This gives information about the buffer being displayed in the window: the buffer’s name,
what major and minor modes are in use, whether the buffer’s text has been changed, and
how far down the buffer you are currently looking.

ch contains two stars ‘**’ if the text in the buffer has been edited (the buffer is “modi-
fied”), or ‘==’ if the buffer has not been edited. For a read-only buffer, it is ‘%*’ if the buffer
is modified, and ‘%%’ otherwise.

buf is the name of the window’s buffer. In most cases this is the same as the name of a
file you are editing. See Chapter 15 [Buffers|, page 149.

The buffer displayed in the selected window (the window that the cursor is in) is also
Emacs’s current buffer, the one that editing takes place in. When we speak of what some
command does to “the buffer,” we are talking about the current buffer.

line is ‘L’ followed by the current line number of point. This is present when Line
Number mode is enabled (which it normally is). You can optionally display the current
column number too, by turning on Column Number mode (which is not enabled by default
because it is somewhat slower). See Section 11.10 [Optional Mode Line], page 87.

pos tells you whether there is additional text above the top of the window, or below the
bottom. If your buffer is small and it is all visible in the window, pos is ‘A11’. Otherwise,
it is ‘Top’ if you are looking at the beginning of the buffer, ‘Bot’ if you are looking at the
end of the buffer, or ‘nnj’, where nn is the percentage of the buffer above the top of the
window.

major is the name of the major mode in effect in the buffer. At any time, each buffer
is in one and only one of the possible major modes. The major modes available include
Fundamental mode (the least specialized), Text mode, Lisp mode, C mode, Texinfo mode,
and many others. See Chapter 19 [Major Modes|, page 193, for details of how the modes
differ and how to select one.

24 GNU Emacs Manual

Some major modes display additional information after the major mode name. For ex-
ample, Rmail buffers display the current message number and the total number of messages.
Compilation buffers and Shell buffers display the status of the subprocess.

minor is a list of some of the minor modes that are turned on at the moment in the
window’s chosen buffer. For example, ‘Fill’ means that Auto Fill mode is on. ‘Abbrev’
means that Word Abbrev mode is on. ‘Ovwrt’ means that Overwrite mode is on. See
Section 32.1 [Minor Modes|, page 377, for more information. ‘Narrow’ means that the
buffer being displayed has editing restricted to only a portion of its text. This is not really
a minor mode, but is like one. See Section 31.9 [Narrowing], page 366. ‘Def’ means that a
keyboard macro is being defined. See Section 32.3 [Keyboard Macros], page 390.

In addition, if Emacs is currently inside a recursive editing level, square brackets
(‘[...1") appear around the parentheses that surround the modes. If Emacs is in one
recursive editing level within another, double square brackets appear, and so on. Since
recursive editing levels affect Emacs globally, not just one buffer, the square brackets
appear in every window’s mode line or not in any of them. See Section 31.13 [Recursive
Edit], page 369.

Non-windowing terminals can only show a single Emacs frame at a time (see Chapter 17
[Frames], page 163). On such terminals, the mode line displays the name of the selected
frame, after ch. The initial frame’s name is ‘F1’.

cs states the coding system used for the file you are editing. A dash indicates the default
state of affairs: no code conversion, except for end-of-line translation if the file contents call
for that. ‘=" means no conversion whatsoever. Nontrivial code conversions are represented
by various letters—for example, ‘1’ refers to ISO Latin-1. See Section 18.7 [Coding Systems],
page 181, for more information. If you are using an input method, a string of the form ‘i>’
is added to the beginning of cs; i identifies the input method. (Some input methods show
‘+” or ‘@’ instead of >’.) See Section 18.4 [Input Methods], page 178.

When you are using a character-only terminal (not a window system), cs uses three
characters to describe, respectively, the coding system for keyboard input, the coding system
for terminal output, and the coding system used for the file you are editing.

When multibyte characters are not enabled, cs does not appear at all. See Section 18.2
[Enabling Multibyte|, page 176.

The colon after cs can change to another string in certain circumstances. Emacs uses
newline characters to separate lines in the buffer. Some files use different conventions for
separating lines: either carriage-return linefeed (the MS-DOS convention) or just carriage-
return (the Macintosh convention). If the buffer’s file uses carriage-return linefeed, the
colon changes to either a backslash (‘\’) or ‘(D0S)’, depending on the operating system. If
the file uses just carriage-return, the colon indicator changes to either a forward slash (‘/’)
or ‘(Mac)’. On some systems, Emacs displays ‘(Unix)’ instead of the colon even for files
that use newline to separate lines.

You can customize the mode line display for each of the end-of-line formats by setting
each of the variables eol-mnemonic-unix, eol-mnemonic-dos, eol-mnemonic-mac, and
eol-mnemonic-undecided to any string you find appropriate. See Section 32.2 [Variables],
page 379, for an explanation of how to set variables.

Chapter 1: The Organization of the Screen 25

See Section 11.10 [Optional Mode Line], page 87, for features that add other handy
information to the mode line, such as the current column number of point, the current
time, and whether new mail for you has arrived.

The mode line is mouse-sensitive; when you move the mouse across various parts of it,
Emacs displays help text to say what a click in that place will do. See Section 17.6 [Mode
Line Mouse], page 167.

1.4 The Menu Bar

Each Emacs frame normally has a menu bar at the top which you can use to perform
certain common operations. There’s no need to list them here, as you can more easily see
for yourself.

When you are using a window system, you can use the mouse to choose a command
from the menu bar. An arrow pointing right, after the menu item, indicates that the item
leads to a subsidiary menu; . .." at the end means that the command will read arguments
from the keyboard before it actually does anything.

To view the full command name and documentation for a menu item, type C-h k, and
then select the menu bar with the mouse in the usual way (see Section 7.1 [Key Help],
page 55).

On text-only terminals with no mouse, you can use the menu bar by typing M-¢ or
(these run the command tmm-menubar). This command enters a mode in which you can
select a menu item from the keyboard. A provisional choice appears in the echo area. You
can use the left and right arrow keys to move through the menu to different choices. When
you have found the choice you want, type to select it.

Each menu item also has an assigned letter or digit which designates that item; it is
usually the initial of some word in the item’s name. This letter or digit is separated from
the item name by ‘=>". You can type the item’s letter or digit to select the item.

Some of the commands in the menu bar have ordinary key bindings as well; if so, the
menu lists one equivalent key binding in parentheses after the item itself.

26

GNU Emacs Manual

Chapter 2: Characters, Keys and Commands 27

2 Characters, Keys and Commands

This chapter explains the character sets used by Emacs for input commands and for
the contents of files, and also explains the concepts of keys and commands, which are
fundamental for understanding how Emacs interprets your keyboard and mouse input.

2.1 Kinds of User Input

GNU Emacs uses an extension of the ASCII character set for keyboard input; it also
accepts non-character input events including function keys and mouse button actions.

ASCII consists of 128 character codes. Some of these codes are assigned graphic symbols
such as ‘a’ and ‘="; the rest are control characters, such as Control-a (usually written C-a
for short). C-a gets its name from the fact that you type it by holding down the key
while pressing a.

Some ASCII control characters have special names, and most terminals have special keys
you can type them with: for example, (RET), (TAB), (DEL) and (ESC). The space character is
usually referred to below as SPC), even though strictly speaking it is a graphic character
whose graphic happens to be blank. Some keyboards have a key labeled “linefeed” which
is an alias for C-j.

Emacs extends the ASCII character set with thousands more printing characters (see
Chapter 18 [International|, page 175), additional control characters, and a few more modi-
fiers that can be combined with any character.

On ASCII terminals, there are only 32 possible control characters. These are the control
variants of letters and ‘@[J\"_’. In addition, the shift key is meaningless with control
characters: C-a and C-A are the same character, and Emacs cannot distinguish them.

But the Emacs character set has room for control variants of all printing characters,
and for distinguishing between C-a and C-A. The X Window System makes it possible to
enter all these characters. For example, C-- (that’s Control-Minus) and C-5 are meaningful
Emacs commands under X.

Another Emacs character-set extension is additional modifier bits. Only one modifier bit
is commonly used; it is called Meta. Every character has a Meta variant; examples include
Meta-a (normally written M-a, for short), M-A (not the same character as M-a, but those two
characters normally have the same meaning in Emacs), M-@®RET), and M-C-a. For reasons of
tradition, we usually write C-M-a rather than M-C-a; logically speaking, the order in which
the modifier keys (CTRL) and (META) are mentioned does not matter.

Some terminals have a key, and allow you to type Meta characters by holding this
key down. Thus, Meta-a is typed by holding down and pressing a. The key
works much like the key. Such a key is not always labeled (META), however, as this
function is often a special option for a key with some other primary purpose. Sometimes it
is labeled or (EDIT); on a Sun keyboard, it may have a diamond on it.

If there is no key, you can still type Meta characters using two-character sequences
starting with (&SC). Thus, you can enter M-a by typing a. You can enter C-M-a by
typing C-a. is allowed on terminals with keys, too, in case you have
formed a habit of using it.

28 GNU Emacs Manual

The X Window System provides several other modifier keys that can be applied to any in-
put character. These are called (SUPER), and (ALT). We write ‘s-’, ‘H-" and ‘A-’ to say
that a character uses these modifiers. Thus, s-H-C-x is short for Super-Hyper-Control-x.
Not all X terminals actually provide keys for these modifier flags—in fact, many terminals
have a key labeled which is really a key. The standard key bindings of Emacs
do not include any characters with these modifiers. But you can assign them meanings of
your own by customizing Emacs.

Keyboard input includes keyboard keys that are not characters at all: for example
function keys and arrow keys. Mouse buttons are also outside the gamut of characters. You
can modify these events with the modifier keys (CTRL), (META), (SUPER), (HYPER) and (ALT),
just like keyboard characters.

Input characters and non-character inputs are collectively called input events. See section
“Input Events” in The Emacs Lisp Reference Manual, for more information. If you are not
doing Lisp programming, but simply want to redefine the meaning of some characters or
non-character events, see Chapter 32 [Customization|, page 377.

ASCII terminals cannot really send anything to the computer except ASCII characters.
These terminals use a sequence of characters to represent each function key. But that is
invisible to the Emacs user, because the keyboard input routines recognize these special
sequences and convert them to function key events before any other part of Emacs gets to
see them.

2.2 Keys

A key sequence (key, for short) is a sequence of input events that are meaningful as a
unit—as “a single command.” Some Emacs command sequences are just one character or
one event; for example, just C-f is enough to move forward one character in the buffer. But
Emacs also has commands that take two or more events to invoke.

If a sequence of events is enough to invoke a command, it is a complete key. Examples
of complete keys include C-a, X, (RET), (a function key), (an arrow key), C-x
C-f, and C-x 4 C-f. If it isn’t long enough to be complete, we call it a prefix key. The
above examples show that C-x and C-x 4 are prefix keys. Every key sequence is either a
complete key or a prefix key.

Most single characters constitute complete keys in the standard Emacs command bind-
ings. A few of them are prefix keys. A prefix key combines with the following input event
to make a longer key sequence, which may itself be complete or a prefix. For example, C-x
is a prefix key, so C-x and the next input event combine to make a two-event key sequence.
Most of these key sequences are complete keys, including C-x C-f and C-x b. A few, such as
C-x 4 and C-x r, are themselves prefix keys that lead to three-event key sequences. There’s
no limit to the length of a key sequence, but in practice people rarely use sequences longer
than four events.

By contrast, you can’t add more events onto a complete key. For example, the two-event
sequence C-f C-k is not a key, because the C-f is a complete key in itself. It’s impossible
to give C-f C-k an independent meaning as a command. C-f C-k is two key sequences, not
one.

All told, the prefix keys in Emacs are C-c, C-h, C-x, C-x (RET), C-x @, C-x a, C-x n,
C-xr, C-x v, C-x 4, C-x 5, C-x 6, (ESC), and M-g. But this list is not cast in concrete; it

Chapter 2: Characters, Keys and Commands 29

is just a matter of Emacs’s standard key bindings. If you customize Emacs, you can make
new prefix keys, or eliminate these. See Section 32.4 [Key Bindings|, page 393.

If you do make or eliminate prefix keys, that changes the set of possible key sequences.
For example, if you redefine C-f as a prefix, C-f C-k automatically becomes a key (complete,
unless you define that too as a prefix). Conversely, if you remove the prefix definition of
C-x 4, then C-x 4 £ (or C-x 4 anything) is no longer a key.

Typing the help character (C-h or F1)) after a prefix key displays a list of the commands
starting with that prefix. There are a few prefix keys for which C-h does not work—for
historical reasons, they have other meanings for C-h which are not easy to change. But
should work for all prefix keys.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not
assign meanings to keys directly. Instead, Emacs assigns meanings to named commands,
and then gives keys their meanings by binding them to commands.

Every command has a name chosen by a programmer. The name is usually made of
a few English words separated by dashes; for example, next-line or forward-word. A
command also has a function definition which is a Lisp program; this is what makes the
command do what it does. In Emacs Lisp, a command is actually a special kind of Lisp
function; one which specifies how to read arguments for it and call it interactively. For more
information on commands and functions, see section “What Is a Function” in The Emacs
Lisp Reference Manual. (The definition we use in this manual is simplified slightly.)

The bindings between keys and commands are recorded in various tables called keymaps.
See Section 32.4.1 [Keymaps], page 393.

When we say that “C-n moves down vertically one line” we are glossing over a distinction
that is irrelevant in ordinary use but is vital in understanding how to customize Emacs. It
is the command next-1ine that is programmed to move down vertically. C-n has this effect
because it is bound to that command. If you rebind C-n to the command forward-word
then C-n will move forward by words instead. Rebinding keys is a common method of
customization.

In the rest of this manual, we usually ignore this subtlety to keep things simple. To
give the information needed for customization, we state the name of the command which
really does the work in parentheses after mentioning the key that runs it. For example, we
will say that “The command C-n (next-line) moves point vertically down,” meaning that
next-line is a command that moves vertically down, and C-n is a key that is normally
bound to it.

While we are on the subject of information for customization only, it’s a good time to
tell you about variables. Often the description of a command will say, “To change this, set
the variable mumble-foo.” A variable is a name used to remember a value. Most of the
variables documented in this manual exist just to facilitate customization: some command
or other part of Emacs examines the variable and behaves differently according to the value
that you set. Until you are interested in customizing, you can ignore the information about
variables. When you are ready to be interested, read the basic information on variables, and
then the information on individual variables will make sense. See Section 32.2 [Variables],
page 379.

30 GNU Emacs Manual

2.4 Character Set for Text

Text in Emacs buffers is a sequence of 8-bit bytes. Each byte can hold a single ASCII
character. Both ASCII control characters (octal codes 000 through 037, and 0177) and
ASCII printing characters (codes 040 through 0176) are allowed; however, non-ASCII con-
trol characters cannot appear in a buffer. The other modifier flags used in keyboard input,
such as Meta, are not allowed in buffers either.

Some ASCII control characters serve special purposes in text, and have special names.
For example, the newline character (octal code 012) is used in the buffer to end a line,
and the tab character (octal code 011) is used for indenting to the next tab stop column
(normally every 8 columns). See Section 11.11 [Text Display|, page 88.

Non-ASCII printing characters can also appear in buffers. When multibyte characters
are enabled, you can use any of the non-ASCII printing characters that Emacs supports.
They have character codes starting at 256, octal 0400, and each one is represented as a
sequence of two or more bytes. See Chapter 18 [International], page 175. Single-byte
characters with codes 128 through 255 can also appear in multibyte buffers.

If you disable multibyte characters, then you can use only one alphabet of non-ASCII
characters, but they all fit in one byte. They use codes 0200 through 0377. See Section 18.13
[Single-Byte Character Support], page 190.

Chapter 3: Entering and Exiting Emacs 31

3 Entering and Exiting Emacs

The usual way to invoke Emacs is with the shell command emacs. Emacs clears the
screen and then displays an initial help message and copyright notice. Some operating
systems discard all type-ahead when Emacs starts up; they give Emacs no way to prevent
this. Therefore, it is advisable to wait until Emacs clears the screen before typing your first
editing command.

If you run Emacs from a shell window under the X Window System, run it in the
background with emacs&. This way, Emacs does not tie up the shell window, so you can use
that to run other shell commands while Emacs operates its own X windows. You can begin
typing Emacs commands as soon as you direct your keyboard input to the Emacs frame.

When Emacs starts up, it creates a buffer named ‘*scratchx’. That’s the buffer you
start out in. The ‘*scratch*’ buffer uses Lisp Interaction mode; you can use it to type Lisp
expressions and evaluate them, or you can ignore that capability and simply doodle. (You
can specify a different major mode for this buffer by setting the variable initial-major-
mode in your init file. See Section 32.7 [Init File|, page 403.)

It is possible to specify files to be visited, Lisp files to be loaded, and functions to be
called, by giving Emacs arguments in the shell command line. See Appendix B [Command
Arguments], page 423. But we don’t recommend doing this. The feature exists mainly for
compatibility with other editors.

Many other editors are designed to be started afresh each time you want to edit. You
edit one file and then exit the editor. The next time you want to edit either another file or
the same one, you must run the editor again. With these editors, it makes sense to use a
command-line argument to say which file to edit.

But starting a new Emacs each time you want to edit a different file does not make
sense. For one thing, this would be annoyingly slow. For another, this would fail to take
advantage of Emacs’s ability to visit more than one file in a single editing session. And it
would lose the other accumulated context, such as the kill ring, registers, undo history, and
mark ring.

The recommended way to use GNU Emacs is to start it only once, just after you log in,
and do all your editing in the same Emacs session. Each time you want to edit a different
file, you visit it with the existing Emacs, which eventually comes to have many files in it
ready for editing. Usually you do not kill the Emacs until you are about to log out. See
Chapter 14 [Files|, page 109, for more information on visiting more than one file.

3.1 Exiting Emacs

There are two commands for exiting Emacs because there are two kinds of exiting:
suspending Emacs and killing Emacs.

Suspending means stopping Emacs temporarily and returning control to its parent pro-
cess (usually a shell), allowing you to resume editing later in the same Emacs job, with the
same buffers, same Kkill ring, same undo history, and so on. This is the usual way to exit.

Killing Emacs means destroying the Emacs job. You can run Emacs again later, but

you will get a fresh Emacs; there is no way to resume the same editing session after it has
been killed.

32 GNU Emacs Manual

C-z Suspend Emacs (suspend-emacs) or iconify a frame (iconify-or-deiconify-
frame).
C-x C-c Kill Emacs (save-buffers-kill-emacs).

To suspend Emacs, type C-z (suspend-emacs). This takes you back to the shell from
which you invoked Emacs. You can resume Emacs with the shell command %emacs in most
common shells.

On systems that do not support suspending programs, C-z starts an inferior shell that
communicates directly with the terminal. Emacs waits until you exit the subshell. (The
way to do that is probably with C-d or exit, but it depends on which shell you use.) The
only way on these systems to get back to the shell from which Emacs was run (to log out,
for example) is to kill Emacs.

Suspending also fails if you run Emacs under a shell that doesn’t support suspending
programs, even if the system itself does support it. In such a case, you can set the variable
cannot-suspend to a non-nil value to force C-z to start an inferior shell. (One might also
describe Emacs’s parent shell as “inferior” for failing to support job control properly, but
that is a matter of taste.)

When Emacs communicates directly with an X server and creates its own dedicated
X windows, C-z has a different meaning. Suspending an application that uses its own
X windows is not meaningful or useful. Instead, C-z runs the command iconify-or-
deiconify-frame, which temporarily iconifies (or “minimizes”) the selected Emacs frame
(see Chapter 17 [Frames|, page 163). Then you can use the window manager to get back to
a shell window.

To exit and kill Emacs, type C-x C-c (save-buffers-kill-emacs). A two-character
key is used for this to make it harder to type by accident. This command first offers to save
any modified file-visiting buffers. If you do not save them all, it asks for reconfirmation
with yes before killing Emacs, since any changes not saved will be lost forever. Also, if
any subprocesses are still running, C-x C-c asks for confirmation about them, since killing
Emacs will also kill the subprocesses.

If the value of the variable confirm-kill-emacs is non-nil, C-x C-c assumes that its
value is a predicate function, and calls that function. If the result is non-nil, the session
is killed, otherwise Emacs continues to run. One convenient function to use as the value of
confirm-kill-emacs is the function yes-or-no-p. The default value of confirm-kill-
emacs is nil.

There is no way to resume an Emacs session once you have killed it. You can, however,
arrange for Emacs to record certain session information when you kill it, such as which files
are visited, so that the next time you start Emacs it will try to visit the same files and so
on. See Section 31.12 [Saving Emacs Sessions], page 368.

The operating system usually listens for certain special characters whose meaning is to
kill or suspend the program you are running. This operating system feature is turned off
while you are in Emacs. The meanings of C-z and C-x C-c as keys in Emacs were inspired
by the use of C-z and C-c on several operating systems as the characters for stopping or
killing a program, but that is their only relationship with the operating system. You can
customize these keys to run any commands of your choice (see Section 32.4.1 [Keymaps],
page 393).

Chapter 4: Basic Editing Commands 33

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a
file. If this material is new to you, you might learn it more easily by running the Emacs
learn-by-doing tutorial. To use the tutorial, run Emacs and type Control-h t (help-with-
tutorial).

To clear the screen and redisplay, type C-1 (recenter).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. This inserts
the characters you type into the buffer at the cursor (that is, at point; see Section 1.1
[Point], page 21). The cursor moves forward, and any text after the cursor moves forward
too. If the text in the buffer is ‘FOOBAR’, with the cursor before the ‘B’, then if you type XX,
you get ‘FOOXXBAR’, with the cursor still before the ‘B’.

To delete text you have just inserted, use the large key labeled (DEL), (BACKSPACE) or
which is a short distance above the RET) or (ENTER) key. This is the key you
normally use, outside Emacs, for erasing the last character that you typed. Regardless of
the label on that key, Emacs thinks of it as (DEL), and that’s what we call it in this manual.

The key deletes the character before the cursor. As a consequence, the cursor and
all the characters after it move backwards. If you type a printing character and then type

(DEL), they cancel out.

On most computers, Emacs recognizes automatically which key ought to be (DEL), and
sets it up that way. But in some cases, especially with text-only terminals, you will need
to tell Emacs which key to use for that purpose. If the large key not far above the or
key doesn’t delete backwards, you need to do this. See Section 33.2.1 [DEL Does
Not Delete], page 410, for an explanation of how.

Most PC keyboards have both a key a short ways above (RET) or (ENTER),
and a key elsewhere. On these keyboards, Emacs supports when possible the usual
convention that the key deletes backwards (it is (DEL)), while the key
deletes “forwards,” deleting the character after point, the one underneath the cursor, like
C-d (see below).

To end a line and start typing a new one, type RET). This inserts a newline character
in the buffer. If point is in the middle of a line, splits the line. Typing when the
cursor is at the beginning of a line deletes the preceding newline, thus joining the line with
the preceding line.

Emacs can split lines automatically when they become too long, if you turn on a special
minor mode called Auto Fill mode. See Section 21.5 [Filling], page 203, for how to use Auto
Fill mode.

If you prefer to have text characters replace (overwrite) existing text rather than shove
it to the right, you can enable Overwrite mode, a minor mode. See Section 32.1 [Minor
Modes|, page 377.

Direct insertion works for printing characters and (SPC), but other characters act as
editing commands and do not insert themselves. If you need to insert a control character
or a character whose code is above 200 octal, you must quote it by typing the character

34 GNU Emacs Manual

Control-q (quoted-insert) first. (This character’s name is normally written C-q for
short.) There are two ways to use C-q:

e C-q followed by any non-graphic character (even C-g) inserts that character.

e C-q followed by a sequence of octal digits inserts the character with the specified octal
character code. You can use any number of octal digits; any non-digit terminates the
sequence. If the terminating character is (RET), it serves only to terminate the sequence.
Any other non-digit terminates the sequence and then acts as normal input—thus, C-q
1 0 1 B inserts ‘AB’.

The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give
you a convenient way to insert a digit instead of overwriting with it.

When multibyte characters are enabled, if you specify a code in the range 0200 through
0377 octal, C-q assumes that you intend to use some ISO 8859-n character set, and converts
the specified code to the corresponding Emacs character code. See Section 18.2 [Enabling
Multibyte], page 176. You select which of the ISO 8859 character sets to use through your
choice of language environment (see Section 18.3 [Language Environments|, page 177).

To use decimal or hexadecimal instead of octal, set the variable read-quoted-char-
radix to 10 or 16. If the radix is greater than 10, some letters starting with a serve as part
of a character code, just like digits.

A numeric argument to C-q specifies how many copies of the quoted character should
be inserted (see Section 4.10 [Arguments], page 41).

Customization information: in most modes runs the command delete-backward-
char; runs the command newline, and self-inserting printing characters run the
command self-insert, which inserts whatever character was typed to invoke it. Some
major modes rebind to other commands.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 21). The simplest way to do this is with arrow keys, or by clicking the left
mouse button where you want to move to.

There are also control and meta characters for cursor motion. Some are equivalent to
the arrow keys (these date back to the days before terminals had arrow keys, and are usable
on terminals which don’t have them). Others do more sophisticated things.

C-a Move to the beginning of the line (beginning-of-1line).
C-e Move to the end of the line (end-of-1line).
Cc-f Move forward one character (forward-char). The right-arrow key does the

same thing.

C-b Move backward one character (backward-char). The left-arrow key has the
same effect.
M-f Move forward one word (forward-word).

M-b Move backward one word (backward-word).

Chapter 4: Basic Editing Commands 35

C-n Move down one line, vertically (next-line). This command attempts to keep
the horizontal position unchanged, so if you start in the middle of one line, you
end in the middle of the next. The down-arrow key does the same thing.

C-p Move up one line, vertically (previous-line). The up-arrow key has the same
effect.
M-r Move point to left margin, vertically centered in the window (move-to-window-

line). Text does not move on the screen.

A numeric argument says which screen line to place point on. It counts screen
lines down from the top of the window (zero for the top line). A negative
argument counts lines from the bottom (—1 for the bottom line).

M-< Move to the top of the buffer (beginning-of-buffer). With numeric argument
n, move to n/10 of the way from the top. See Section 4.10 [Arguments|, page 41,
for more information on numeric arguments.

M-> Move to the end of the buffer (end-of-buffer).

C-v Scroll the display one screen forward, and move point if necessary to put it on
the screen (scroll-up). This doesn’t always move point, but it is commonly
used to do so. If your keyboard has a key, it does the same thing.

Scrolling commands are further described in Section 11.6 [Scrolling], page 84.

M-v Scroll one screen backward, and move point if necessary to put it on the screen
(scroll-down). This doesn’t always move point, but it is commonly used to
do so. The key has the same effect.

M-x goto-char
Read a number n and move point to buffer position n. Position 1 is the begin-
ning of the buffer.

M-x goto-line
Read a number n and move point to line number n. Line 1 is the beginning of
the buffer.

C-x C-n Use the current column of point as the semipermanent goal column for C-n and
C-p (set-goal-column). Henceforth, those commands always move to this
column in each line moved into, or as close as possible given the contents of the
line. This goal column remains in effect until canceled.

C-u C-x C-n
Cancel the goal column. Henceforth, C-n and C-p once again try to stick to a
fixed horizontal position, as usual.

If you set the variable track-eol to a non-nil value, then C-n and C-p, when starting
at the end of the line, move to the end of another line. Normally, track-eol is nil. See
Section 32.2 [Variables|, page 379, for how to set variables such as track-eol.

C-n normally gets an error when you use it on the last line of the buffer (just as C-p
gets an error on the first line). But if you set the variable next-line-add-newlines to
a non-nil value, C-n on the last line of a buffer creates an additional line at the end and
moves down onto it.

36 GNU Emacs Manual

4.3 Erasing Text

DEL Delete the character before point (delete-backward-char).

C-d Delete the character after point (delete-char).

DELETE

One of these keys, whichever is the large key above the (RET) or (ENTER) key,

deletes the character before point, like (DEL). If that is (BACKSPACE), and your
keyboard also has (DELETE), then deletes forwards, like C-d.

C-k Kill to the end of the line (kill-1line).

M-d Kill forward to the end of the next word (kill-word).
M-(DEL) Kill back to the beginning of the previous word (backward-kill-word).

You already know about the key which deletes the character before point (that
is, before the cursor). Another key, Control-d (C-d for short), deletes the character after
point (that is, the character that the cursor is on). This shifts the rest of the text on the
line to the left. If you type C-d at the end of a line, it joins together that line and the next
line.

To erase a larger amount of text, use the C-k key, which kills a line at a time. If you
type C-k at the beginning or middle of a line, it kills all the text up to the end of the line.
If you type C-k at the end of a line, it joins that line and the next line.

See Section 9.1 [Killing], page 67, for more flexible ways of killing text.

4.4 Undoing Changes

You can undo all the recent changes in the buffer text, up to a certain point. Each
buffer records changes individually, and the undo command always applies to the current
buffer. Usually each editing command makes a separate entry in the undo records, but
some commands such as query-replace make many entries, and very simple commands
such as self-inserting characters are often grouped to make undoing less tedious.

C-xu Undo one batch of changes—usually, one command worth (undo).
C-_ The same.

C-u C-x u Undo one batch of changes in the region.

The command C-x u or C-_ is how you undo. The first time you give this command, it
undoes the last change. Point moves back to where it was before the command that made
the change.

Consecutive repetitions of C-_ or C-x u undo earlier and earlier changes, back to the
limit of the undo information available. If all recorded changes have already been undone,
the undo command displays an error message and does nothing.

Any command other than an undo command breaks the sequence of undo commands.
Starting from that moment, the previous undo commands become ordinary changes that

Chapter 4: Basic Editing Commands 37

you can undo. Thus, to redo changes you have undone, type C-f or any other command
that will harmlessly break the sequence of undoing, then type more undo commands.

Ordinary undo applies to all changes made in the current buffer. You can also perform
selective undo, limited to the current region. To do this, specify the region you want, then
run the undo command with a prefix argument (the value does not matter): C-u C-x u or
C-u C-_. This undoes the most recent change in the region. To undo further changes in the
same region, repeat the undo command (no prefix argument is needed). In Transient Mark
mode, any use of undo when there is an active region performs selective undo; you do not
need a prefix argument.

If you notice that a buffer has been modified accidentally, the easiest way to recover is to
type C-_ repeatedly until the stars disappear from the front of the mode line. At this time,
all the modifications you made have been canceled. Whenever an undo command makes
the stars disappear from the mode line, it means that the buffer contents are the same as
they were when the file was last read in or saved.

If you do not remember whether you changed the buffer deliberately, type C-_ once.
When you see the last change you made undone, you will see whether it was an intentional
change. If it was an accident, leave it undone. If it was deliberate, redo the change as

described above.

Not all buffers record undo information. Buffers whose names start with spaces don’t;
these buffers are used internally by Emacs and its extensions to hold text that users don’t
normally look at or edit.

You cannot undo mere cursor motion; only changes in the buffer contents save undo
information. However, some cursor motion commands set the mark, so if you use these
commands from time to time, you can move back to the neighborhoods you have moved
through by popping the mark ring (see Section 8.5 [Mark Ring], page 64).

When the undo information for a buffer becomes too large, Emacs discards the oldest
undo information from time to time (during garbage collection). You can specify how much
undo information to keep by setting two variables: undo-1imit and undo-strong-limit.
Their values are expressed in units of bytes of space.

The variable undo-1imit sets a soft limit: Emacs keeps undo data for enough commands
to reach this size, and perhaps exceed it, but does not keep data for any earlier commands
beyond that. Its default value is 20000. The variable undo-strong-limit sets a stricter
limit: the command which pushes the size past this amount is itself forgotten. Its default
value is 30000.

Regardless of the values of those variables, the most recent change is never discarded,
so there is no danger that garbage collection occurring right after an unintentional large
change might prevent you from undoing it.

The reason the undo command has two keys, C-x u and C-_, set up to run it is that it is
worthy of a single-character key, but on some keyboards it is not obvious how to type C-_.
C-x u is an alternative you can type straightforwardly on any terminal.

4.5 Files

The commands described above are sufficient for creating and altering text in an Emacs
buffer; the more advanced Emacs commands just make things easier. But to keep any text

38 GNU Emacs Manual

permanently you must put it in a file. Files are named units of text which are stored by
the operating system for you to retrieve later by name. To look at or use the contents of a
file in any way, including editing the file with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. In Emacs, to begin editing this file, type
C-x C-f /usr/rms/foo.c

Here the file name is given as an argument to the command C-x C-f (find-file). That
command uses the minibuffer to read the argument, and you type to terminate the
argument (see Chapter 5 [Minibuffer], page 43).

Emacs obeys the command by visiting the file: creating a buffer, copying the contents
of the file into the buffer, and then displaying the buffer for you to edit. If you alter
the text, you can save the new text in the file by typing C-x C-s (save-buffer). This
makes the changes permanent by copying the altered buffer contents back into the file
‘/usr/rms/foo.c’. Until you save, the changes exist only inside Emacs, and the file ‘foo.c’
is unaltered.

To create a file, just visit the file with C-x C-f as if it already existed. This creates an
empty buffer in which you can insert the text you want to put in the file. The file is actually
created when you save this buffer with C-x C-s.

Of course, there is a lot more to learn about using files. See Chapter 14 [Files], page 109.

4.6 Help

If you forget what a key does, you can find out with the Help character, which is C-h (or
(F1), which is an alias for C-h). Type C-h k followed by the key you want to know about;
for example, C-h k C-n tells you all about what C-n does. C-h is a prefix key; C-h k is just
one of its subcommands (the command describe-key). The other subcommands of C-h
provide different kinds of help. Type C-h twice to get a description of all the help facilities.
See Chapter 7 [Help], page 53.

4.7 Blank Lines

Here are special commands and techniques for putting in and taking out blank lines.
C-o Insert one or more blank lines after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

When you want to insert a new line of text before an existing line, you can do it by
typing the new line of text, followed by (RET). However, it may be easier to see what you
are doing if you first make a blank line and then insert the desired text into it. This is easy
to do using the key C-o (open-line), which inserts a newline after point but leaves point
in front of the newline. After C-o, type the text for the new line. C-o F 0 0 has the same
effect as F 0 0 (RET), except for the final location of point.

You can make several blank lines by typing C-o several times, or by giving it a numeric
argument to tell it how many blank lines to make. See Section 4.10 [Arguments|, page 41,
for how. If you have a fill prefix, then C-o command inserts the fill prefix on the new line,
when you use it at the beginning of a line. See Section 21.5.4 [Fill Prefix|, page 205.

Chapter 4: Basic Editing Commands 39

The easy way to get rid of extra blank lines is with the command C-x C-o (delete-
blank-lines). C-x C-o in a run of several blank lines deletes all but one of them. C-x C-o
on a solitary blank line deletes that blank line. When point is on a nonblank line, C-x C-o
deletes any blank lines following that nonblank line.

4.8 Continuation Lines

If you add too many characters to one line without breaking it with (RET), the line grows
to occupy two (or more) lines on the screen. On graphical displays, Emacs indicates line
wrapping with small bent arrows in the fringes to the left and right of the window. On
text-only terminals, Emacs displays a ‘\’ character at the right margin of a screen line if
it is not the last in its text line. This ‘\’ character says that the following screen line is
not really a distinct line in the text, just a continuation of a line too long to fit the screen.
Continuation is also called line wrapping.

When line wrapping occurs before a character that is wider than one column, some
columns at the end of the previous screen line may be “empty.” In this case, Emacs
displays additional ‘\’ characters in the “empty” columns, just before the ‘\’ character that
indicates continuation.

Sometimes it is nice to have Emacs insert newlines automatically when a line gets too
long. Continuation on the screen does not do that. Use Auto Fill mode (see Section 21.5
[Filling], page 203) if that’s what you want.

As an alternative to continuation, Emacs can display long lines by truncation. This
means that all the characters that do not fit in the width of the screen or window do not
appear at all. They remain in the buffer, temporarily invisible. On terminals, ‘$’ in the last
column informs you that the line has been truncated on the display. On window systems,
a small straight arrow in the fringe to the right of the window indicates a truncated line.

Truncation instead of continuation happens whenever horizontal scrolling is in
use, and optionally in all side-by-side windows (see Chapter 16 [Windows|, page 157).
You can enable or disable truncation for a particular buffer with the command M-x
toggle-truncate-lines.

See Section 11.12 [Display Custom], page 89, for additional variables that affect how
text is displayed.

4.9 Cursor Position Information

Here are commands to get information about the size and position of parts of the buffer,
and to count lines.

M-x what-page
Display the page number of point, and the line number within the page.

M-x what-1line
Display the line number of point in the buffer.

M-x line-number-mode

M-x column-number-mode
Toggle automatic display of current line number or column number. See Sec-
tion 11.10 [Optional Mode Line|, page 87.

40 GNU Emacs Manual

M-= Display the number of lines in the current region (count-lines-region). See
Chapter 8 [Mark], page 61, for information about the region.

C-x = Display the character code of character after point, character position of point,
and column of point (what-cursor-position).

M-x hl-line-mode
Enable or disable highlighting of the current line. See Section 11.13 [Cursor
Display], page 90.

There are two commands for working with line numbers. M-x what-1line computes the
current line number and displays it in the echo area. To go to a given line by number, use
M-x goto-line; it prompts you for the number. These line numbers count from one at the
beginning of the buffer.

You can also see the current line number in the mode line; see Section 1.3 [Mode Line],
page 23. If you narrow the buffer, then the line number in the mode line is relative to the
accessible portion (see Section 31.9 [Narrowing], page 366). By contrast, what-1line shows
both the line number relative to the narrowed region and the line number relative to the
whole buffer.

M-x what-page counts pages from the beginning of the file, and counts lines within the
page, showing both numbers in the echo area. See Section 21.4 [Pages], page 202.

While on this subject, we might as well mention M-= (count-lines-region), which
displays the number of lines in the region (see Chapter 8 [Mark], page 61). See Section 21.4
[Pages], page 202, for the command C-x 1 which counts the lines in the current page.

The command C-x = (what-cursor-position) can be used to find out the column that
the cursor is in, and other miscellaneous information about point. It displays a line in the
echo area that looks like this:

Char: c (0143, 99, 0x63) point=21044 of 26883(78%) column 53
(In fact, this is the output produced when point is before the ‘column’ in the example.)

The four values after ‘Char:’ describe the character that follows point, first by showing it
and then by giving its character code in octal, decimal and hex. For a non-ASCII multibyte
character, these are followed by ‘ext’ and the character’s representation, in hex, in the
buffer’s coding system, if that coding system encodes the character safely and with a single
byte (see Section 18.7 [Coding Systems|, page 181). If the character’s encoding is longer

than one byte, Emacs shows ‘ext ...".

)

‘point=’ is followed by the position of point expressed as a character count. The front
of the buffer counts as position 1, one character later as 2, and so on. The next, larger,
number is the total number of characters in the buffer. Afterward in parentheses comes the
position expressed as a percentage of the total size.

‘column’ is followed by the horizontal position of point, in columns from the left edge of
the window.

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily inaccessible, C-x = displays additional text describing the currently accessible
range. For example, it might display this:

Char: C (0103, 67, 0x43) point=252 of 889(28%) <231 - 599> column O

Chapter 4: Basic Editing Commands 41

where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the accessible ones. See
Section 31.9 [Narrowing], page 366.

If point is at the end of the buffer (or the end of the accessible part), the C-x = output
does not describe a character after point. The output might look like this:

point=26957 of 26956(100%) column O

C-u C-x = displays additional information about a character, in place of the buffer coor-
dinates and column: the character set name and the codes that identify the character within
that character set; ASCII characters are identified as belonging to the ASCII character set.
In addition, the full character encoding, even if it takes more than a single byte, is shown
after ‘ext’. Here’s an example for a Latin-1 character A with a grave accent in a buffer
whose coding system is iso-2022-7bit!:

Char: A (04300, 2240, 0x8c0O, ext ESC , A @) (latin-iso8859-1 64)

In addition, C-u C-x = shows the font used to display the character (if the terminal supports
more than one font).

4.10 Numeric Arguments

In mathematics and computer usage, the word argument means “data provided to a
function or operation.” You can give any Emacs command a numeric argument (also called
a prefix argument). Some commands interpret the argument as a repetition count. For
example, C-f with an argument of ten moves forward ten characters instead of one. With
these commands, no argument is equivalent to an argument of one. Negative arguments
tell most such commands to move or act in the opposite direction.

If your terminal keyboard has a key, the easiest way to specify a numeric argument
is to type digits and/or a minus sign while holding down the key. For example,

M-5 C-n
would move down five lines. The characters Meta-1, Meta-2, and so on, as well as Meta--, do
this because they are keys bound to commands (digit-argument and negative-argument)
that are defined to contribute to an argument for the next command. Meta-- without digits

normally means —1. Digits and - modified with Control, or Control and Meta, also specify
numeric arguments.

Another way of specifying an argument is to use the C-u (universal-argument) com-
mand followed by the digits of the argument. With C-u, you can type the argument digits
without holding down modifier keys; C-u works on all terminals. To type a negative ar-
gument, type a minus sign after C-u. Just a minus sign without digits normally means
—1.

C-u followed by a character which is neither a digit nor a minus sign has the special
meaning of “multiply by four.” It multiplies the argument for the next command by four.
C-u twice multiplies it by sixteen. Thus, C-u C-u C-f moves forward sixteen characters.
This is a good way to move forward “fast,” since it moves about 1/5 of a line in the

! On terminals that support Latin-1 characters, the character shown after ‘Char:’ is displayed as the actual
glyph of A with grave accent.

42 GNU Emacs Manual

usual size screen. Other useful combinations are C-u C-n, C-u C-u C-n (move down a good
fraction of a screen), C-u C-u C-o (make “alot” of blank lines), and C-u C-k (kill four lines).

Some commands care only about whether there is an argument, and not about its value.
For example, the command M-q (fill-paragraph) with no argument fills text; with an
argument, it justifies the text as well. (See Section 21.5 [Filling], page 203, for more infor-
mation on M-q.) Plain C-u is a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do something
peculiar when there is no argument. For example, the command C-k (kill-line) with
argument n Kkills n lines, including their terminating newlines. But C-k with no argument
is special: it Kkills the text up to the next newline, or, if point is right at the end of the line,
it kills the newline itself. Thus, two C-k commands with no arguments can kill a nonblank
line, just like C-k with an argument of one. (See Section 9.1 [Killing], page 67, for more
information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of —1. These
unusual cases are described when they come up; they are always for reasons of convenience
of use of the individual command.

You can use a numeric argument to insert multiple copies of a character. This is straight-
forward unless the character is a digit; for example, C-u 6 4 a inserts 64 copies of the char-
acter ‘a’. But this does not work for inserting digits; C-u 6 4 1 specifies an argument of
641, rather than inserting anything. To separate the digit to insert from the argument, type
another C-u; for example, C-u 6 4 C-u 1 does insert 64 copies of the character ‘1.

We use the term “prefix argument” as well as “numeric argument” to emphasize that you
type the argument before the command, and to distinguish these arguments from minibuffer
arguments that come after the command.

4.11 Repeating a Command

Many simple commands, such as those invoked with a single key or with M-x command-
name (RET), can be repeated by invoking them with a numeric argument that serves as a
repeat count (see Section 4.10 [Arguments], page 41). However, if the command you want
to repeat prompts for some input, or uses a numeric argument in another way, repetition
using a numeric argument might be problematical.

The command C-x z (repeat) provides another way to repeat an Emacs command many
times. This command repeats the previous Emacs command, whatever that was. Repeating
a command uses the same arguments that were used before; it does not read new arguments
each time.

To repeat the command more than once, type additional z’s: each z repeats the command
one more time. Repetition ends when you type a character other than z, or press a mouse
button.

For example, suppose you type C-u 2 0 C-d to delete 20 characters. You can repeat that
command (including its argument) three additional times, to delete a total of 80 characters,
by typing C-x z z z. The first C-x z repeats the command once, and each subsequent z
repeats it once again.

Chapter 5: The Minibuffer 43

5 The Minibuffer

The minibuffer is the facility used by Emacs commands to read arguments more com-
plicated than a single number. Minibuffer arguments can be file names, buffer names, Lisp
function names, Emacs command names, Lisp expressions, and many other things, depend-
ing on the command reading the argument. You can use the usual Emacs editing commands
in the minibuffer to edit the argument text.

When the minibuffer is in use, it appears in the echo area, and the terminal’s cursor
moves there. The beginning of the minibuffer line displays a prompt which says what kind
of input you should supply and how it will be used. Often this prompt is derived from the
name of the command that the argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon; it too is part of
the prompt. The default will be used as the argument value if you enter an empty argument
(that is, just type (RET)). For example, commands that read buffer names always show a
default, which is the name of the buffer that will be used if you type just RET).

The simplest way to enter a minibuffer argument is to type the text you want, terminated
by which exits the minibuffer. You can cancel the command that wants the argument,
and get out of the minibuffer, by typing C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict with other
ways Emacs customarily uses the echo area. Here is how Emacs handles such conflicts:

e If a command gets an error while you are in the minibuffer, this does not cancel the
minibuffer. However, the echo area is needed for the error message and therefore the
minibuffer itself is hidden for a while. It comes back after a few seconds, or as soon as
you type anything.

e If in the minibuffer you use a command whose purpose is to display a message in the
echo area, such as C-x =, the message hides the minibuffer for a while. The minibuffer
contents come back after a few seconds, or as soon as you type anything.

e Echoing of keystrokes does not take place while the minibuffer is in use.

5.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when you are supposed
to give a file name, the minibuffer starts out containing the default directory, which ends
with a slash. This is to inform you which directory the file will be found in if you do not
specify a directory.

For example, the minibuffer might start out with these contents:

Find File: /u2/emacs/src/

where ‘Find File: ' is the prompt. Typing buffer.c specifies the file
‘/u2/emacs/src/buffer.c’. To find files in nearby directories, use ..; thus, if
you type ../lisp/simple.el, you will get the file named ‘/u2/emacs/lisp/simple.el’.
Alternatively, you can kill with M-(DEL) the directory names you don’t want (see
Section 21.1 [Words|, page 199).

If you don’t want any of the default, you can kill it with C-a C-k. But you don’t need to
kill the default; you can simply ignore it. Insert an absolute file name, one starting with a

44 GNU Emacs Manual

slash or a tilde, after the default directory. For example, to specify the file ‘/etc/termcap’,
just insert that name, giving these minibuffer contents:

Find File: /u2/emacs/src//etc/termcap

GNU Emacs gives a special meaning to a double slash (which is not normally a useful
thing to write): it means, “ignore everything before the second slash in the pair.” Thus,
‘/u2/emacs/src/’ is ignored in the example above, and you get the file ‘/etc/termcap’.

If you set insert-default-directory tonil, the default directory is not inserted in the
minibuffer. This way, the minibuffer starts out empty. But the name you type, if relative,
is still interpreted with respect to the same default directory.

5.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual Emacs commands
are available for editing the text of an argument you are entering.

Since in the minibuffer is defined to exit the minibuffer, you can’t use it to insert a
newline in the minibuffer. To do that, type C-o or C-q C-j. (Recall that a newline is really
the character control-J.)

The minibuffer has its own window which always has space on the screen but acts as if it
were not there when the minibuffer is not in use. When the minibuffer is in use, its window
is just like the others; you can switch to another window with C-x o, edit text in other
windows and perhaps even visit more files, before returning to the minibuffer to submit the
argument. You can kill text in another window, return to the minibuffer window, and then
yank the text to use it in the argument. See Chapter 16 [Windows|, page 157.

There are some restrictions on the use of the minibuffer window, however. You cannot
switch buffers in it—the minibuffer and its window are permanently attached. Also, you
cannot split or kill the minibuffer window. But you can make it taller in the normal fashion
with C-x ~.

The minibuffer window expands vertically as necessary to hold the text that you put
in the minibuffer, if resize-mini-windows is non-nil. If resize-mini-windows is t, the
window is always resized to fit the size of the text it displays. If resize-mini-windows
is the symbol grow-only, the window grows when the size of displayed text increases, but
shrinks (back to the normal size) only when the minibuffer becomes inactive.

The variable max-mini-window-height controls the maximum height for resizing the
minibuffer window: a floating-point number specifies a fraction of the frame’s height; an
integer specifies the maximum number of lines; nil means do not resize the minibuffer
window automatically. The default value is 0.25.

If while in the minibuffer you issue a command that displays help text of any sort in
another window, you can use the C-M-v command while in the minibuffer to scroll the help
text. This lasts until you exit the minibuffer. This feature is especially useful when you
display a buffer listing possible completions. See Section 16.3 [Other Window], page 158.

Emacs normally disallows most commands that use the minibuffer while the minibuffer is
active. This rule is to prevent recursive minibuffers from confusing novice users. If you want
to be able to use such commands in the minibuffer, set the variable enable-recursive-
minibuffers to a non-nil value.

Chapter 5: The Minibuffer 45

5.3 Completion

For certain kinds of arguments, you can use completion to enter the argument value.
Completion means that you type part of the argument, then Emacs visibly fills in the rest,
or as much as can be determined from the part you have typed.

When completion is available, certain keys—(TAB), (RET), and (SPC)—are rebound to
complete the text present in the minibuffer into a longer string that it stands for, by
matching it against a set of completion alternatives provided by the command reading the
argument. 7 is defined to display a list of possible completions of what you have inserted.

For example, when M-x uses the minibuffer to read the name of a command, it provides
a list of all available Emacs command names to complete against. The completion keys
match the text in the minibuffer against all the command names, find any additional name
characters implied by the ones already present in the minibuffer, and add those characters
to the ones you have given. This is what makes it possible to type M-x ins b
instead of M-x insert-buffer (for example).

Case is normally significant in completion, because it is significant in most of the names
that you can complete (buffer names, file names and command names). Thus, ‘fo’ does not
complete to ‘Foo’. Completion does ignore case distinctions for certain arguments in which
case does not matter.

5.3.1 Completion Example

A concrete example may help here. If you type M-x au (TAB), the looks for alter-
natives (in this case, command names) that start with ‘au’. There are several, including
auto-fill-mode and auto-save-mode—but they are all the same as far as auto-, so the
‘au’ in the minibuffer changes to ‘auto-’.

If you type again immediately, there are multiple possibilities for the very next
character—it could be any of ‘cfilrs’—so no more characters are added; instead,
displays a list of all possible completions in another window.

If you go on to type f (TAB), this sees ‘auto-f’. The only command name start-
ing this way is auto-fill-mode, so completion fills in the rest of that. You now have
‘auto-fill-mode’ in the minibuffer after typing just au f (TAB). Note that has
this effect because in the minibuffer it is bound to the command minibuffer-complete
when completion is available.

5.3.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when completion is
available.

TAB Complete the text in the minibuffer as much as possible (minibuffer-
complete).
Complete the minibuffer text, but don’t go beyond one word (minibuffer-

complete-word).

RET Submit the text in the minibuffer as the argument, possibly completing first as
described below (minibuffer-complete-and-exit).

46 GNU Emacs Manual

? Display a list of all possible completions of the text in the minibuffer
(minibuffer-list-completions).

completes much like (TAB), but never goes beyond the next hyphen or space.
If you have ‘auto-f’ in the minibuffer and type (SPC), it finds that the completion is
‘auto-fill-mode’, but it stops completing after ‘fill-’. This gives ‘auto-fill-’. An-
other at this point completes all the way to ‘auto-fill-mode’. The command that
implements this behavior is called minibuffer-complete-word.

Here are some commands you can use to choose a completion from a window that displays
a list of completions:

Mouse-2 Clicking mouse button 2 on a completion in the list of possible completions
chooses that completion (mouse-choose-completion). You normally use this
command while point is in the minibuffer, but you must click in the list of
completions, not in the minibuffer itself.

M-v Typing (PRIOR) or (PAGE-UP), or M-v, while in the minibuffer, selects the window
showing the completion list buffer (switch-to-completions). This paves the
way for using the commands below. (Selecting that window in the usual ways
has the same effect, but this way is more convenient.)

RET Typing i the completion list buffer chooses the completion that point

is in or next to (choose-completion). To use this command, you must first
switch windows to the window that shows the list of completions.

Typing the right-arrow key in the completion list buffer moves point to
the following completion (next-completion).

Typing the left-arrow key in the completion list buffer moves point
toward the beginning of the buffer, to the previous completion (previous-
completion).

5.3.3 Strict Completion

There are three different ways that can work in completing minibuffers, depending
on how the argument will be used.

e Strict completion is used when it is meaningless to give any argument except one of the
known alternatives. For example, when C-x k reads the name of a buffer to kill, it is
meaningless to give anything but the name of an existing buffer. In strict completion,
refuses to exit if the text in the minibuffer does not complete to an exact match.

e (autious completion is similar to strict completion, except that exits only if the
text was an exact match already, not needing completion. If the text is not an exact
match, does not exit, but it does complete the text. If it completes to an exact
match, a second will exit.

Cautious completion is used for reading file names for files that must already exist.

e Permissive completion is used when any string whatever is meaningful, and the list of
completion alternatives is just a guide. For example, when C-x C-f reads the name of
a file to visit, any file name is allowed, in case you want to create a file. In permissive

Chapter 5: The Minibuffer 47

completion, takes the text in the minibuffer exactly as given, without completing
it.

The completion commands display a list of all possible completions in a window whenever
there is more than one possibility for the very next character. Also, typing 7 explicitly
requests such a list. If the list of completions is long, you can scroll it with C-M-v (see
Section 16.3 [Other Window], page 158).

5.3.4 Completion Options

When completion is done on file names, certain file names are usually ignored. The
variable completion-ignored-extensions contains a list of strings; a file whose name
ends in any of those strings is ignored as a possible completion. The standard value of
this variable has several elements including ".o", ".elc", ".dvi" and "~". The effect
is that, for example, ‘foo’ can complete to ‘foo.c’ even though ‘foo.o’ exists as well.
However, if all the possible completions end in “ignored” strings, then they are not ignored.
Ignored extensions do not apply to lists of completions—those always mention all possible
completions.

Normally, a completion command that cannot determine even one additional character
automatically displays a list of all possible completions. If the variable completion-auto-
help is set to nil, this automatic display is disabled, so you must type 7 to display the list
of completions.

Partial Completion mode implements a more powerful kind of completion that can com-
plete multiple words in parallel. For example, it can complete the command name abbre-
viation p-b into print-buffer, because no other command starts with two words whose
initials are ‘p’ and ‘b’.

Partial completion of directories in file names uses ‘*’ to indicate the places for comple-
tion; thus, ‘/u*x/b*/f*’ might complete to ‘/usr/bin/foo’.

To enable this mode, use the command M-x partial-completion-mode, or customize
the option partial-completion-mode. This binds the partial completion commands to
(TAB), SPC), RET), and 7. The usual completion commands are available on M-(TAB), M-(SPC),
M-@RET) and M-7.

Another feature of Partial Completion mode is to extend find-file so that the ‘<in-
clude>’ stands for the file named include in some directory in the path PC-include-file-
path. If you set PC-disable-includes to non-nil, this feature is disabled.

Icomplete mode presents a constantly-updated display that tells you what completions
are available for the text you’ve entered so far. The command to enable or disable this
minor mode is M-x icomplete-mode.

5.4 Minibuffer History

Every argument that you enter with the minibuffer is saved on a minibuffer history list
so that you can use it again later in another argument. Special commands load the text of
an earlier argument in the minibuffer. They discard the old minibuffer contents, so you can
think of them as moving through the history of previous arguments.

48 GNU Emacs Manual

M-p Move to the next earlier argument string saved in the minibuffer history
(previous-history-element).

DOWN

M-n Move to the next later argument string saved in the minibuffer history (next-

history-element).

M-r regexp
Move to an earlier saved argument in the minibuffer history that has a match
for regexp (previous-matching-history-element).

M-s regexp
Move to a later saved argument in the minibuffer history that has a match for
regexp (next-matching-history-element).

The simplest way to reuse the saved arguments in the history list is to move through the
history list one element at a time. While in the minibuffer, use M-p or up-arrow (previous-
history-element) to “move to” the next earlier minibuffer input, and use M-n or down-
arrow (next-history-element) to “move to” the next later input.

The previous input that you fetch from the history entirely replaces the contents of the
minibuffer. To use it as the argument, exit the minibuffer as usual with RET). You can
also edit the text before you reuse it; this does not change the history element that you
“moved” to, but your new argument does go at the end of the history list in its own right.

For many minibuffer arguments there is a “default” value. In some cases, the minibuffer
history commands know the default value. Then you can insert the default value into the
minibuffer as text by using M-n to move “into the future” in the history. Eventually we
hope to make this feature available whenever the minibuffer has a default value.

There are also commands to search forward or backward through the history; they search
for history elements that match a regular expression that you specify with the minibuffer.
M-r (previous-matching-history-element) searches older elements in the history, while
M-s (next-matching-history-element) searches newer elements. By special dispensation,
these commands can use the minibuffer to read their arguments even though you are already
in the minibuffer when you issue them. As with incremental searching, an upper-case letter
in the regular expression makes the search case-sensitive (see Section 12.6 [Search Case],
page 100).

All uses of the minibuffer record your input on a history list, but there are separate
history lists for different kinds of arguments. For example, there is a list for file names,
used by all the commands that read file names. (As a special feature, this history list
records the absolute file name, no more and no less, even if that is not how you entered the
file name.)

There are several other very specific history lists, including one for command names read
by M-x, one for buffer names, one for arguments of commands like query-replace, and one
for compilation commands read by compile. Finally, there is one “miscellaneous” history
list that most minibuffer arguments use.

The variable history-length specifies the maximum length of a minibuffer history list;
once a list gets that long, the oldest element is deleted each time an element is added. If

Chapter 5: The Minibuffer 49

the value of history-length is t, though, there is no maximum length and elements are
never deleted.

5.5 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history
list, together with the values of its arguments, so that you can repeat the entire command.
In particular, every use of M-x is recorded there, since M-x uses the minibuffer to read the
command name.

C-x ESO (€SO

Re-execute a recent minibuffer command (repeat-complex-command).

M-x list-command-history
Display the entire command history, showing all the commands C-x
can repeat, most recent first.

C-x is used to re-execute a recent minibuffer-using command. With no argu-
ment, it repeats the last such command. A numeric argument specifies which command to
repeat; one means the last one, and larger numbers specify earlier ones.

C-x works by turning the previous command into a Lisp expression and then
entering a minibuffer initialized with the text for that expression. If you type just ®RET),
the command is repeated as before. You can also change the command by editing the Lisp
expression. Whatever expression you finally submit is what will be executed. The repeated
command is added to the front of the command history unless it is identical to the most
recently executed command already there.

Even if you don’t understand Lisp syntax, it will probably be obvious which command
is displayed for repetition. If you do not change the text, it will repeat exactly as before.

Once inside the minibuffer for C-x (ESC), you can use the minibuffer history com-
mands (M-p, M-n, M-r, M-s; see Section 5.4 [Minibuffer History], page 47) to move through
the history list of saved entire commands. After finding the desired previous command, you
can edit its expression as usual and then resubmit it by typing as usual.

The list of previous minibuffer-using commands is stored as a Lisp list in the variable
command-history. Each element is a Lisp expression which describes one command and its
arguments. Lisp programs can re-execute a command by calling eval with the command-
history element.

50

GNU Emacs Manual

Chapter 6: Running Commands by Name 51

6 Running Commands by Name

Every Emacs command has a name that you can use to run it. Commands that are
used often, or that must be quick to type, are also bound to keys—short sequences of
characters—for convenient use. You can run them by name if you don’t remember the keys.
Other Emacs commands that do not need to be quick are not bound to keys; the only way
to run them is by name. See Section 32.4 [Key Bindings|, page 393, for the description of
how to bind commands to keys.

By convention, a command name consists of one or more words, separated by hyphens;
for example, auto-fill-mode or manual-entry. The use of English words makes the
command name easier to remember than a key made up of obscure characters, even though
it is more characters to type.

The way to run a command by name is to start with M-x, type the command name,
and finish it with (RET). M-x uses the minibuffer to read the command name. exits
the minibuffer and runs the command. The string ‘M-x’ appears at the beginning of the
minibuffer as a prompt to remind you to enter the name of a command to be run. See
Chapter 5 [Minibuffer|, page 43, for full information on the features of the minibuffer.

You can use completion to enter the command name. For example, you can invoke the
command forward-char by name by typing either

M-x forward-char
or

M-x forw c

Note that forward-char is the same command that you invoke with the key C-f. You can
run any Emacs command by name using M-x, whether or not any keys are bound to it.

If you type C-g while the command name is being read, you cancel the M-x command
and get out of the minibuffer, ending up at top level.

To pass a numeric argument to the command you are invoking with M-x, specify the
numeric argument before the M-x. M-x passes the argument along to the command it runs.
The argument value appears in the prompt while the command name is being read.

If the command you type has a key binding of its own, Emacs mentions this in the
echo area, two seconds after the command finishes (if you don’t type anything else first).
For example, if you type M-x forward-word, the message says that you can run the same
command more easily by typing M-f. You can turn off these messages by setting suggest-
key-bindings to nil.

Normally, when describing in this manual a command that is run by name, we omit the
that is needed to terminate the name. Thus we might speak of M-x auto-fill-mode
rather than M-x auto-fill-mode (RET). We mention the only when there is a need
to emphasize its presence, such as when we show the command together with following
arguments.

M-x works by running the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

52

GNU Emacs Manual

Chapter 7: Help 53

7 Help

Emacs provides extensive help features accessible through a single character, C-h. C-h
is a prefix key that is used for commands that display documentation. The characters that
you can type after C-h are called help options. One help option is C-h; that is how you ask
for help about using C-h. To cancel, type C-g. The function key is equivalent to C-h.

C-h C-h (help-for-help) displays a list of the possible help options, each with a brief
description. Before you type a help option, you can use or to scroll through the
list.

C-h or means “help” in various other contexts as well. For example, in the middle of
query-replace, it describes the options available for how to operate on the current match.
After a prefix key, it displays a list of the alternatives that can follow the prefix key. (A
few prefix keys don’t support C-h, because they define other meanings for it, but they all
support (E1).)

Most help buffers use a special major mode, Help mode, which lets you scroll conveniently
with and (DEL). It also offers hyperlinks to further help regarding cross-referenced
names, Info nodes, customization buffers and the like. See Section 7.6 [Help Mode]|, page 58.

If you are looking for a certain feature, but don’t know where exactly it is documented,
and aren’t sure of the name of a related command or option, we recommend trying these
methods. Usually it is best to start with an apropos command, then try searching the
manual index, then finally look in the FAQ and the package keywords.

C-h a topic
This searches for commands whose names match topic, which should be a regu-
lar expression (see Section 12.5 [Regexps], page 95). Browse the buffer that this
command displays to find what you are looking for. See Section 7.3 [Apropos],
page 56.

M-x apropos topic
This works like C-h a, but it also searches for user options and other variables, in
case the feature you are looking for is controlled by an option, not a command.
See Section 7.3 [Apropos|, page 56.

M-x apropos-documentation topic
This searches the documentation strings (the built-in short descriptions) of
all variables and functions (not their names) for a match for topic, a regular
expression. See Section 7.3 [Apropos|, page 56.

C-h i d m emacs i topic
This looks up topic in the indices of the Emacs on-line manual. If there are
several matches, Emacs displays the first one. You can then press () to move
to other matches, until you find what you are looking for.

C-h i d m emacs s topic
Similar, but searches for topic (which can be a regular expression) in the text
of the manual rather than in its indices.

C-h F This brings up the Emacs FAQ, where you can use the usual search commands
(see Chapter 12 [Search], page 91) to find the information.

54 GNU Emacs Manual

C-hp Finally, you can try looking up a suitable package using keywords pertinent to
the feature you need. See Section 7.4 [Library Keywords|, page 57.

To find the documentation of a key sequence or a menu item, type C-h C-k and then type
that key sequence or select the menu item. This looks up the description of the command
invoked by the key or the menu in the appropriate manual (not necessarily the Emacs
manual). Likewise, use C-h C-f for reading documentation of a command.

Here is a summary of the defined help commands.

C-h a regexp

Display a list of commands whose names match regexp (apropos-command).
C-h b Display a table of all key bindings in effect now, in this order: minor mode

bindings, major mode bindings, and global bindings (describe-bindings).
C-h ¢ key Show the name of the command that key runs (describe-key-briefly). Here

c stands for “character.” For more extensive information on key, use C-h k.

C-h f function
Display documentation on the Lisp function named function (describe-
function). Since commands are Lisp functions, a command name may be

used.
C-hh Display the ‘HELLO’ file, which shows examples of various character sets.
C-hi Run Info, the program for browsing documentation files (info). The complete

Emacs manual is available on-line in Info.

C-h k key Display the name and documentation of the command that key runs
(describe-key).

C-h1 Display a description of the last 100 characters you typed (view-lossage).

C-hm Display documentation of the current major mode (describe-mode).

C-hn Display documentation of Emacs changes, most recent first (view-emacs-news).

C-h P Display info on known problems with Emacs and possible workarounds (view-
emacs-problems).

C-hp Find packages by topic keyword (finder-by-keyword).

C-hs Display the current contents of the syntax table, plus an explanation of what

they mean (describe-syntax). See Section 32.6 [Syntax], page 403.
C-h t Enter the Emacs interactive tutorial (help-with-tutorial).
C-h v var

Display the documentation of the Lisp variable var (describe-variable).

C-h w command

Show which keys run the command named command (where-is).

C-h C coding

Describe coding system coding (describe-coding-system).

C-h C RET)

Describe the coding systems currently in use.

Chapter 7: Help 55

C-h I method
Describe an input method (describe-input-method).

C-h L language-env
Display information on the character sets, coding systems, and input
methods used for language environment language-env (describe-language-
environment).

C-h C-c Display the copying conditions for GNU Emacs.
C-h C-d Display information about getting new versions of GNU Emacs.

C-h C-f function
Enter Info and go to the node documenting the Emacs function function (Info-
goto-emacs-command-node).

C-h C-k key
Enter Info and go to the node where the key sequence key is documented
(Info-goto-emacs-key-command-node).

C-h C-p Display information about the GNU Project.
C-h (FAB) symbol

Display the Info documentation on symbol symbol according to the program-
ming language you are editing (info-lookup-symbol).

7.1 Documentation for a Key

The most basic C-h options are C-h ¢ (describe-key-briefly) and C-h k (describe-
key). C-h c key displays in the echo area the name of the command that key is bound
to. For example, C-h ¢ C-f displays ‘forward-char’. Since command names are chosen to
describe what the commands do, this is a good way to get a very brief description of what
key does.

C-h k key is similar but gives more information: it displays the documentation string of
the command as well as its name. This is too big for the echo area, so a window is used for
the display.

C-h ¢ and C-h k work for any sort of key sequences, including function keys and mouse
events.

7.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the minibuffer,
then displays that function’s documentation string in a window. Since commands are Lisp
functions, you can use this to get the documentation of a command that you know by name.
For example,

C-h f auto-fill-mode
displays the documentation of auto-fill-mode. This is the only way to get the documen-

tation of a command that is not bound to any key (one which you would normally run using
M-x).

56 GNU Emacs Manual

C-h f is also useful for Lisp functions that you are planning to use in a Lisp program.
For example, if you have just written the expression (make-vector len) and want to check
that you are using make-vector properly, type C-h f make-vector (RET). Because C-h f
allows all function names, not just command names, you may find that some of your favorite
abbreviations that work in M-x don’t work in C-h f. An abbreviation may be unique among
command names yet fail to be unique when other function names are allowed.

The default function name for C-h f to describe, if you type just RET), is the name of
the function called by the innermost Lisp expression in the buffer around point, provided
that is a valid, defined Lisp function name. For example, if point is located following the
text ‘ (make-vector (car x)’, the innermost list containing point is the one that starts with
‘(make-vector’, so the default is to describe the function make-vector.

C-h £ is often useful just to verify that you have the right spelling for the function name.
If C-h £ mentions a name from the buffer as the default, that name must be defined as a
Lisp function. If that is all you want to know, just type C-g to cancel the C-h £ command,
then go on editing.

C-h w command tells you what keys are bound to command. It displays a list of
the keys in the echo area. If it says the command is not on any key, you must use M-x to
run it. C-h w runs the command where-is.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, but only if that is the
name of a known Lisp variable. See Section 32.2 [Variables], page 379.

Help buffers describing variables or functions defined in Lisp normally have hyperlinks
to the Lisp definition, if you have the Lisp source files installed. If you know Lisp, this
provides the ultimate documentation. If you don’t know Lisp, you should learn it. If you
are treating Emacs as an object file, then you are just using Emacs. For real intimacy with
Emacs, you must read the source code.

7.3 Apropos

A more sophisticated sort of question to ask is, “What are the commands for working
with files?” To ask this question, type C-h a file RET), which displays a list of all com-
mand names that contain ‘file’, including copy-file, find-file, and so on. With each
command name appears a brief description of how to use the command, and what keys you
can currently invoke it with. For example, it would say that you can invoke find-file by
typing C-x C-f. The a in C-h a stands for “Apropos”; C-h a runs the command apropos-
command. This command normally checks only commands (interactive functions); if you
specify a prefix argument, it checks noninteractive functions as well.

Because C-h a looks only for functions whose names contain the string you specify, you
must use ingenuity in choosing the string. If you are looking for commands for killing
backwards and C-h a kill-backwards doesn’t reveal any, don’t give up. Try just
kill, or just backwards, or just back. Be persistent. Also note that you can use a regular
expression as the argument, for more flexibility (see Section 12.5 [Regexps|, page 95).

Here is a set of arguments to give to C-h a that covers many classes of Emacs commands,
since there are strong conventions for naming the standard Emacs commands. By giving

Chapter 7: Help 57

you a feel for the naming conventions, this set should also serve to aid you in developing a
technique for picking apropos strings.
char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer,
frame, window, face, file, dir, register, mode, beginning, end, forward, back-
ward, next, previous, up, down, search, goto, kill, delete, mark, insert, yank,
fill, indent, case, change, set, what, list, find, view, describe, default.

To list all user variables that match a regexp, use the command M-x apropos-variable.
This command shows only user variables and customization options by default; if you specify
a prefix argument, it checks all variables.

To list all Lisp symbols that contain a match for a regexp, not just the ones that are
defined as commands, use the command M-x apropos instead of C-h a. This command does
not check key bindings by default; specify a numeric argument if you want it to check them.

The apropos-documentation command is like apropos except that it searches docu-
mentation strings as well as symbol names for matches for the specified regular expression.

The apropos-value command is like apropos except that it searches symbols’ values
for matches for the specified regular expression. This command does not check function
definitions or property lists by default; specify a numeric argument if you want it to check
them.

If the variable apropos-do-all is non-nil, the commands above all behave as if they
had been given a prefix argument.

If you want more information about a function definition, variable or symbol property
listed in the Apropos buffer, you can click on it with Mouse-2 or move there and type RET).

7.4 Keyword Search for Lisp Libraries

The C-h p command lets you search the standard Emacs Lisp libraries by topic keywords.
Here is a partial list of keywords you can use:

abbrev — abbreviation handling, typing shortcuts, macros.

bib — support for the bibliography processor bib.

¢ — C and C++ language support.

calendar — calendar and time management support.

comm — communications, networking, remote access to files.

data — support for editing files of data.

docs — support for Emacs documentation.

emulations — emulations of other editors.

extensions — Emacs Lisp language extensions.

faces — support for using faces (fonts and colors; see Section 11.1 [Faces|, page 79).
frames — support for Emacs frames and window systems.

games — games, jokes and amusements.

hardware — support for interfacing with exotic hardware.

help — support for on-line help systems.

hypermedia — support for links within text, or other media types.
i18n — internationalization and alternate character-set support.
internal — code for Emacs internals, build process, defaults.
languages — specialized modes for editing programming languages.
lisp — support for using Lisp (including Emacs Lisp).

58 GNU Emacs Manual

local — libraries local to your site.

maint — maintenance aids for the Emacs development group.
mail — modes for electronic-mail handling.

matching — searching and matching.

news — support for netnews reading and posting.

non-text — support for editing files that are not ordinary text.
oop — support for object-oriented programming.

outlines — hierarchical outlining.

processes — process, subshell, compilation, and job control support.
terminals — support for terminal types.

tex — support for the TEX formatter.

tools — programming tools.

unix — front-ends/assistants for, or emulators of, system features.
vms — support code for VMS.

wp — word processing.

7.5 Help for International Language Support

You can use the command C-h L (describe-language-environment) to find out infor-
mation about the support for a specific language environment. See Section 18.3 [Language
Environments|, page 177. This tells you which languages this language environment is use-
ful for, and lists the character sets, coding systems, and input methods that go with it. It
also shows some sample text to illustrate scripts.

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which shows how
to say “hello” in many languages.

The command C-h I (describe-input-method) describes information about input
methods—either a specified input method, or by default the input method in use. See
Section 18.4 [Input Methods|, page 178.

The command C-h C (describe-coding-system) describes information about coding
systems—either a specified coding system, or the ones currently in use. See Section 18.7
[Coding Systems]|, page 181.

7.6 Help Mode Commands

Help buffers provide the same commands as View mode (see Section 14.10 [Misc File
Ops], page 143), plus a few special commands of their own.

Scroll forward.

Scroll backward. On some keyboards, this key is known as or (backspace).
RET Follow a cross reference at point.

Move point forward to the next cross reference.

S-(TAB) Move point back to the previous cross reference.

Mouse-2 Follow a cross reference that you click on.

Chapter 7: Help 59

When a command name (see Chapter 6 [Running Commands by Name], page 51) or
variable name (see Section 32.2 [Variables|, page 379) appears in the documentation, it
normally appears inside paired single-quotes. You can click on the name with Mouse-2, or
move point there and type (RET), to view the documentation of that command or variable.
Use C-c C-b to retrace your steps.

There are convenient commands for moving point to cross references in the help text.
(help-next-ref) moves point down to the next cross reference. Use S-(TAB) to move
point up to the previous cross reference (help-previous-ref).

7.7 Other Help Commands

C-h i (info) runs the Info program, which is used for browsing through structured
documentation files. The entire Emacs manual is available within Info. Eventually all the
documentation of the GNU system will be available. Type h after entering Info to run a
tutorial on using Info.

If you specify a numeric argument, C-h i prompts for the name of a documentation file.
This way, you can browse a file which doesn’t have an entry in the top-level Info menu. It
is also handy when you need to get to the documentation quickly, and you know the exact
name of the file.

There are two special help commands for accessing Emacs documentation through Info.
C-h C-f function enters Info and goes straight to the documentation of the Emacs
function function. C-h C-k key enters Info and goes straight to the documentation of the
key key. These two keys run the commands Info-goto-emacs-command-node and Info-
goto-emacs-key-command-node. You can use C-h C-k to find the documentation of a menu
item: just select that menu item when C-h C-k prompts for a key.

C-h C-f and C-h C-k know about commands and keys described in manuals other than
the Emacs manual. Thus, they make it easier to find the documentation of commands and
keys when you are not sure which manual describes them, like when using some specialized
mode.

When editing a program, if you have an Info version of the manual for the programming
language, you can use the command C-h C-i to refer to the manual documentation for a
symbol (keyword, function or variable). The details of how this command works depend on
the major mode.

If something surprising happens, and you are not sure what commands you typed, use
C-h 1 (view-lossage). C-h 1 displays the last 100 command characters you typed in. If
you see commands that you don’t know, you can use C-h ¢ to find out what they do.

Emacs has numerous major modes, each of which redefines a few keys and makes a few
other changes in how editing works. C-h m (describe-mode) displays documentation on
the current major mode, which normally describes all the commands that are changed in
this mode.

C-h b (describe-bindings) and C-h s (describe-syntax) present other information
about the current Emacs mode. C-h b displays a list of all the key bindings now in effect,
showing the local bindings defined by the current minor modes first, then the local bindings
defined by the current major mode, and finally the global bindings (see Section 32.4 [Key

60 GNU Emacs Manual

Bindings|, page 393). C-h s displays the contents of the syntax table, with explanations of
each character’s syntax (see Section 32.6 [Syntax], page 403).

You can get a similar list for a particular prefix key by typing C-h after the prefix key.
(There are a few prefix keys for which this does not work—those that provide their own
bindings for C-h. One of these is (ESC), because C-h is actually C-M-h, which marks a
defun.)

The other C-h options display various files containing useful information. C-h C-w dis-
plays the full details on the complete absence of warranty for GNU Emacs. C-h n (view-
emacs-news) displays the file ‘emacs/etc/NEWS’, which contains documentation on Emacs
changes arranged chronologically. C-h F (view-emacs-FAQ) displays the Emacs frequently-
answered-questions list. C-h t (help-with-tutorial) displays the learn-by-doing Emacs
tutorial. C-h C-c (describe-copying) displays the file ‘emacs/etc/COPYING’, which tells
you the conditions you must obey in distributing copies of Emacs. C-h C-d (describe-
distribution) displays the file ‘emacs/etc/DISTRIB’, which tells you how you can or-
der a copy of the latest version of Emacs. C-h C-p (describe-project) displays gen-
eral information about the GNU Project. C-h P (view-emacs-problems) displays the file
‘emacs/etc/PROBLEMS’, which lists known problems with Emacs in various situations with
solutions or workarounds in many cases.

7.8 Help on Active Text and Tooltips

When a region of text is “active,” so that you can select it with the mouse or a key like
RET, it often has associated help text. Areas of the mode line are examples. This help will
normally be shown in the echo area when you move point into the active text. In a window
system you can display the help text as a “tooltip” (sometimes known as “balloon help”).
See Section 17.18 [Tooltips], page 173.

Chapter 8: The Mark and the Region 61

8 The Mark and the Region

Many Emacs commands operate on an arbitrary contiguous part of the current buffer.
To specify the text for such a command to operate on, you set the mark at one end of it,
and move point to the other end. The text between point and the mark is called the region.
Emacs highlights the region whenever there is one, if you enable Transient Mark mode (see
Section 8.2 [Transient Mark], page 62).

Certain Emacs commands set the mark; other editing commands do not affect it, so the
mark remains where you set it last. Each Emacs buffer has its own mark, and setting the
mark in one buffer has no effect on other buffers’” marks. When you return to a buffer that
was current earlier, its mark is at the same place as before.

The ends of the region are always point and the mark. It doesn’t matter which of them
was put in its current place first, or which one comes earlier in the text—the region starts
from point or the mark (whichever comes first), and ends at point or the mark (whichever
comes last). Every time you move point, or set the mark in a new place, the region changes.

Many commands that insert text, such as C-y (yank) and M-x insert-buffer, position
point and the mark at opposite ends of the inserted text, so that the region consists of the
text just inserted.

Aside from delimiting the region, the mark is also useful for remembering a spot that
you may want to go back to. To make this feature more useful, each buffer remembers 16
previous locations of the mark in the mark ring.

8.1 Setting the Mark

Here are some commands for setting the mark:
C-(SPO) Set the mark where point is (set-mark-command).
c-@ The same.
C-x C-x Interchange mark and point (exchange-point-and-mark).

Drag-Mouse-1
Set point and the mark around the text you drag across.

Mouse-3 Set the mark where point is, then move point to where you click (mouse-save-
then-kill).

For example, suppose you wish to convert part of the buffer to upper case, using the C-x
C-u (upcase-region) command, which operates on the text in the region. You can first go
to the beginning of the text to be capitalized, type C-SPC) to put the mark there, move to
the end, and then type C-x C-u. Or, you can set the mark at the end of the text, move to
the beginning, and then type C-x C-u.

The most common way to set the mark is with the C-SPC) command (set-mark-
command). This sets the mark where point is. Then you can move point away, leaving

the mark behind.
There are two ways to set the mark with the mouse. You can drag mouse button one

across a range of text; that puts point where you release the mouse button, and sets the mark
at the other end of that range. Or you can click mouse button three, which sets the mark at

62 GNU Emacs Manual

point (like C-GPC)) and then moves point (like Mouse-1). Both of these methods copy the
region into the kill ring in addition to setting the mark; that gives behavior consistent with
other window-driven applications, but if you don’t want to modify the kill ring, you must
use keyboard commands to set the mark. See Section 17.1 [Mouse Commands]|, page 163.

Ordinary terminals have only one cursor, so there is no way for Emacs to show you where
the mark is located. You have to remember. The usual solution to this problem is to set the
mark and then use it soon, before you forget where it is. Alternatively, you can see where
the mark is with the command C-x C-x (exchange-point-and-mark) which puts the mark
where point was and point where the mark was. The extent of the region is unchanged,
but the cursor and point are now at the previous position of the mark. In Transient Mark
mode, this command reactivates the mark.

C-x C-x is also useful when you are satisfied with the position of point but want to move
the other end of the region (where the mark is); do C-x C-x to put point at that end of the
region, and then move it. Using C-x C-x a second time, if necessary, puts the mark at the
new position with point back at its original position.

For more facilities that allow you to go to previously set marks, see Section 8.5 [Mark
Ring], page 64.

There is no such character as C-PC) in ASCII; when you type while holding down
(CTRL), what you get on most ordinary terminals is the character C-@. This key is actually
bound to set-mark-command. But unless you are unlucky enough to have a terminal where
typing C-({SPC) does not produce C-@, you might as well think of this character as C-({SPC).
Under X, C-SPQ) is actually a distinct character, but its binding is still set-mark-command.

8.2 Transient Mark Mode

On a terminal that supports colors, Emacs can highlight the current region. But normally
it does not. Why not?

Highlighting the region whenever it exists would not be desirable in Emacs, because once
you have set a mark, there is always a region (in that buffer). And highlighting the region
all the time would be a nuisance. So normally Emacs highlights the region only immediately
after you have selected one with the mouse.

You can turn on region highlighting by enabling Transient Mark mode. This is a more
rigid mode of operation in which the region “lasts” only temporarily, so you must set up a
region for each command that uses one. In Transient Mark mode, most of the time there is
no region; therefore, highlighting the region when it exists is useful and not annoying.

To enable Transient Mark mode, type M-x transient-mark-mode. This command tog-
gles the mode, so you can repeat the command to turn off the mode.

Here are the details of Transient Mark mode:

e To set the mark, type C-(SPC) (set-mark-command). This makes the mark active and
thus begins highlighting of the region. As you move point, you will see the highlighted
region grow and shrink.

e The mouse commands for specifying the mark also make it active. So do keyboard
commands whose purpose is to specify a region, including M-@, C-M-@, M-h, C-M-h, C-x
C-p, and C-x h.

Chapter 8: The Mark and the Region 63

e When the mark is active, you can execute commands that operate on the region, such
as killing, indenting, or writing to a file.

e Any change to the buffer, such as inserting or deleting a character, deactivates the
mark. This means any subsequent command that operates on a region will get an error
and refuse to operate. You can make the region active again by typing C-x C-x.

e Commands like M-> and C-s, that “leave the mark behind” in addition to some other
primary purpose, do not activate the new mark. You can activate the new region by
executing C-x C-x (exchange-point-and-mark).

e C-s when the mark is active does not alter the mark.

e Quitting with C-g deactivates the mark.

e Some commands operate on the region whenever it is active. For instance, C-x u in
Transient Mark mode operates on the region when there is a region. Outside Transient
Mark mode, you must type C-u C-x u if you want it to operate on the region. See
Section 4.4 [Undo], page 36. Other commands that act this way are identified in their
own documentation.

The highlighting of the region uses the region face; you can customize the appearance
of the highlighted region by changing this face. See Section 32.2.2.3 [Face Customization],
page 384.

When multiple windows show the same buffer, they can have different regions, because
they can have different values of point (though they all share one common mark posi-
tion). Ordinarily, only the selected window highlights its region (see Chapter 16 [Win-
dows], page 157). However, if the variable highlight-nonselected-windows is non-nil,
then each window highlights its own region (provided that Transient Mark mode is enabled
and the mark in the window’s buffer is active).

When Transient Mark mode is not enabled, every command that sets the mark also
activates it, and nothing ever deactivates it.

If the variable mark-even-if-inactive is non-nil in Transient Mark mode, then com-
mands can use the mark and the region even when it is inactive. Region highlighting
appears and disappears just as it normally does in Transient Mark mode, but the mark
doesn’t really go away when the highlighting disappears.

Transient Mark mode is also sometimes known as “Zmacs mode” because the Zmacs
editor on the MIT Lisp Machine handled the mark in a similar way.

8.3 Operating on the Region

Once you have a region and the mark is active, here are some of the ways you can operate
on the region:

e Kill it with C-w (see Section 9.1 [Killing], page 67).

e Save it in a register with C-x r s (see Chapter 10 [Registers], page 75).

e Save it in a buffer or a file (see Section 9.3 [Accumulating Text|, page 72).
e Convert case with C-x C-1 or C-x C-u (see Section 21.6 [Case], page 207).
e Indent it with C-x or C-M-\ (see Chapter 20 [Indentation|, page 195).
e Fill it as text with M-x fill-region (see Section 21.5 [Filling], page 203).

64 GNU Emacs Manual

e Print hardcopy with M-x print-region (see Section 31.5 [Hardcopy], page 361).
e Evaluate it as Lisp code with M-x eval-region (see Section 23.8 [Lisp Eval|, page 263).

Most commands that operate on the text in the region have the word region in their
names.

8.4 Commands to Mark Textual Objects

Here are the commands for placing point and the mark around a textual object such as
a word, list, paragraph or page.

M-@ Set mark after end of next word (mark-word). This command and the following
one do not move point.

C-M-@ Set mark after end of following balanced expression (mark-sexp).
M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current defun (mark-defun).

C-xh Put region around the entire buffer (mark-whole-buffer).

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@ (mark-
sexp) puts it at the end of the next balanced expression (see Section 22.4.1 [Expressions],
page 232). These commands handle arguments just like M-f and C-M-f£.

Other commands set both point and mark, to delimit an object in the buffer. For exam-
ple, M-h (mark-paragraph) moves point to the beginning of the paragraph that surrounds
or follows point, and puts the mark at the end of that paragraph (see Section 21.3 [Para-
graphs|, page 201). It prepares the region so you can indent, case-convert, or kill a whole
paragraph.

C-M-h (mark-defun) similarly puts point before, and the mark after, the current (or
following) major top-level definition, or defun (see Section 22.2.2 [Moving by Defuns],
page 226). C-x C-p (mark-page) puts point before the current page, and mark at the
end (see Section 21.4 [Pages], page 202). The mark goes after the terminating page delim-
iter (to include it in the region), while point goes after the preceding page delimiter (to
exclude it). A numeric argument specifies a later page (if positive) or an earlier page (if
negative) instead of the current page.

Finally, C-x h (mark-whole-buffer) sets up the entire buffer as the region, by putting
point at the beginning and the mark at the end.

In Transient Mark mode, all of these commands activate the mark.

8.5 The Mark Ring

Aside from delimiting the region, the mark is also useful for remembering a spot that
you may want to go back to. To make this feature more useful, each buffer remembers
16 previous locations of the mark, in the mark ring. Commands that set the mark also
push the old mark onto this ring. To return to a marked location, use C-u C-(SPC) (or C-u
C-0); this is the command set-mark-command given a numeric argument. It moves point to

Chapter 8: The Mark and the Region 65

where the mark was, and restores the mark from the ring of former marks. Thus, repeated
use of this command moves point to all of the old marks on the ring, one by one. The mark
positions you move through in this way are not lost; they go to the end of the ring.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-(SPC) always stays in the same buffer.

Many commands that can move long distances, such as M-< (beginning-of-buffer),
start by setting the mark and saving the old mark on the mark ring. This is to make it
easier for you to move back later. Searches set the mark if they move point. You can tell
when a command sets the mark because it displays ‘Mark set’ in the echo area.

If you want to move back to the same place over and over, the mark ring may not be
convenient enough. If so, you can record the position in a register for later retrieval (see
Section 10.1 [Saving Positions in Registers], page 75).

The variable mark-ring-max specifies the maximum number of entries to keep in the
mark ring. If that many entries exist and another one is pushed, the earliest one in the list
is discarded. Repeating C-u C-(SPC) cycles through the positions currently in the ring.

The variable mark-ring holds the mark ring itself, as a list of marker objects, with the
most recent first. This variable is local in every buffer.

8.6 The Global Mark Ring

In addition to the ordinary mark ring that belongs to each buffer, Emacs has a single
global mark ring. It records a sequence of buffers in which you have recently set the mark,
so you can go back to those buffers.

Setting the mark always makes an entry on the current buffer’s mark ring. If you have
switched buffers since the previous mark setting, the new mark position makes an entry on
the global mark ring also. The result is that the global mark ring records a sequence of
buffers that you have been in, and, for each buffer, a place where you set the mark.

The command C-x C-EPO) (pop-global-mark) jumps to the buffer and position of the
latest entry in the global ring. It also rotates the ring, so that successive uses of C-x C-({SPC)
take you to earlier and earlier buffers.

66

GNU Emacs Manual

Chapter 9: Killing and Moving Text 67

9 Killing and Moving Text

Killing means erasing text and copying it into the kill ring, from which it can be retrieved
by yvanking it. Some systems use the terms “cutting” and “pasting” for these operations.

The most common way of moving or copying text within Emacs is to kill it and later
yank it elsewhere in one or more places. This is very safe because Emacs remembers several
recent Kills, not just the last one. It is versatile, because the many commands for killing
syntactic units can also be used for moving those units. But there are other ways of copying
text for special purposes.

Emacs has only one kill ring for all buffers, so you can kill text in one buffer and yank
it in another buffer.

9.1 Deletion and Killing

Most commands which erase text from the buffer save it in the kill ring so that you can
move or copy it to other parts of the buffer. These commands are known as kill commands.
The rest of the commands that erase text do not save it in the kill ring; they are known as
delete commands. (This distinction is made only for erasure of text in the buffer.) If you
do a kill or delete command by mistake, you can use the C-x u (undo) command to undo it
(see Section 4.4 [Undo], page 36).

You cannot kill read-only text, since such text does not allow any kind of modification.
But some users like to use the kill commands to copy read-only text into the kill ring,
without actually changing it. If you set the variable kill-read-only-ok to a non-nil
value, the kill commands work specially in a read-only buffer: they move over text, and
copy it to the kill ring, without actually deleting it from the buffer. When this happens, a
message in the echo area tells you what is happening.

The delete commands include C-d (delete-char) and (delete-backward-char),
which delete only one character at a time, and those commands that delete only spaces or
newlines. Commands that can destroy significant amounts of nontrivial data generally do
a kill operation instead. The commands’ names and individual descriptions use the words
‘kill’ and ‘delete’ to say which kind of operation they perform.

Many window systems follow the convention that insertion while text is selected deletes
the selected text. You can make Emacs behave this way by enabling Delete Selection mode,
with M-x delete-selection-mode, or using Custom. Another effect of this mode is that
(DEL), C-d and some other keys, when a selection exists, will kill the whole selection. It also
enables Transient Mark mode (see Section 8.2 [Transient Mark], page 62).

9.1.1 Deletion

Deletion means erasing text and not saving it in the kill ring. For the most part, the
Emacs commands that delete text are those that erase just one character or only whitespace.

C-d

Delete next character (delete-char). If your keyboard has a function
key (usually located in the edit keypad), Emacs binds it to delete-char as
well.

68 GNU Emacs Manual

DEL

Delete previous character (delete-backward-char). Some keyboards refer to
this key as a “backspace key” and label it with a left arrow.

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-(SPCO) Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

M-" Join two lines by deleting the intervening newline, along with any indentation
following it (delete-indentation).

The most basic delete commands are C-d (delete-char) and (delete-backward-
char). C-d deletes the character after point, the one the cursor is “on top of.” This doesn’t
move point. deletes the character before the cursor, and moves point back. You can
delete newlines like any other characters in the buffer; deleting a newline joins two lines.
Actually, C-d and aren’t always delete commands; when given arguments, they kill
instead, since they can erase more than one character this way.

Every keyboard has a large key, labeled (DEL), (BACKSPACE), or (DELETE), which is
a short distance above the RET) or (ENTER) key and is normally used for erasing what you
have typed. Regardless of the actual name on the key, in Emacs it is equivalent to (DEL)—or
it should be.

Many keyboards (including standard PC keyboards) have a key a short
ways above (RET) or (ENTER), and a key elsewhere. In that case, the
key is (DEL), and the key is equivalent to C-d—or it should be.

Why do we say “or it should be”? When Emacs starts up using a window system, it
determines automatically which key or keys should be equivalent to (DEL). As a result,
and/or keys normally do the right things. But in some unusual cases
Emacs gets the wrong information from the system. If these keys don’t do what they ought
to do, you need to tell Emacs which key to use for (DEL). See Section 33.2.1 [DEL Does Not
Delete], page 410, for how to do this.

On most text-only terminals, Emacs cannot tell which keys the keyboard really has, so
it follows a uniform plan which may or may not fit your keyboard. The uniform plan is
that the ASCII character deletes, and the ASCII (backspace) character asks for
help (it is the same as C-h). If this is not right for your keyboard, such as if you find that
the key which ought to delete backwards enters Help instead, see Section 33.2.1 [DEL Does
Not Delete], page 410.

The other delete commands are those which delete only whitespace characters: spaces,
tabs and newlines. M-\ (delete-horizontal-space) deletes all the spaces and tab char-
acters before and after point. M-EPC) (just-one-space) does likewise but leaves a single
space after point, regardless of the number of spaces that existed previously (even if there
were none before).

C-x C-o (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well (leaving one
blank line, the current line).

M-~ (delete-indentation) joins the current line and the previous line, by deleting a
newline and all surrounding spaces, usually leaving a single space. See Chapter 20 [Inden-
tation], page 195.

Chapter 9: Killing and Moving Text 69

9.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it kills all the text
on the line, leaving it blank. When used on a blank line, it kills the whole line including its
newline. To kill an entire non-blank line, go to the beginning and type C-k twice.

More generally, C-k kills from point up to the end of the line, unless it is at the end of
a line. In that case it kills the newline following point, thus merging the next line into the
current one. Spaces and tabs that you can’t see at the end of the line are ignored when
deciding which case applies, so if point appears to be at the end of the line, you can be sure
C-k will kill the newline.

When C-k is given a positive argument, it kills that many lines and the newlines that
follow them (however, text on the current line before point is not killed). With a negative
argument —n, it kills n lines preceding the current line (together with the text on the current
line before point). Thus, C-u - 2 C-k at the front of a line kills the two previous lines.

C-k with an argument of zero kills the text before point on the current line.

If the variable kill-whole-line is non-nil, C-k at the very beginning of a line kills the
entire line including the following newline. This variable is normally nil.

9.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region).
M-d Kill word (kill-word). See Section 21.1 [Words|, page 199.
M-(DEL) Kill word backwards (backward-kill-word).

C-x Kill back to beginning of sentence (backward-kill-sentence). See
Section 21.2 [Sentences], page 200.

M-k Kill to end of sentence (kill-sentence).

C-M-k Kill the following balanced expression (kill-sexp). See Section 22.4.1 [Expres-
sions], page 232.

M-z char Kill through the next occurrence of char (zap-to-char).

A kill command which is very general is C-w (kill-region), which kills everything
between point and the mark. With this command, you can kill any contiguous sequence of
characters, if you first set the region around them.

A convenient way of killing is combined with searching: M-z (zap-to-char) reads a
character and kills from point up to (and including) the next occurrence of that character
in the buffer. A numeric argument acts as a repeat count. A negative argument means to
search backward and kill text before point.

Other syntactic units can be killed: words, with M-({DEL) and M-d (see Section 21.1
[Words], page 199); balanced expressions, with C-M-k (see Section 22.4.1 [Expressions],
page 232); and sentences, with C-x and M-k (see Section 21.2 [Sentences], page 200).

You can use kill commands in read-only buffers. They don’t actually change the buffer,
and they beep to warn you of that, but they do copy the text you tried to kill into the kill

70 GNU Emacs Manual

ring, so you can yank it into other buffers. Most of the kill commands move point across
the text they copy in this way, so that successive kill commands build up a single kill ring
entry as usual.

9.2 Yanking

Yanking means reinserting text previously killed. This is what some systems call “past-
ing.” The usual way to move or copy text is to kill it and then yank it elsewhere one or
more times.

C-y Yank last killed text (yank).

M-y Replace text just yanked with an earlier batch of killed text (yank-pop).
M-w Save region as last killed text without actually killing it (kill-ring-save).
C-M-w Append next kill to last batch of killed text (append-next-kill).

9.2.1 The Kill Ring

All killed text is recorded in the kill ring, a list of blocks of text that have been killed.
There is only one kill ring, shared by all buffers, so you can kill text in one buffer and yank
it in another buffer. This is the usual way to move text from one file to another. (See
Section 9.3 [Accumulating Text], page 72, for some other ways.)

The command C-y (yank) reinserts the text of the most recent kill. It leaves the cursor
at the end of the text. It sets the mark at the beginning of the text. See Chapter 8 [Mark],
page 61.

C-u C-y leaves the cursor in front of the text, and sets the mark after it. This happens
only if the argument is specified with just a C-u, precisely. Any other sort of argument,
including C-u and digits, specifies an earlier kill to yank (see Section 9.2.3 [Earlier Kills],
page T1).

To copy a block of text, you can use M-w (kill-ring-save), which copies the region into
the kill ring without removing it from the buffer. This is approximately equivalent to C-w
followed by C-x u, except that M-w does not alter the undo history and does not temporarily
change the screen.

9.2.2 Appending Kills

Normally, each kill command pushes a new entry onto the kill ring. However, two or
more kill commands in a row combine their text into a single entry, so that a single C-y
yanks all the text as a unit, just as it was before it was killed.

Thus, if you want to yank text as a unit, you need not kill all of it with one command;
you can keep killing line after line, or word after word, until you have killed it all, and you
can still get it all back at once.

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add text onto the beginning. This way, any
sequence of mixed forward and backward kill commands puts all the killed text into one
entry without rearrangement. Numeric arguments do not break the sequence of appending
kills. For example, suppose the buffer contains this text:

Chapter 9: Killing and Moving Text 71

This is a line xof sample text.

with point shown by *. If you type M-d M-(DEL) M-d M-(DEL), killing alternately forward and
backward, you end up with ‘a 1ine of sample’ as one entry in the kill ring, and ‘This is
text.’ in the buffer. (Note the double space between ‘is’ and ‘text’, which you can clean
up with M-EPO) or M-q.)

Another way to kill the same text is to move back two words with M-b M-b, then kill all
four words forward with C-u M-d. This produces exactly the same results in the buffer and
in the kill ring. M-f M-f C-u M-(DEL) kills the same text, all going backward; once again,
the result is the same. The text in the kill ring entry always has the same order that it had
in the buffer before you killed it.

If a kill command is separated from the last kill command by other commands (not just
numeric arguments), it starts a new entry on the kill ring. But you can force it to append
by first typing the command C-M-w (append-next-kill) right before it. The C-M-w tells
the following command, if it is a kill command, to append the text it kills to the last killed
text, instead of starting a new entry. With C-M-w, you can Kkill several separated pieces of
text and accumulate them to be yanked back in one place.

A kill command following M-w does not append to the text that M-w copied into the kill
ring.

9.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, use the M-y command (yank-
pop). It takes the text previously yanked and replaces it with the text from an earlier kill.
So, to recover the text of the next-to-the-last kill, first use C-y to yank the last kill, and
then use M-y to replace it with the previous kill. M-y is allowed only after a C-y or another
M-y.

You can understand M-y in terms of a “last yank” pointer which points at an entry in
the kill ring. Each time you kill, the “last yank” pointer moves to the newly made entry
at the front of the ring. C-y yanks the entry which the “last yank” pointer points to. M-y
moves the “last yank” pointer to a different entry, and the text in the buffer changes to
match. Enough M-y commands can move the pointer to any entry in the ring, so you can
get any entry into the buffer. Eventually the pointer reaches the end of the ring; the next
M-y loops back around to the first entry again.

M-y moves the “last yank” pointer around the ring, but it does not change the order of
the entries in the ring, which always runs from the most recent kill at the front to the oldest
one still remembered.

M-y can take a numeric argument, which tells it how many entries to advance the “last
yank” pointer by. A negative argument moves the pointer toward the front of the ring; from
the front of the ring, it moves “around” to the last entry and continues forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y
commands and it will stay there. It’s just a copy of the kill ring entry, so editing it in the
buffer does not change what’s in the ring. As long as no new killing is done, the “last yank”
pointer remains at the same place in the kill ring, so repeating C-y will yank another copy
of the same previous kill.

72 GNU Emacs Manual

If you know how many M-y commands it would take to find the text you want, you can
yank that text in one step using C-y with a numeric argument. C-y with an argument
restores the text from the specified kill ring entry, counting back from the most recent as 1.
Thus, C-u 2 C-y gets the next-to-the-last block of killed text—it is equivalent to C-y M-y.
C-y with a numeric argument starts counting from the “last yank” pointer, and sets the
“last yank” pointer to the entry that it yanks.

The length of the kill ring is controlled by the variable kill-ring-max; no more than
that many blocks of killed text are saved.

The actual contents of the kill ring are stored in a variable named kill-ring; you can
view the entire contents of the kill ring with the command C-h v kill-ring.

9.3 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are other methods
convenient for copying one block of text in many places, or for copying many scattered
blocks of text into one place. To copy one block to many places, store it in a register (see
Chapter 10 [Registers|, page 75). Here we describe the commands to accumulate scattered
pieces of text into a buffer or into a file.

M-x append-to-buffer
Append region to the contents of a specified buffer.

M-x prepend-to-buffer
Prepend region to the contents of a specified buffer.

M-x copy-to-buffer
Copy region into a specified buffer, deleting that buffer’s old contents.

M-x insert-buffer
Insert the contents of a specified buffer into current buffer at point.

M-x append-to-file
Append region to the contents of a specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer. This reads a buffer name,
then inserts a copy of the region into the buffer specified. If you specify a nonexistent buffer,
append-to-buffer creates the buffer. The text is inserted wherever point is in that buffer.
If you have been using the buffer for editing, the copied text goes into the middle of the
text of the buffer, starting from wherever point happens to be at that moment.

Point in that buffer is left at the end of the copied text, so successive uses of append-to-
buffer accumulate the text in the specified buffer in the same order as they were copied.
Strictly speaking, append-to-buffer does not always append to the text already in the
buffer—it appends only if point in that buffer is at the end. However, if append-to-buffer
is the only command you use to alter a buffer, then point is always at the end.

M-x prepend-to-buffer is just like append-to-buffer except that point in the other
buffer is left before the copied text, so successive prependings add text in reverse order. M-x
copy-to-buffer is similar, except that any existing text in the other buffer is deleted, so
the buffer is left containing just the text newly copied into it.

Chapter 9: Killing and Moving Text 73

To retrieve the accumulated text from another buffer, use the command M-x
insert-buffer; this too takes buffername as an argument. It inserts a copy of the whole
text in buffer buffername into the current buffer at point, and sets the mark after the
inserted text. Alternatively, you can select the other buffer for editing, then copy text from
it by killing. See Chapter 15 [Buffers|, page 149, for background information on buffers.

Instead of accumulating text within Emacs, in a buffer, you can append text directly
into a file with M-x append-to-file, which takes filename as an argument. It adds the
text of the region to the end of the specified file. The file is changed immediately on disk.

You should use append-to-file only with files that are not being visited in Emacs.
Using it on a file that you are editing in Emacs would change the file behind Emacs’s back,
which can lead to losing some of your editing.

9.4 Rectangles

The rectangle commands operate on rectangular areas of the text: all the characters
between a certain pair of columns, in a certain range of lines. Commands are provided to
kill rectangles, yank killed rectangles, clear them out, fill them with blanks or text, or delete
them. Rectangle commands are useful with text in multicolumn formats, and for changing
text into or out of such formats.

When you must specify a rectangle for a command to work on, you do it by putting the
mark at one corner and point at the opposite corner. The rectangle thus specified is called
the region-rectangle because you control it in much the same way as the region is controlled.
But remember that a given combination of point and mark values can be interpreted either
as a region or as a rectangle, depending on the command that uses them.

If point and the mark are in the same column, the rectangle they delimit is empty. If
they are in the same line, the rectangle is one line high. This asymmetry between lines and
columns comes about because point (and likewise the mark) is between two columns, but
within a line.

Cxrk Kill the text of the region-rectangle, saving its contents as the “last killed
rectangle” (kill-rectangle).

C-xrd Delete the text of the region-rectangle (delete-rectangle).

C-xry Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

C-xro Insert blank space to fill the space of the region-rectangle (open-rectangle).
This pushes the previous contents of the region-rectangle rightward.

M-x clear-rectangle
Clear the region-rectangle by replacing its contents with spaces.

M-x delete-whitespace-rectangle
Delete whitespace in each of the lines on the specified rectangle, starting from
the left edge column of the rectangle.

C-x r t string

Replace rectangle contents with string on each line. (string-rectangle).

74 GNU Emacs Manual

M-x string-insert-rectangle string
Insert string on each line of the rectangle.

The rectangle operations fall into two classes: commands for deleting and inserting
rectangles, and commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard the text (delete
it) or save it as the “last killed” rectangle. The commands for these two ways are C-x r
d (delete-rectangle) and C-x r k (kill-rectangle). In either case, the portion of each
line that falls inside the rectangle’s boundaries is deleted, causing any following text on the
line to move left into the gap.

Note that “killing” a rectangle is not killing in the usual sense; the rectangle is not stored
in the kill ring, but in a special place that can only record the most recent rectangle killed.
This is because yanking a rectangle is so different from yanking linear text that different
yank commands have to be used and yank-popping is hard to make sense of.

To yank the last killed rectangle, type C-x r y (yank-rectangle). Yanking a rectangle
is the opposite of killing one. Point specifies where to put the rectangle’s upper left corner.
The rectangle’s first line is inserted there, the rectangle’s second line is inserted at the same
horizontal position, but one line vertically down, and so on. The number of lines affected
is determined by the height of the saved rectangle.

You can convert single-column lists into double-column lists using rectangle killing and
yanking; kill the second half of the list as a rectangle and then yank it beside the first line of
the list. See Section 31.10 [Two-Column], page 367, for another way to edit multi-column
text.

You can also copy rectangles into and out of registers with C-x r r r and C-x r i r. See
Section 10.3 [Rectangle Registers|, page 76.

There are two commands you can use for making blank rectangles: M-x
clear-rectangle which blanks out existing text, and C-x r o (open-rectangle) which
inserts a blank rectangle. Clearing a rectangle is equivalent to deleting it and then
inserting a blank rectangle of the same size.

The command M-x delete-whitespace-rectangle deletes horizontal whitespace start-
ing from a particular column. This applies to each of the lines in the rectangle, and the
column is specified by the left edge of the rectangle. The right edge of the rectangle does
not make any difference to this command.

The command C-x r t (string-rectangle) replaces the contents of a region-rectangle
with a string on each line. The string’s width need not be the same as the width of the
rectangle. If the string’s width is less, the text after the rectangle shifts left; if the string is
wider than the rectangle, the text after the rectangle shifts right.

The command M-x string-insert-rectangle is similar to string-rectangle, but in-
serts the string on each line, shifting the original text to the right.

Chapter 10: Registers 75

10 Registers

Emacs registers are compartments where you can save text, rectangles, positions, and
other things for later use. Once you save text or a rectangle in a register, you can copy it
into the buffer once, or many times; you can move point to a position saved in a register
once, or many times.

Each register has a name, which consists of a single character. A register can store a
piece of text, a rectangle, a position, a window configuration, or a file name, but only one
thing at any given time. Whatever you store in a register remains there until you store
something else in that register. To see what a register r contains, use M-x view-register.

M-x view-register r
Display a description of what register r contains.

10.1 Saving Positions in Registers

Saving a position records a place in a buffer so that you can move back there later.
Moving to a saved position switches to that buffer and moves point to that place in it.

C-xr r
Save position of point in register r (point-to-register).
C-xr jr Jump to the position saved in register r (jump-to-register).
To save the current position of point in a register, choose a name r and type C-x r

r. The register r retains the position thus saved until you store something else in that
register.

The command C-x r j r moves point to the position recorded in register r. The register
is not affected; it continues to hold the same position. You can jump to the saved position
any number of times.

If you use C-x r j to go to a saved position, but the buffer it was saved from has been
killed, C-x r j tries to create the buffer again by visiting the same file. Of course, this works
only for buffers that were visiting files.

10.2 Saving Text in Registers

When you want to insert a copy of the same piece of text several times, it may be
inconvenient to yank it from the kill ring, since each subsequent kill moves that entry
further down the ring. An alternative is to store the text in a register and later retrieve it.

C-xr sr Copy region into register r (copy-to-register).
C-xrir Insert text from register r (insert-register).

M-x append-to-register r

Append region to text in register r.
M-x prepend-to-register r

Prepend region to text in register r.

76 GNU Emacs Manual

C-x r s r stores a copy of the text of the region into the register named r. C-u C-x r s
r, the same command with a numeric argument, deletes the text from the buffer as well;
you can think of this as “moving” the region text into the register.

M-x append-to-register r appends the copy of the text in the region to the text
already stored in the register named r. If invoked with a numeric argument, it deletes the
region after appending it to the register. A similar command prepend-to-register works
the same, except that it prepends the region text to the text in the register, rather than
appending it.

C-x r i r inserts in the buffer the text from register r. Normally it leaves point before
the text and places the mark after, but with a numeric argument (C-u) it puts point after
the text and the mark before.

10.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. The rectangle is represented
as a list of strings. See Section 9.4 [Rectangles|, page 73, for basic information on how to
specify a rectangle in the buffer.

C-xrrr Copy the region-rectangle into register r (copy-rectangle-to-register).
With numeric argument, delete it as well.

C-xr ir Insert the rectangle stored in register r (if it contains a rectangle) (insert-
register).

The C-x r i r command inserts a text string if the register contains one, and inserts a
rectangle if the register contains one.

See also the command sort-columns, which you can think of as sorting a rectangle. See
Section 31.8 [Sorting], page 364.

10.4 Saving Window Configurations in Registers

You can save the window configuration of the selected frame in a register, or even the
configuration of all windows in all frames, and restore the configuration later.

C-xrwr Save the state of the selected frame’s windows in register r (window-
configuration-to-register).

C-xr fr Save the state of all frames, including all their windows, in register r (frame-
configuration-to-register).

Use C-x r j r to restore a window or frame configuration. This is the same command
used to restore a cursor position. When you restore a frame configuration, any existing
frames not included in the configuration become invisible. If you wish to delete these
frames instead, use C-u C-x r j r.

Chapter 10: Registers 7

10.5 Keeping Numbers in Registers

There are commands to store a number in a register, to insert the number in the buffer
in decimal, and to increment it. These commands can be useful in keyboard macros (see
Section 32.3 [Keyboard Macros|, page 390).

C-u number C-xrnr
Store number into register r (number-to-register).

C-u number C-x r + r
Increment the number in register r by number (increment-register).

C-xr gr Insert the number from register r into the buffer.

C-x r g is the same command used to insert any other sort of register contents into the
buffer. C-x r + with no numeric argument increments the register value by 1; C-x r n with
no numeric argument stores zero in the register.

10.6 Keeping File Names in Registers

If you visit certain file names frequently, you can visit them more conveniently if you
put their names in registers. Here’s the Lisp code used to put a file name in a register:

(set-register ?r ’(file . name))
For example,

(set-register 7z ’(file . "/gd/gnu/emacs/19.0/src/Changelog"))
puts the file name shown in register ‘z’.

To visit the file whose name is in register r, type C-x r j r. (This is the same command
used to jump to a position or restore a frame configuration.)

10.7 Bookmarks

Bookmarks are somewhat like registers in that they record positions you can jump to.
Unlike registers, they have long names, and they persist automatically from one Emacs
session to the next. The prototypical use of bookmarks is to record “where you were
reading” in various files.

C-xrm
Set the bookmark for the visited file, at point.

C-x r m bookmark
Set the bookmark named bookmark at point (bookmark-set).

C-x r b bookmark
Jump to the bookmark named bookmark (bookmark-jump).

C-xrl List all bookmarks (1ist-bookmarks).

M-x bookmark-save
Save all the current bookmark values in the default bookmark file.

78 GNU Emacs Manual

The prototypical use for bookmarks is to record one current position in each of several
files. So the command C-x r m, which sets a bookmark, uses the visited file name as the
default for the bookmark name. If you name each bookmark after the file it points to, then
you can conveniently revisit any of those files with C-x r b, and move to the position of the
bookmark at the same time.

To display a list of all your bookmarks in a separate buffer, type C-x r 1 (list-
bookmarks). If you switch to that buffer, you can use it to edit your bookmark definitions
or annotate the bookmarks. Type C-h m in the bookmark buffer for more information about
its special editing commands.

When you kill Emacs, Emacs offers to save your bookmark values in your default book-
mark file, ‘”/.emacs.bmk’, if you have changed any bookmark values. You can also save the
bookmarks at any time with the M-x bookmark-save command. The bookmark commands
load your default bookmark file automatically. This saving and loading is how bookmarks
persist from one Emacs session to the next.

If you set the variable bookmark-save-flag to 1, then each command that sets a book-
mark will also save your bookmarks; this way, you don’t lose any bookmark values even if
Emacs crashes. (The value, if a number, says how many bookmark modifications should go
by between saving.)

Bookmark position values are saved with surrounding context, so that bookmark-jump
can find the proper position even if the file is modified slightly. The variable bookmark-
search-size says how many characters of context to record on each side of the bookmark’s
position.

Here are some additional commands for working with bookmarks:

M-x bookmark-load filename
Load a file named filename that contains a list of bookmark values. You can use
this command, as well as bookmark-write, to work with other files of bookmark
values in addition to your default bookmark file.

M-x bookmark-write filename
Save all the current bookmark values in the file filename.

M-x bookmark-delete bookmark
Delete the bookmark named bookmark.

M-x bookmark-insert-location bookmark
Insert in the buffer the name of the file that bookmark bookmark points to.

M-x bookmark-insert bookmark
Insert in the buffer the contents of the file that bookmark bookmark points to.

Chapter 11: Controlling the Display 79

11 Controlling the Display

Since only part of a large buffer fits in the window, Emacs tries to show a part that is
likely to be interesting. Display-control commands allow you to specify which part of the
text you want to see, and how to display it.

11.1 Using Multiple Typefaces

When using Emacs with a window system, you can set up multiple styles of displaying
characters. Each style is called a face. Each face can specify various attributes, such as
the height, weight and slant of the characters, the foreground and background color, and
underlining. But it does not have to specify all of them.

Emacs on a character terminal supports only part of face attributes. Which attributes
are supported depends on your display type, but many displays support inverse video, bold,
and underline attributes, and some support colors.

Features which rely on text in multiple faces (such as Font Lock mode) will also work
on non-windowed terminals that can display more than one face, whether by colors or
underlining and emboldening. This includes the console on GNU/Linux, an xterm which
supports colors, the MS-DOS display (see Appendix E [MS-DOS], page 451), and the MS-
Windows version invoked with the ‘-nw’ option. Emacs determines automatically whether
the terminal has this capability.

You control the appearance of a part of the text in the buffer by specifying the face
or faces to use for it. The style of display used for any given character is determined
by combining the attributes of all the applicable faces specified for that character. Any
attribute that isn’t specified by these faces is taken from the default face, whose attributes
reflect the default settings of the frame itself.

Enriched mode, the mode for editing formatted text, includes several commands and
menus for specifying faces for text in the buffer. See Section 21.11.4 [Format Faces],
page 220, for how to specify the font for text in the buffer. See Section 21.11.5 [Format
Colors], page 221, for how to specify the foreground and background color.

To alter the appearance of a face, use the customization buffer. See Section 32.2.2.3
[Face Customization], page 384. You can also use X resources to specify attributes of
particular faces (see Section B.13 [Resources X], page 435). Alternatively, you can change
the foreground and background colors of a specific face with M-x set-face-foreground and
M-x set-face-background. These commands prompt in the minibuffer for a face name and
a color name, with completion, and then set that face to use the specified color. Changing
the colors of the default face also changes the foreground and background colors on all
frames, both existing and those to be created in the future. (You can also set foreground
and background colors for the current frame only; see Section 17.12 [Frame Parameters],
page 170.)

Emacs 21 can correctly display variable-width fonts, but Emacs commands that calculate
width and indentation do not know how to calculate variable widths. This can sometimes
lead to incorrect results when you use variable-width fonts. In particular, indentation
commands can give inconsistent results, so we recommend you avoid variable-width fonts
for editing program source code. Filling will sometimes make lines too long or too short.
We plan to address these issues in future Emacs versions.

80 GNU Emacs Manual

To see what faces are currently defined, and what they look like, type M-x
list-faces-display. It’s possible for a given face to look different in different frames;
this command shows the appearance in the frame in which you type it. Here’s a list of the
standard defined faces:

default This face is used for ordinary text that doesn’t specify any other face.

mode-line
This face is used for mode lines. By default, it’s drawn with shadows for a
“raised” effect on window systems, and drawn as the inverse of the default face
on non-windowed terminals. See Section 11.12 [Display Custom]|, page 89.

header-1line
Similar to mode-line for a window’s header line. Most modes don’t use the
header line, but the Info mode does.

highlight
This face is used for highlighting portions of text, in various modes. For exam-
ple, mouse-sensitive text is highlighted using this face.

isearch This face is used for highlighting Isearch matches.

isearch-lazy-highlight-face
This face is used for lazy highlighting of Isearch matches other than the current
one.

region This face is used for displaying a selected region (when Transient Mark mode
is enabled—see below).

secondary-selection
This face is used for displaying a secondary X selection (see Section 17.2 [Sec-
ondary Selection], page 165).

bold This face uses a bold variant of the default font, if it has one.
italic This face uses an italic variant of the default font, if it has one.

bold-italic
This face uses a bold italic variant of the default font, if it has one.

underline
This face underlines text.

fixed-pitch
The basic fixed-pitch face.

fringe The face for the fringes to the left and right of windows on graphic displays.
(The fringes are the narrow portions of the Emacs frame between the text area
and the window’s right and left borders.)

scroll-bar
This face determines the visual appearance of the scroll bar.

border This face determines the color of the frame border.

cursor This face determines the color of the cursor.

Chapter 11: Controlling the Display 81

mouse This face determines the color of the mouse pointer.

tool-bar This is the basic tool-bar face. No text appears in the tool bar, but the colors
of this face affect the appearance of tool bar icons.

tooltip This face is used for tooltips.

menu This face determines the colors and font of Emacs’s menus. Setting the font of
LessTif/Motif menus is currently not supported; attempts to set the font are
ignored in this case.

trailing-whitespace
The face for highlighting trailing whitespace when show-trailing-whitespace
is non-nil; see Section 11.5 [Trailing Whitespace], page 84.

variable-pitch
The basic variable-pitch face.

When Transient Mark mode is enabled, the text of the region is highlighted when the
mark is active. This uses the face named region; you can control the style of highlighting
by changing the style of this face (see Section 32.2.2.3 [Face Customization], page 384). See
Section 8.2 [Transient Mark], page 62, for more information about Transient Mark mode
and activation and deactivation of the mark.

One easy way to use faces is to turn on Font Lock mode. This minor mode, which is
always local to a particular buffer, arranges to choose faces according to the syntax of the
text you are editing. It can recognize comments and strings in most languages; in several
languages, it can also recognize and properly highlight various other important constructs.
See Section 11.2 [Font Lock], page 81, for more information about Font Lock mode and
syntactic highlighting.

You can print out the buffer with the highlighting that appears on your screen using the
command ps-print-buffer-with-faces. See Section 31.6 [PostScript], page 362.

11.2 Font Lock mode

Font Lock mode is a minor mode, always local to a particular buffer, which highlights
(or “fontifies”) using various faces according to the syntax of the text you are editing. It
can recognize comments and strings in most languages; in several languages, it can also
recognize and properly highlight various other important constructs—for example, names
of functions being defined or reserved keywords.

The command M-x font-lock-mode turns Font Lock mode on or off according to the
argument, and toggles the mode when it has no argument. The function turn-on-font-
lock unconditionally enables Font Lock mode. This is useful in mode-hook functions. For
example, to enable Font Lock mode whenever you edit a C file, you can do this:

(add-hook ’c-mode-hook ’turn-on-font-lock)

To turn on Font Lock mode automatically in all modes which support it, customize the
user option global-font-lock-mode or use the function global-font-lock-mode in your
‘.emacs’ file, like this:

82 GNU Emacs Manual

(global-font-lock-mode 1)

Font Lock mode uses several specifically named faces to do its job, including font-lock-
string-face, font-lock-comment-face, and others. The easiest way to find them all is
to use completion on the face name in set-face-foreground.

To change the colors or the fonts used by Font Lock mode to fontify different parts of
text, just change these faces. There are two ways to do it:

e Invoke M-x set-face-foreground or M-x set-face-background to change the colors
of a particular face used by Font Lock. See Section 11.1 [Faces|, page 79. The command
M-x list-faces-display displays all the faces currently known to Emacs, including
those used by Font Lock.

e Customize the faces interactively with M-x customize-face, as described in
Section 32.2.2.3 [Face Customization], page 384.

To get the full benefit of Font Lock mode, you need to choose a default font which has
bold, italic, and bold-italic variants; or else you need to have a color or gray-scale screen.

The variable font-lock-maximum-decoration specifies the preferred level of fontifica-
tion, for modes that provide multiple levels. Level 1 is the least amount of fontification;
some modes support levels as high as 3. The normal default is “as high as possible.” You
can specify an integer, which applies to all modes, or you can specify different numbers for
particular major modes; for example, to use level 1 for C/C++ modes, and the default level
otherwise, use this:

(setq font-lock-maximum-decoration
’((c-mode . 1) (c++-mode . 1)))

Fontification can be too slow for large buffers, so you can suppress it. The variable font-
lock-maximum-size specifies a buffer size, beyond which buffer fontification is suppressed.

Comment and string fontification (or “syntactic” fontification) relies on analysis of the
syntactic structure of the buffer text. For the sake of speed, some modes, including C mode
and Lisp mode, rely on a special convention: an open-parenthesis or open-brace in the
leftmost column always defines the beginning of a defun, and is thus always outside any
string or comment. (See Section 22.2.1 [Left Margin Paren|, page 226.) If you don’t follow
this convention, Font Lock mode can misfontify the text that follows an open-parenthesis
or open-brace in the leftmost column that is inside a string or comment.

The variable font-lock-beginning-of-syntax-function (always buffer-local) speci-
fies how Font Lock mode can find a position guaranteed to be outside any comment or
string. In modes which use the leftmost column parenthesis convention, the default value of
the variable is beginning-of-defun—that tells Font Lock mode to use the convention. If
you set this variable to nil, Font Lock no longer relies on the convention. This avoids incor-
rect results, but the price is that, in some cases, fontification for a changed text must rescan
buffer text from the beginning of the buffer. This can considerably slow down redisplay
while scrolling, particularly if you are close to the end of a large buffer.

Font Lock highlighting patterns already exist for many modes, but you may want to
fontify additional patterns. You can use the function font-lock-add-keywords, to add
your own highlighting patterns for a particular mode. For example, to highlight ‘FIXME:’
words in C comments, use this:

(font-lock-add-keywords

Chapter 11: Controlling the Display 83

’c-mode
»CC"\\\\(FIXME\\):" 1 font-lock-warning-face t)))

To remove keywords from the font-lock highlighting patterns, use the function font-
lock-remove-keywords.

11.3 Highlight Changes Mode

Use M-x highlight-changes-mode to enable a minor mode that uses faces (colors, typ-
ically) to indicate which parts of the buffer were changed most recently.

11.4 Interactive Highlighting by Matching

It is sometimes useful to highlight the strings that match a certain regular expression.
For example, you might wish to see all the references to a certain variable in a program
source file, or highlight certain parts in a voluminous output of some program, or make
certain cliches stand out in an article.

Use the M-x hi-lock-mode command to turn on a minor mode that allows you to specify
regular expressions of the text to be highlighted. Hi-lock mode works like Font Lock (see
Section 11.2 [Font Lock], page 81), except that it lets you specify explicitly what parts of
text to highlight. You control Hi-lock mode with these commands:

C-x w h regexp face
Highlight text that matches regexp using face face (highlight-regexp). By
using this command more than once, you can highlight various parts of the text
in different ways.

C-x w r regexp
Unhighlight regexp (unhighlight-regexp). You must enter one of the regular
expressions currently specified for highlighting. (You can use completion, or
choose from a menu, to enter one of them conveniently.)

C-x w 1 regexp face
Highlight entire lines containing a match for regexp, using face face
(highlight-lines-matching-regexp).

C-xwb Insert all the current highlighting regexp/face pairs into the buffer at point,
with comment delimiters to prevent them from changing your program. This
key binding runs the hi-lock-write-interactive-patterns command.

These patterns will be read the next time you visit the file while Hi-lock mode

is enabled, or whenever you use the M-x hi-lock-find-patterns command.
C-xwi Re-read regexp/face pairs in the current buffer (hi-lock-write-interactive-

patterns). The list of pairs is found no matter where in the buffer it may be.

This command does nothing if the major mode is a member of the list hi-
lock-exclude-modes.

84 GNU Emacs Manual

11.5 Trailing Whitespace

It is easy to leave unnecessary spaces at the end of a line without realizing it. In most
cases, this trailing whitespace has no effect, but there are special circumstances where it
matters.

You can make trailing whitespace visible on the screen by setting the buffer-local variable
show-trailing-whitespace to t. Then Emacs displays trailing whitespace in the face
trailing-whitespace.

Trailing whitespace is defined as spaces or tabs at the end of a line. But trailing white-
space is not displayed specially if point is at the end of the line containing the whitespace.
(Doing that looks ugly while you are typing in new text, and the location of point is enough
in that case to show you that the spaces are present.)

To delete all trailing whitespace within the current buffer’s restriction (see Section 31.9
[Narrowing|, page 366), type M-x delete-trailing-whitespace RET). (This command
does not remove the form-feed characters.)

Emacs can indicate empty lines at the end of the buffer with a special bitmap on the left
fringe of the window. To enable this feature, set the buffer-local variable indicate-empty-
lines to a non-nil value. The default value of this variable is controlled by the variable
default-indicate-empty-lines; by setting that variable, you can enable or disable this
feature for all new buffers.

11.6 Scrolling

If a buffer contains text that is too large to fit entirely within a window that is displaying
the buffer, Emacs shows a contiguous portion of the text. The portion shown always contains
point.

Scrolling means moving text up or down in the window so that different parts of the
text are visible. Scrolling forward means that text moves up, and new text appears at the
bottom. Scrolling backward moves text down and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top of the window.
You can also explicitly request scrolling with the commands in this section.

Cc-1 Clear screen and redisplay, scrolling the selected window to center point verti-
cally within it (recenter).

C-v Scroll forward (a windowful or a specified number of lines) (scroll-up).

NEXT,

PAGEDOWN

Likewise, scroll forward.

M-v Scroll backward (scroll-down).

Likewise, scroll backward.
arg C-1 Scroll so point is on line arg (recenter).

C-M-1 Scroll heuristically to bring useful information onto the screen (reposition-
window).

Chapter 11: Controlling the Display 85

The most basic scrolling command is C-1 (recenter) with no argument. It clears the
entire screen and redisplays all windows. In addition, it scrolls the selected window so that
point is halfway down from the top of the window.

To read the buffer a windowful at a time, use C-v (scroll-up) with no argument. This
scrolls forward by nearly the whole window height. The effect is to take the two lines at
the bottom of the window and put them at the top, followed by nearly a whole windowful
of lines that were not previously visible. If point was in the text that scrolled off the top,
it ends up at the new top of the window.

M-v (scroll-down) with no argument scrolls backward in a similar way, also with overlap.
The number of lines of overlap across a C-v or M-v is controlled by the variable next-screen-
context-lines; by default, it is 2. The function keys and (PRIOR), or (PAGEDOWN)
and (PAGEUP), are equivalent to C-v and M-v.

The commands C-v and M-v with a numeric argument scroll the text in the selected
window up or down a few lines. C-v with an argument moves the text and point up,
together, that many lines; it brings the same number of new lines into view at the bottom
of the window. M-v with numeric argument scrolls the text downward, bringing that many
new lines into view at the top of the window. C-v with a negative argument is like M-v and
vice versa.

The names of scroll commands are based on the direction that the text moves in the
window. Thus, the command to scroll forward is called scroll-up because it moves the text
upward on the screen. The keys (PAGEDOWN) and (PAGEUP) derive their names and customary
meanings from a different convention that developed elsewhere; hence the strange result that

PAGEDOWN) runs scroll-up.

Some users like the full-screen scroll commands to keep point at the same screen line.
To enable this behavior, set the variable scroll-preserve-screen-position to a non-nil
value. This mode is convenient for browsing through a file by scrolling by screenfuls; if you
come back to the screen where you started, point goes back to the line where it started.
However, this mode is inconvenient when you move to the next screen in order to move
point to the text there.

Another way to do scrolling is with C-1 with a numeric argument. C-1 does not clear
the screen when given an argument; it only scrolls the selected window. With a positive
argument n, it repositions text to put point n lines down from the top. An argument of
zero puts point on the very top line. Point does not move with respect to the text; rather,
the text and point move rigidly on the screen. C-1 with a negative argument puts point
that many lines from the bottom of the window. For example, C-u - 1 C-1 puts point on
the bottom line, and C-u - 5 C-1 puts it five lines from the bottom. C-u C-1 scrolls to put
point at the center (vertically) of the selected window.

The C-M-1 command (reposition-window) scrolls the current window heuristically in
a way designed to get useful information onto the screen. For example, in a Lisp file, this
command tries to get the entire current defun onto the screen if possible.

Scrolling happens automatically when point moves out of the visible portion of the text.
Normally, automatic scrolling centers point vertically within the window. However, if you
set scroll-conservatively to a small number n, then if you move point just a little off
the screen—Iless than n lines—then Emacs scrolls the text just far enough to bring point
back on screen. By default, scroll-conservatively is 0.

86 GNU Emacs Manual

When the window does scroll by a longer distance, you can control how aggressively
it scrolls, by setting the variables scroll-up-aggressively and scroll-down-
aggressively. The value of scroll-up-aggressively should be either nil, or a fraction
f between 0 and 1. A fraction specifies where on the screen to put point when scrolling
upward. More precisely, when a window scrolls up because point is above the window
start, the new start position is chosen to put point f part of the window height from the
top. The larger f, the more aggressive the scrolling.

nil, which is the default, scrolls to put point at the center. So it is equivalent to .5.

Likewise, scroll-down-aggressively is used for scrolling down. The value, f, specifies
how far point should be placed from the bottom of the window; thus, as with scroll-up-
aggressively, a larger value is more aggressive.

The variable scroll-margin restricts how close point can come to the top or bottom of
a window. Its value is a number of screen lines; if point comes within that many lines of the
top or bottom of the window, Emacs recenters the window. By default, scroll-margin is
0.

11.7 Horizontal Scrolling

Horizontal scrolling means shifting all the lines sideways within a window—so that some
of the text near the left margin is not displayed at all. Emacs does this automatically in any
window that uses line truncation rather than continuation: whenever point moves off the
left or right edge of the screen, Emacs scrolls the buffer horizontally to make point visible.

When a window has been scrolled horizontally, text lines are truncated rather than
continued (see Section 4.8 [Continuation Lines], page 39), with a ‘$’ appearing in the first
column when there is text truncated to the left, and in the last column when there is text
truncated to the right.

You can use these commands to do explicit horizontal scrolling.
C-x < Scroll text in current window to the left (scroll-left).

C-x > Scroll to the right (scroll-right).

The command C-x < (scroll-left) scrolls the selected window to the left by n columns
with argument n. This moves part of the beginning of each line off the left edge of the
window. With no argument, it scrolls by almost the full width of the window (two columns
less, to be precise).

C-x > (scroll-right) scrolls similarly to the right. The window cannot be scrolled any
farther to the right once it is displayed normally (with each line starting at the window’s
left margin); attempting to do so has no effect. This means that you don’t have to calculate
the argument precisely for C-x >; any sufficiently large argument will restore the normal
display.

If you scroll a window horizontally by hand, that sets a lower bound for automatic
horizontal scrolling. Automatic scrolling will continue to scroll the window, but never
farther to the right than the amount you previously set by scroll-left.

To disable automatic horizontal scrolling, set the variable automatic-hscrolling to
nil.

Chapter 11: Controlling the Display 87

11.8 Follow Mode

Follow mode is a minor mode that makes two windows showing the same buffer scroll
as one tall “virtual window.” To use Follow mode, go to a frame with just one window,
split it into two side-by-side windows using C-x 3, and then type M-x follow-mode. From
then on, you can edit the buffer in either of the two windows, or scroll either one; the other
window follows it.

In Follow mode, if you move point outside the portion visible in one window and into
the portion visible in the other window, that selects the other window—again, treating the
two as if they were parts of one large window.

To turn off Follow mode, type M-x follow-mode a second time.

11.9 Selective Display

Emacs has the ability to hide lines indented more than a certain number of columns (you
specify how many columns). You can use this to get an overview of a part of a program.

To hide lines, type C-x $ (set-selective-display) with a numeric argument n. Then
lines with at least n columns of indentation disappear from the screen. The only indication
of their presence is that three dots (‘...’) appear at the end of each visible line that is

followed by one or more hidden ones.
The commands C-n and C-p move across the hidden lines as if they were not there.

The hidden lines are still present in the buffer, and most editing commands see them
as usual, so you may find point in the middle of the hidden text. When this happens, the
cursor appears at the end of the previous line, after the three dots. If point is at the end of
the visible line, before the newline that ends it, the cursor appears before the three dots.

To make all lines visible again, type C-x $ with no argument.

If you set the variable selective-display-ellipses to nil, the three dots do not
appear at the end of a line that precedes hidden lines. Then there is no visible indication
of the hidden lines. This variable becomes local automatically when set.

11.10 Optional Mode Line Features

The current line number of point appears in the mode line when Line Number mode is
enabled. Use the command M-x line-number-mode to turn this mode on and off; normally
it is on. The line number appears before the buffer percentage pos, with the letter ‘L’ to
indicate what it is. See Section 32.1 [Minor Modes], page 377, for more information about
minor modes and about how to use this command.

If you have narrowed the buffer (see Section 31.9 [Narrowing|, page 366), the displayed
line number is relative to the accessible portion of the buffer.

If the buffer is very large (larger than the value of line-number-display-limit), then
the line number doesn’t appear. Emacs doesn’t compute the line number when the buffer
is large, because that would be too slow. Set it to nil to remove the limit.

Line-number computation can also be slow if the lines in the buffer are too long. For this
reason, FKmacs normally doesn’t display line numbers if the average width, in characters,

88 GNU Emacs Manual

of lines near point is larger than the value of the variable 1ine-number-display-limit-
width. The default value is 200 characters.

You can also display the current column number by turning on Column Number
mode. It displays the current column number preceded by the letter ‘C’. Type M-x
column-number-mode to toggle this mode.

Emacs can optionally display the time and system load in all mode lines. To enable
this feature, type M-x display-time or customize the option display-time-mode. The
information added to the mode line usually appears after the buffer name, before the mode
names and their parentheses. It looks like this:

hh:mmpn LI

Here hh and mm are the hour and minute, followed always by ‘am’ or ‘pm’. LIl is the average
number of running processes in the whole system recently. (Some fields may be missing if
your operating system cannot support them.) If you prefer time display in 24-hour format,
set the variable display-time-24hr-format to t.

The word ‘Mail’ appears after the load level if there is mail for you that you have not read
yet. On a graphical display you can use an icon instead of ‘Mail’ by customizing display-
time-use-mail-icon; this may save some space on the mode line. You can customize
display-time-mail-face to make the mail indicator prominent.

By default, the mode line is drawn on graphics displays with 3D-style highlighting, like
that of a button when it is not being pressed. If you don’t like this effect, you can disable
the 3D highlighting of the mode line, by customizing the attributes of the mode-1ine face
in your ‘.emacs’ init file, like this:

(set-face-attribute ’mode-line nil :box nil)
Alternatively, you can turn off the box attribute in your ‘.Xdefaults’ file:

Emacs.mode-line.AttributeBox: off

11.11 How Text Is Displayed

ASCII printing characters (octal codes 040 through 0176) in Emacs buffers are displayed
with their graphics, as are non-ASCII multibyte printing characters (octal codes above
0400).

Some ASCII control characters are displayed in special ways. The newline character
(octal code 012) is displayed by starting a new line. The tab character (octal code 011) is
displayed by moving to the next tab stop column (normally every 8 columns).

Other ASCII control characters are normally displayed as a caret (‘') followed by the
non-control version of the character; thus, control-A is displayed as ‘"A’.

Non-ASCII characters 0200 through 0237 (octal) are displayed with octal escape se-
quences; thus, character code 0230 (octal) is displayed as ‘\230’. The display of character
codes 0240 through 0377 (octal) may be either as escape sequences or as graphics. They do
not normally occur in multibyte buffers, but if they do, they are displayed as Latin-1 graph-
ics. In unibyte mode, if you enable European display they are displayed using their graphics
(assuming your terminal supports them), otherwise as escape sequences. See Section 18.13
[Single-Byte Character Support], page 190.

Chapter 11: Controlling the Display 89

11.12 Customization of Display

This section contains information for customization only. Beginning users should skip
it.

The variable mode-line-inverse-video is an obsolete way of controlling whether the
mode line is displayed in inverse video; the preferred way of doing this is to change the
mode-line face. See Section 1.3 [Mode Line], page 23. However, if mode-line-inverse-
video has a value of nil, then the mode-1ine face will be ignored, and mode-lines will be
drawn using the default text face. See Section 11.1 [Faces|, page 79.

If the variable inverse-video is non-nil, Emacs attempts to invert all the lines of the
display from what they normally are.

If the variable visible-bell is non-nil, Emacs attempts to make the whole screen
blink when it would normally make an audible bell sound. This variable has no effect if
your terminal does not have a way to make the screen blink.

When you reenter Emacs after suspending, Fmacs normally clears the screen and redraws
the entire display. On some terminals with more than one page of memory, it is possible to
arrange the termcap entry so that the ‘ti’ and ‘te’ strings (output to the terminal when
Emacs is entered and exited, respectively) switch between pages of memory so as to use
one page for Emacs and another page for other output. Then you might want to set the
variable no-redraw-on-reenter non-nil; this tells Emacs to assume, when resumed, that
the screen page it is using still contains what Emacs last wrote there.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero meaning don’t
echo at all. See Section 1.2 [Echo Area|, page 22.

If the variable ctl-arrow is nil, all control characters in the buffer are displayed with
octal escape sequences, except for newline and tab. Altering the value of ctl-arrow makes
it local to the current buffer; until that time, the default value is in effect. The default is
initially t. See section “Display Tables” in The Emacs Lisp Reference Manual.

Normally, a tab character in the buffer is displayed as whitespace which extends to
the next display tab stop position, and display tab stops come at intervals equal to eight
spaces. The number of spaces per tab is controlled by the variable tab-width, which is
made local by changing it, just like ctl-arrow. Note that how the tab character in the
buffer is displayed has nothing to do with the definition of as a command. The variable
tab-width must have an integer value between 1 and 1000, inclusive.

If the variable truncate-lines is non-nil, then each line of text gets just one screen line
for display; if the text line is too long, display shows only the part that fits. If truncate-
lines is nil, then long text lines display as more than one screen line, enough to show the
whole text of the line. See Section 4.8 [Continuation Lines], page 39. Altering the value of
truncate-lines makes it local to the current buffer; until that time, the default value is
in effect. The default is initially nil.

If the variable truncate-partial-width-windows is non-nil, it forces truncation rather
than continuation in any window less than the full width of the screen or frame, regardless of
the value of truncate-lines. For information about side-by-side windows, see Section 16.2
[Split Window], page 158. See also section “Display” in The Emacs Lisp Reference Manual.

90 GNU Emacs Manual

The variable baud-rate holds the output speed of the terminal, as far as Emacs knows.
Setting this variable does not change the speed of actual data transmission, but the value
is used for calculations. On terminals, it affects padding, and decisions about whether to
scroll part of the screen or redraw it instead. It also affects the behavior of incremental
search.

On window-systems, baud-rate is only used to determine how frequently to look for
pending input during display updating. A higher value of baud-rate means that check for
pending input will be done less frequently.

You can customize the way any particular character code is displayed by means of a
display table. See section “Display Tables” in The Emacs Lisp Reference Manual.

On a window system, Emacs can optionally display the mouse pointer in a special shape
to say that Emacs is busy. To turn this feature on or off, customize the group cursor. You
can also control the amount of time Emacs must remain busy before the busy indicator is
displayed, by setting the variable hourglass-delay.

On some text-only terminals, bold face and inverse video together result in text that
is hard to read. Call the function tty-suppress-bold-inverse-default-colors with a
non-nil argument to suppress the effect of bold-face in this case.

11.13 Displaying the Cursor

There are a number of ways to customize the display of the cursor. M-x hl-line-mode
enables or disables a minor mode which highlights the line containing point. On window
systems, the command M-x blink-cursor-mode turns on or off the blinking of the cursor.
(On terminals, the terminal itself blinks the cursor, and Emacs has no control over it.)

You can customize the cursor’s color, and whether it blinks, using the cursor Custom
group (see Section 32.2.2 [Easy Customization], page 380).

When displaying on a window system, Emacs can optionally draw the block cursor as
wide as the character under the cursor—for example, if the cursor is on a tab character, it
would cover the full width occupied by that tab character. To enable this feature, set the
variable x-stretch-cursor to a non-nil value.

Normally, the cursor in non-selected windows is shown as a hollow box. To turn off cursor
display in non-selected windows, customize the option cursor-in-non-selected-windows
to assign it a nil value.

Chapter 12: Searching and Replacement 91

12 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of a string. The
principal search command is unusual in that it is incremental; it begins to search before
you have finished typing the search string. There are also nonincremental search commands
more like those of other editors.

Besides the usual replace-string command that finds all occurrences of one string
and replaces them with another, Emacs has a more flexible replacement command called
query-replace, which asks interactively which occurrences to replace.

12.1 Incremental Search

An incremental search begins searching as soon as you type the first character of the
search string. As you type in the search string, Emacs shows you where the string (as you
have typed it so far) would be found. When you have typed enough characters to identify
the place you want, you can stop. Depending on what you plan to do next, you may or
may not need to terminate the search explicitly with RET).

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

C-s starts a forward incremental search. It reads characters from the keyboard, and
moves point past the next occurrence of those characters. If you type C-s and then F,
that puts the cursor after the first ‘F’ (the first following the starting point, since this is a
forward search). Then if you type an 0, you will see the cursor move just after the first ‘F0’
(the ‘F’ in that ‘FO’ may or may not be the first ‘F’). After another 0, the cursor moves
after the first ‘FOQ’ after the place where you started the search. At each step, the buffer
text that matches the search string is highlighted, if the terminal can do that; the current
search string is always displayed in the echo area.

If you make a mistake in typing the search string, you can cancel characters with (DEL).
Each cancels the last character of search string. This does not happen until Emacs is
ready to read another input character; first it must either find, or fail to find, the character
you want to erase. If you do not want to wait for this to happen, use C-g as described
below.

When you are satisfied with the place you have reached, you can type RET), which stops
searching, leaving the cursor where the search brought it. Also, any command not specially
meaningful in searches stops the searching and is then executed. Thus, typing C-a would
exit the search and then move to the beginning of the line. is necessary only if the
next command you want to type is a printing character, (DEL), (RET), or another character
that is special within searches (C-q, C-w, C-r, C-s, C-y, M-y, M-r, M-s, and some other
meta-characters).

Sometimes you search for ‘FO0’ and find one, but not the one you expected to find. There
was a second ‘FOQ’ that you forgot about, before the one you were aiming for. In this event,
type another C-s to move to the next occurrence of the search string. You can repeat this
any number of times. If you overshoot, you can cancel some C-s characters with (DEL).

92 GNU Emacs Manual

After you exit a search, you can search for the same string again by typing just C-s C-s:
the first C-s is the key that invokes incremental search, and the second C-s means “search
again.”

To reuse earlier search strings, use the search ring. The commands M-p and M-n move
through the ring to pick a search string to reuse. These commands leave the selected search
ring element in the minibuffer, where you can edit it. Type C-s or C-r to terminate editing
the string and search for it.

If your string is not found at all, the echo area says ‘Failing I-Search’. The cursor is
after the place where Emacs found as much of your string as it could. Thus, if you search
for ‘FOOT’, and there is no ‘FOOT’, you might see the cursor after the ‘FO0’ in ‘FOOL’. At
this point there are several things you can do. If your string was mistyped, you can rub
some of it out and correct it. If you like the place you have found, you can type or
some other Emacs command to remain there. Or you can type C-g, which removes from the
search string the characters that could not be found (the ‘T’ in ‘FO0T’), leaving those that
were found (the ‘FO0’ in ‘FOOT’). A second C-g at that point cancels the search entirely,
returning point to where it was when the search started.

An upper-case letter in the search string makes the search case-sensitive. If you delete
the upper-case character from the search string, it ceases to have this effect. See Section 12.6
[Search Case], page 100.

To search for a newline, type C-j. To search for another control character, such as
control-S or carriage return, you must quote it by typing C-q first. This function of C-q
is analogous to its use for insertion (see Section 4.1 [Inserting Text|, page 33): it causes
the following character to be treated the way any “ordinary” character is treated in the
same context. You can also specify a character by its octal code: enter C-q followed by a
sequence of octal digits.

To search for non-ASCII characters, you must use an input method (see Section 18.4
[Input Methods|, page 178). If an input method is enabled in the current buffer when you
start the search, you can use it while you type the search string also. Emacs indicates that
by including the input method mnemonic in its prompt, like this:

I-search [im]:

where im is the mnemonic of the active input method. You can toggle (enable or disable)
the input method while you type the search string with C-\ (isearch-toggle-input-
method). You can turn on a certain (non-default) input method with C-~ (isearch-toggle-
specified-input-method), which prompts for the name of the input method. The input
method you enable during incremental search remains enabled in the current buffer after-
wards.

If a search is failing and you ask to repeat it by typing another C-s, it starts again
from the beginning of the buffer. Repeating a failing reverse search with C-r starts again
from the end. This is called wrapping around, and ‘Wrapped’ appears in the search prompt
once this has happened. If you keep on going past the original starting point of the search,
it changes to ‘Overwrapped’, which means that you are revisiting matches that you have
already seen.

The C-g “quit” character does special things during searches; just what it does depends
on the status of the search. If the search has found what you specified and is waiting for
input, C-g cancels the entire search. The cursor moves back to where you started the search.

Chapter 12: Searching and Replacement 93

If C-g is typed when there are characters in the search string that have not been found—
because Emacs is still searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from the search string.
With them gone, the search is now successful and waiting for more input, so a second C-g
will cancel the entire search.

You can change to searching backwards with C-r. If a search fails because the place you
started was too late in the file, you should do this. Repeated C-r keeps looking for more
occurrences backwards. A C-s starts going forwards again. C-r in a search can be canceled

with (DEL).

If you know initially that you want to search backwards, you can use C-r instead of C-s
to start the search, because C-r as a key runs a command (isearch-backward) to search
backward. A backward search finds matches that are entirely before the starting point, just
as a forward search finds matches that begin after it.

The characters C-y and C-w can be used in incremental search to grab text from the
buffer into the search string. This makes it convenient to search for another occurrence of
text at point. C-w copies the word after point as part of the search string, advancing point
over that word. Another C-s to repeat the search will then search for a string including
that word. C-y is similar to C-w but copies all the rest of the current line into the search
string. Both C-y and C-w convert the text they copy to lower case if the search is currently
not case-sensitive; this is so the search remains case-insensitive.

The character M-y copies text from the kill ring into the search string. It uses the same
text that C-y as a command would yank. Mouse-2 in the echo area does the same. See
Section 9.2 [Yanking], page 70.

When you exit the incremental search, it sets the mark to where point was, before the
search. That is convenient for moving back there. In Transient Mark mode, incremental
search sets the mark without activating it, and does so only if the mark is not already
active.

When you pause for a little while during incremental search, it highlights all other
possible matches for the search string. This makes it easier to anticipate where you can
get to by typing C-s or C-r to repeat the search. The short delay before highlighting other
matches helps indicate which match is the current one. If you don’t like this feature, you
can turn it off by setting isearch-lazy-highlight to nil.

You can control how this highlighting looks by customizing the faces isearch (used for
the current match) and isearch-lazy-highlight-face (for all the other matches).

To customize the special characters that incremental search understands, alter their bind-
ings in the keymap isearch-mode-map. For a list of bindings, look at the documentation
of isearch-mode with C-h f isearch-mode (RET).

12.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display that is designed to
take less time. Instead of redisplaying the buffer at each place the search gets to, it creates
a new single-line window and uses that to display the line that the search has found. The
single-line window comes into play as soon as point moves outside of the text that is already
on the screen.

94 GNU Emacs Manual

When you terminate the search, the single-line window is removed. Emacs then redis-
plays the window in which the search was done, to show its new position of point.

The slow terminal style of display is used when the terminal baud rate is less than or
equal to the value of the variable search-slow-speed, initially 1200. See baud-rate in
Section 11.12 [Display Custom], page 89.

The number of lines to use in slow terminal search display is controlled by the variable
search-slow-window-1lines. Its normal value is 1.

12.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which require you to
type the entire search string before searching begins.

C-s string

Search for string.

C-r string

Search backward for string.

To do a nonincremental search, first type C-s (RET). This enters the minibuffer to read
the search string; terminate the string with (RET), and then the search takes place. If the
string is not found, the search command signals an error.

When you type C-s (RET), the C-s invokes incremental search as usual. That command
is specially programmed to invoke nonincremental search, search-forward, if the string
you specify is empty. (Such an empty argument would otherwise be useless.) But it does
not call search-forward right away. First it checks the next input character to see if is C-w,
which specifies a word search. C-r does likewise, for a reverse incremental search.

Forward and backward nonincremental searches are implemented by the commands
search-forward and search-backward. These commands may be bound to keys in the
usual manner. The feature that you can get to them via the incremental search commands
exists for historical reasons, and to avoid the need to find key sequences for them.

12.3 Word Search

Word search searches for a sequence of words without regard to how the words are
separated. More precisely, you type a string of many words, using single spaces to separate
them, and the string can be found even if there are multiple spaces, newlines, or other
punctuation characters between these words.

Word search is useful for editing a printed document made with a text formatter. If you
edit while looking at the printed, formatted version, you can’t tell where the line breaks are
in the source file. With word search, you can search without having to know them.

C-s C-w words

Search for words, ignoring details of punctuation.

C-r C-w words

Search backward for words, ignoring details of punctuation.

Chapter 12: Searching and Replacement 95

Word search is a special case of nonincremental search and is invoked with C-s C-w.
This is followed by the search string, which must always be terminated with (RET). Being
nonincremental, this search does not start until the argument is terminated. It works by
constructing a regular expression and searching for that; see Section 12.4 [Regexp Search],
page 95.

Use C-r C-w to do backward word search.

Forward and backward word searches are implemented by the commands word-search-
forward and word-search-backward. These commands may be bound to keys in the usual
manner. They are available via the incremental search commands both for historical reasons
and to avoid the need to find suitable key sequences for them.

12.4 Regular Expression Search

A regular expression (regexp, for short) is a pattern that denotes a class of alternative
strings to match, possibly infinitely many. GNU Emacs provides both incremental and
nonincremental ways to search for a match for a regexp.

Incremental search for a regexp is done by typing C-M-s (isearch-forward-regexp),
or by invoking C-s with a prefix argument (whose value does not matter). This command
reads a search string incrementally just like C-s, but it treats the search string as a regexp
rather than looking for an exact match against the text in the buffer. Each time you add
text to the search string, you make the regexp longer, and the new regexp is searched for.
To search backward for a regexp, use C-M-r (isearch-backward-regexp), or C-r with a
prefix argument.

All of the control characters that do special things within an ordinary incremental search
have the same function in incremental regexp search. Typing C-s or C-r immediately
after starting the search retrieves the last incremental search regexp used; that is to say,
incremental regexp and non-regexp searches have independent defaults. They also have
separate search rings that you can access with M-p and M-n.

If you type in incremental regexp search, it matches any sequence of whitespace
characters, including newlines. If you want to match just a space, type C-q (SPC).

Note that adding characters to the regexp in an incremental regexp search can make the
cursor move back and start again. For example, if you have searched for ‘foo’ and you add
“\|bar’, the cursor backs up in case the first ‘bar’ precedes the first ‘foo’.

Nonincremental search for a regexp is done by the functions re-search-forward and
re-search-backward. You can invoke these with M-x, or bind them to keys, or invoke them
by way of incremental regexp search with C-M-s and C-M-r RED).

If you use the incremental regexp search commands with a prefix argument, they perform
ordinary string search, like isearch-forward and isearch-backward. See Section 12.1
[Incremental Search], page 91.

12.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character is a simple regular expression which matches
that same character and nothing else. The special characters are ‘§’, 77, “.7) 7 47 77,

96 GNU Emacs Manual

‘[’, ‘17 and ‘\’. Any other character appearing in a regular expression is ordinary, unless
a ‘\” precedes it. (When you use regular expressions in a Lisp program, each ‘\’ must be
doubled, see the example near the end of this section.)

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘£’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches only ‘o’. (When case distinctions
are being ignored, these regexps also match ‘F’ and ‘0’, but we consider this a generalization
of “the same string,” rather than an exception.)

Any two regular expressions a and b can be concatenated. The result is a regular
expression which matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f” and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
nontrivial, you need to use one of the special characters. Here is a list of them.

. (Period) is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively as many times as possible. Thus, ‘o*’
matches any number of ‘o’s (including no ‘o’s).

‘*” always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left
to match, so this try fails. The next alternative is for ‘a*’ to match only two
‘a’s. With this choice, the rest of the regexp matches successfully.

+ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’ and
‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

? is a postfix operator, similar to ‘*’ except that it can match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

*7, +7, 77
are non-greedy variants of the operators above. The normal operators ‘x’, ‘+’,
‘?’” are greedy in that they match as much as they can, as long as the overall

regexp can still match. With a following ‘?’, they are non-greedy: they will
match as little as possible.

Thus, both ‘ab*’ and ‘ab*?’ can match the string ‘a’ and the string ‘abbbb’;
but if you try to match them both against the text ‘abbb’, ‘ab*’ will match it

Chapter 12: Searching and Replacement 97

\{n\}

\{n, m\}

[~ ...]

all (the longest valid match), while ‘ab*?’ will match just ‘a’ (the shortest valid
match).

is a postfix operator that specifies repetition n times—that is, the preceding
regular expression must match exactly n times in a row. For example, ‘x\{4\}’
matches the string ‘xxxx’ and nothing else.

is a postfix operator that specifies repetition between n and m times—that is,
the preceding regular expression must match at least n times, but no more than
m times. If m is omitted, then there is no upper limit, but the preceding regular
expression must match at least n times.

‘\{0,1\}’ is equivalent to ‘7’.

‘\{0,\} is equivalent to ‘*’.

\{1,\} is equivalent to ‘+’.

is a character set, which begins with ‘[” and is terminated by ‘1’. In the simplest
case, the characters between the two brackets are what this set can match.

Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows

that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges in a character set, by writing the starting
and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches any
lower-case ASCII letter. Ranges may be intermixed freely with individual char-
acters, as in ‘[a-z$%.]’, which matches any lower-case ASCII letter or ‘$’, ‘%’
or period.

Note that the usual regexp special characters are not special inside a character
set. A completely different set of special characters exists inside character sets:
a]a’ ‘~ and .

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[Jal’ matches ‘]’ or ‘a’. To include a ‘', write ‘=’ as the first or last
character of the set, or put it after a range. Thus, ‘[]-]’ matches both ‘]’ and
9

To include *~” in a set, put it anywhere but at the beginning of the set. (At the
beginning, it complements the set—see below.)

When you use a range in case-insensitive search, you should write both ends of
the range in upper case, or both in lower case, or both should be non-letters.
The behavior of a mixed-case range such as ‘A-z’ is somewhat ill-defined, and
it may change in future Emacs versions.

‘[*’ begins a complemented character set, which matches any character except
the ones specified. Thus, ‘["a-z0-9A-Z]" matches all characters except ASCII
letters and digits.

‘7 is not special in a character set unless it is the first character. The character
following the ‘~’ is treated as if it were first (in other words, ‘-’ and ‘]’ are not

special there).

A complemented character set can match a newline, unless newline is mentioned
as one of the characters not to match. This is in contrast to the handling of
regexps in programs such as grep.

98 GNU Emacs Manual

is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘~foo’ matches a ‘foo’ that occurs at the beginning of a line.

$ is similar to ‘*~’ but matches only at the end of a line. Thus, ‘x+$’ matches a
string of one ‘x’ or more at the end of a line.

\ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘¢’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they
are in contexts where their special meanings make no sense. For example, ‘*foo’ treats
‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is poor
practice to depend on this behavior; it is better to quote the special character anyway,
regardless of where it appears.

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: two-character sequences starting with ‘\’ that have special
meanings. The second character in the sequence is always an ordinary character when used
on its own. Here is a table of ‘\’ constructs.

\ specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches some text if either a matches it or b matches
it. It works by trying to match a, and if that fails, by trying to match b.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|” applies to the largest possible surrounding expressions. Only a surrounding
‘N(C ... \)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) isa grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus,
‘\(foo\ |bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any
(zero or more) number of ‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that is assigned as a second meaning to the same ‘\(...
\)’ construct. In practice there is usually no conflict between the two meanings;
when there is a conflict, you can use a “shy” group.

\N(?: ...\)
specifies a “shy” group that does not record the matched substring; you can’t
refer back to it with ‘\d’. This is useful in mechanically combining regular ex-
pressions, so that you can add groups for syntactic purposes without interfering
with the numbering of the groups that were written by the user.

Chapter 12: Searching and Replacement 99

\d

\(

\)

\b

\B
\<

\>

\w

\W

\sc

\Sc

\cc

matches the same text that matched the dth occurrence of a ‘\(... \)’ con-
struct.
After the end of a ‘\(... \)’ construct, the matcher remembers the beginning

and end of the text matched by that construct. Then, later on in the regular
expression, you can use ‘\’ followed by the digit d to mean “match the same
text matched the dth time by the ‘\(... \)’ construct.”

The strings matching the first nine ‘\(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open-
parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.

For example, ‘\ (.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\ (.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

If a particular ‘\(... \)’ construct matches more than once (which can easily
happen if it is followed by ‘*’), only the last match is recorded.

matches the empty string, but only at the beginning of the buffer or string
being matched against.

matches the empty string, but only at the end of the buffer or string being
matched against.

matches the empty string, but only at point.

matches the empty string, but only at the beginning or end of a word. Thus,
“\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\b’ matches at the beginning or end of the buffer regardless of what text
appears next to it.

matches the empty string, but not at the beginning or end of a word.

matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer only if a word-constituent character follows.

matches the empty string, but only at the end of a word. ‘\>" matches at the
end of the buffer only if the contents end with a word-constituent character.

matches any word-constituent character. The syntax table determines which
characters these are. See Section 32.6 [Syntax], page 403.

matches any character that is not a word-constituent.

matches any character whose syntax is ¢. Here c is a character that designates
a particular syntax class: thus, ‘w’ for word constituent, ‘=’ or ¢ ’ for whitespace,
‘.7 for ordinary punctuation, etc. See Section 32.6 [Syntax], page 403.

matches any character whose syntax is not c.

matches any character that belongs to the category c. For example, ‘\cc’
matches Chinese characters, ‘\cg’ matches Greek characters, etc. For the de-
scription of the known categories, type M-x describe-categories (RET).

100 GNU Emacs Manual

\Cc matches any character that does not belong to category c.

The constructs that pertain to words and syntax are controlled by the setting of the
syntax table (see Section 32.6 [Syntax], page 403).

Here is a complicated regexp, stored in sentence-end and used by Emacs to recognize
the end of a sentence together with any whitespace that follows. We show its Lisp syntax to
distinguish the spaces from the tab characters. In Lisp syntax, the string constant begins
and ends with a double-quote. ‘\"’ stands for a double-quote as part of the regexp, ‘\\’ for
a backslash as part of the regexp, ‘\t’ for a tab, and ‘\n’ for a newline.

"LPHTON" D TN $\NINENNT AN [\t\n] ="

This contains four parts in succession: a character set matching period, ‘?’, or ‘!’; a char-
acter set matching close-brackets, quotes, or parentheses, repeated zero or more times; a
set of alternatives within backslash-parentheses that matches either end-of-line, a space at
the end of a line, a tab, or two spaces; and a character set matching whitespace characters,
repeated any number of times.

To enter the same regexp interactively, you would type to enter a tab, and C-j
to enter a newline. (When typed interactively, C-j should be preceded by a C-q, to pre-
vent Emacs from running the command bound to a newline.) You would also type single
backslashes as themselves, instead of doubling them for Lisp syntax.

12.6 Searching and Case

Incremental searches in Emacs normally ignore the case of the text they are searching
through, if you specify the text in lower case. Thus, if you specify searching for ‘foo’, then
‘Foo’ and ‘foo’ are also considered a match. Regexps, and in particular character sets, are
included: ‘[ab]l’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

An upper-case letter anywhere in the incremental search string makes the search case-
sensitive. Thus, searching for ‘Foo’ does not find ‘foo’ or ‘FO0°. This applies to regular
expression search as well as to string search. The effect ceases if you delete the upper-case
letter from the search string.

Typing M-c within an incremental search toggles the case sensitivity of that search. The
effect does not extend beyond the current incremental search to the next one, but it does
override the effect of including an upper-case letter in the current search.

If you set the variable case-fold-search to nil, then all letters must match exactly,
including case. This is a per-buffer variable; altering the variable affects only the current
buffer, but there is a default value which you can change as well. See Section 32.2.4 [Locals],
page 387. This variable applies to nonincremental searches also, including those performed
by the replace commands (see Section 12.7 [Replace], page 100) and the minibuffer history
matching commands (see Section 5.4 [Minibuffer History|, page 47).

12.7 Replacement Commands

Global search-and-replace operations are not needed often in Emacs, but they are avail-
able. In addition to the simple M-x replace-string command which is like that found in
most editors, there is a M-x query-replace command which finds each occurrence of the
pattern and asks you whether to replace it.

Chapter 12: Searching and Replacement 101

The replace commands normally operate on the text from point to the end of the buffer;
however, in Transient Mark mode (see Section 8.2 [Transient Mark]|, page 62), when the
mark is active, they operate on the region. The replace commands all replace one string (or
regexp) with one replacement string. It is possible to perform several replacements in par-
allel using the command expand-region-abbrevs (see Section 25.3 [Expanding Abbrevs],
page 284).

12.7.1 Unconditional Replacement

M-x replace-string string newstring

Replace every occurrence of string with newstring.

M-x replace-regexp regexp newstring

Replace every match for regexp with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x
replace-string with the two arguments ‘foo’ and ‘bar’. Replacement happens only in
the text after point, so if you want to cover the whole buffer you must go to the beginning
first. All occurrences up to the end of the buffer are replaced; to limit replacement to
part of the buffer, narrow to that part of the buffer before doing the replacement (see
Section 31.9 [Narrowing], page 366). In Transient Mark mode, when the region is active,
replacement is limited to the region (see Section 8.2 [Transient Mark], page 62).

When replace-string exits, it leaves point at the last occurrence replaced. It sets the
mark to the prior position of point (where the replace-string command was issued); use
C-u C-{SPC) to move back there.

A numeric argument restricts replacement to matches that are surrounded by word
boundaries. The argument’s value doesn’t matter.

12.7.2 Regexp Replacement

The M-x replace-string command replaces exact matches for a single string. The
similar command M-x replace-regexp replaces any match for a specified pattern.

In replace-regexp, the newstring need not be constant: it can refer to all or part of
what is matched by the regexp. ‘\&’ in newstring stands for the entire match being replaced.
‘\d’ in newstring, where d is a digit, stands for whatever matched the dth parenthesized
grouping in regexp. To include a ‘\’ in the text to replace with, you must enter ‘\\’. For
example,

M-x replace-regexp clad]+r \&-safe

replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.
M-x replace-regexp \ (c[ad]+r\)-safe \1

performs the inverse transformation.

12.7.3 Replace Commands and Case

If the first argument of a replace command is all lower case, the command ignores case
while searching for occurrences to replace—provided case-fold-search is non-nil. If
case-fold-search is set to nil, case is always significant in all searches.

102 GNU Emacs Manual

In addition, when the newstring argument is all or partly lower case, replacement com-
mands try to preserve the case pattern of each occurrence. Thus, the command

M-x replace-string foo bar

replaces a lower case ‘foo’ with a lower case ‘bar’, an all-caps ‘FO0’ with ‘BAR’, and a
capitalized ‘Foo’ with ‘Bar’. (These three alternatives—lower case, all caps, and capitalized,
are the only ones that replace-string can distinguish.)

If upper-case letters are used in the replacement string, they remain upper case every
time that text is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if
either case-replace or case-fold-search is set to nil, replacement is done without case
conversion.

12.7.4 Query Replace

M-% string newstring
M-x query-replace string newstring

Replace some occurrences of string with newstring.

C-M-%, regexp newstring
M-x query-replace-regexp regexp newstring
Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them,
then you cannot use an ordinary replace-string. Instead, use M-% (query-replace).
This command finds occurrences of ‘foo’ one by one, displays each occurrence and asks
you whether to replace it. Aside from querying, query-replace works just like replace-
string. It preserves case, like replace-string, provided case-replace is non-nil, as it
normally is. A numeric argument means consider only occurrences that are bounded by
word-delimiter characters.

C-M-% performs regexp search and replace (query-replace-regexp).

The characters you can type when you are shown a match for the string or regexp are:

to replace the occurrence with newstring.
DEL to skip to the next occurrence without replacing this one.
, (Comma)

to replace this occurrence and display the result. You are then asked for another
input character to say what to do next. Since the replacement has already been
made, and are equivalent in this situation; both move to the next
occurrence.

You can type C-r at this point (see below) to alter the replaced text. You
can also type C-x u to undo the replacement; this exits the query-replace,
so if you want to do further replacement you must use C-x to
restart (see Section 5.5 [Repetition], page 49).

RET to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit without searching for more occurrences.

Chapter 12: Searching and Replacement 103

! to replace all remaining occurrences without asking again.

to go back to the position of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake. This works by popping the mark
ring. Only one ~ in a row is meaningful, because only one previous replacement
position is kept during query-replace.

C-r to enter a recursive editing level, in case the occurrence needs to be edited
rather than just replaced with newstring. When you are done, exit the recursive
editing level with C-M-c to proceed to the next occurrence. See Section 31.13
[Recursive Edit], page 369.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c to proceed to the next
occurrence.

e to edit the replacement string in the minibuffer. When you exit the minibuf-
fer by typing RET), the minibuffer contents replace the current occurrence of
the pattern. They also become the new replacement string for any further
occurrences.

Cc-1 to redisplay the screen. Then you must type another character to specify what
to do with this occurrence.

C-h to display a message summarizing these options. Then you must type another
character to specify what to do with this occurrence.

Some other characters are aliases for the ones listed above: y, n and q are equivalent to
(SPO), and RET).

Aside from this, any other character exits the query-replace, and is then reread as part
of a key sequence. Thus, if you type C-k, it exits the query-replace and then kills to end
of line.

To restart a query-replace once it is exited, use C-x (ESC), which repeats the
query-replace because it used the minibuffer to read its arguments. See Section 5.5
[Repetition], page 49.

See also Section 29.9 [Transforming File Names|, page 326, for Dired commands to
rename, copy, or link files by replacing regexp matches in file names.

12.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all
ignore case in matching, if the pattern contains no upper-case letters and case-fold-
search is non-nil. Aside from occur, all operate on the text from point to the end of the
buffer, or on the active region in Transient Mark mode.

M-x occur regexp

Display a list showing each line in the buffer that contains a match for regexp.
To limit the search to part of the buffer, narrow to that part (see Section 31.9
[Narrowing|, page 366). A numeric argument n specifies that n lines of context
are to be displayed before and after each matching line.

104 GNU Emacs Manual

The buffer ‘*Occur*’ containing the output serves as a menu for finding the
occurrences in their original context. Click Mouse-2 on an occurrence listed in
‘#0ccur*’, or position point there and type [RET); this switches to the buffer
that was searched and moves point to the original of the chosen occurrence.

M-x list-matching-lines
Synonym for M-x occur.

M-x how-many regexp
Print the number of matches for regexp that exist in the buffer after point.
In Transient Mark mode, if the region is active, the command operates on the
region instead.

M-x flush-lines regexp
Delete each line that contains a match for regexp, operating on the text after
point. In Transient Mark mode, if the region is active, the command operates
on the region instead.

M-x keep-lines regexp

Delete each line that does mot contain a match for regexp, operating on the
text after point. In Transient Mark mode, if the region is active, the command
operates on the region instead.

You can also search multiple files under control of a tags table (see Section 24.2.6 [Tags
Search], page 275) or through Dired A command (see Section 29.7 [Operating on Files]|,
page 323), or ask the grep program to do it (see Section 23.2 [Grep Searching|, page 256).

Chapter 13: Commands for Fixing Typos 105

13 Commands for Fixing Typos

In this chapter we describe the commands that are especially useful for the times when
you catch a mistake in your text just after you have made it, or change your mind while
composing text on the fly.

The most fundamental command for correcting erroneous editing is the undo command,
C-x u or C-_. This command undoes a single command (usually), a part of a command (in
the case of query-replace), or several consecutive self-inserting characters. Consecutive
repetitions of C-_ or C-x u undo earlier and earlier changes, back to the limit of the undo
information available. See Section 4.4 [Undo], page 36, for more information.

13.1 Killing Your Mistakes

DEL Delete last character (delete-backward-char).
M-(DEL) Kill last word (backward-kill-word).
C-x Kill to beginning of sentence (backward-kill-sentence).

The character (delete-backward-char) is the most important correction com-
mand. It deletes the character before point. When follows a self-inserting character
command, you can think of it as canceling that command. However, avoid the mistake of
thinking of as a general way to cancel a command!

When your mistake is longer than a couple of characters, it might be more convenient
to use M-(DEL) or C-x (DEL). M-(DEL) kills back to the start of the last word, and C-x
kills back to the start of the last sentence. C-x is particularly useful when you change
your mind about the phrasing of the text you are writing. M-(DEL) and C-x save the
killed text for C-y and M-y to retrieve. See Section 9.2 [Yanking], page 70.

M-(DEL) is often useful even when you have typed only a few characters wrong, if you
know you are confused in your typing and aren’t sure exactly what you typed. At such a
time, you cannot correct with except by looking at the screen to see what you did.
Often it requires less thought to kill the whole word and start again.

13.2 Transposing Text

C-t Transpose two characters (transpose-chars).
M-t Transpose two words (transpose-words).
C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two characters can be fixed, when they are adjacent,
with the C-t command (transpose-chars). Normally, C-t transposes the two characters
on either side of point. When given at the end of a line, rather than transposing the last
character of the line with the newline, which would be useless, C-t transposes the last two
characters on the line. So, if you catch your transposition error right away, you can fix
it with just a C-t. If you don’t catch it so fast, you must move the cursor back between

106 GNU Emacs Manual

the two transposed characters before you type C-t. If you transposed a space with the last
character of the word before it, the word motion commands are a good way of getting there.
Otherwise, a reverse search (C-r) is often the best way. See Chapter 12 [Search], page 91.

M-t transposes the word before point with the word after point (transpose-words). It
moves point forward over a word, dragging the word preceding or containing point forward as
well. The punctuation characters between the words do not move. For example, ‘F00, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR F0O,’ .

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 22.4.1 [Expressions|, page 232), and C-x C-t (transpose-lines) exchanges lines.
They work like M-t except as regards what units of text they transpose.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (word, expression, line) before or containing
point across several other characters (words, expressions, lines). For example, C-u 3 C-t
moves the character before point forward across three other characters. It would change
‘fxoobar’ into ‘cobfxar’. This is equivalent to repeating C-t three times. C-u - 4 M-t
moves the word before point backward across four words. C-u - C-M-t would cancel the
effect of plain C-M-t.

A numeric argument of zero is assigned a special meaning (because otherwise a command
with a repeat count of zero would do nothing): to transpose the character (word, expression,
line) ending after point with the one ending after the mark.

13.3 Case Conversion

M-- M-1 Convert last word to lower case. Note Meta-- is Meta-minus.
M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A very common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-1, M-u and M-c have a special feature when used with a negative
argument: they do not move the cursor. As soon as you see you have mistyped the last
word, you can simply case-convert it and go on typing. See Section 21.6 [Case|, page 207.

13.4 Checking and Correcting Spelling

This section describes the commands to check the spelling of a single word or of a portion
of a buffer. These commands work with the spelling checker program Ispell, which is not
part of Emacs.

M-x flyspell-mode
Enable Flyspell mode, which highlights all misspelled words.

M-$ Check and correct spelling of the word at point (ispell-word).
M-(TAB) Complete the word before point based on the spelling dictionary (ispell-

complete-word).
M-x ispell
Spell-check the active region or the current buffer.

Chapter 13: Commands for Fixing Typos 107

M-x ispell-buffer
Check and correct spelling of each word in the buffer.

M-x ispell-region
Check and correct spelling of each word in the region.

M-x ispell-message
Check and correct spelling of each word in a draft mail message, excluding cited
material.

M-x ispell-change-dictionary dict
Restart the Ispell process, using dict as the dictionary.

M-x ispell-kill-ispell
Kill the Ispell subprocess.

Flyspell mode is a fully-automatic way to check spelling as you edit in Emacs. It operates
by checking words as you change or insert them. When it finds a word that it does not
recognize, it highlights that word. This does not interfere with your editing, but when you
see the highlighted word, you can move to it and fix it. Type M-x flyspell-mode to enable
or disable this mode in the current buffer.

When Flyspell mode highlights a word as misspelled, you can click on it with Mouse-2
to display a menu of possible corrections and actions. You can also correct the word by
editing it manually in any way you like.

The other Emacs spell-checking features check or look up words when you give an explicit
command to do so. Checking all or part of the buffer is useful when you have text that was
written outside of this Emacs session and might contain any number of misspellings.

To check the spelling of the word around or next to point, and optionally correct it as
well, use the command M-$ (ispell-word). If the word is not correct, the command offers
you various alternatives for what to do about it.

To check the entire current buffer, use M-x ispell-buffer. Use M-x ispell-region to
check just the current region. To check spelling in an email message you are writing, use
M-x ispell-message; that command checks the whole buffer, except for material that is
indented or appears to be cited from other messages.

The M-x ispell command spell-checks the active region if the Transient Mark mode is
on (see Section 8.2 [Transient Mark], page 62), otherwise it spell-checks the current buffer.

Each time these commands encounter an incorrect word, they ask you what to do. They
display a list of alternatives, usually including several “near-misses”—words that are close
to the word being checked. Then you must type a single-character response. Here are the
valid responses:

Skip this word—continue to consider it incorrect, but don’t change it here.
r new

Replace the word (just this time) with new.
R new

Replace the word with new, and do a query-replace so you can replace it
elsewhere in the buffer if you wish.

108 GNU Emacs Manual

digit Replace the word (just this time) with one of the displayed near-misses. Each
near-miss is listed with a digit; type that digit to select it.

a Accept the incorrect word—treat it as correct, but only in this editing session.

A Accept the incorrect word—treat it as correct, but only in this editing session

and for this buffer.

i Insert this word in your private dictionary file so that Ispell will consider it
correct from now on, even in future sessions.

u Insert the lower-case version of this word in your private dictionary file.
m Like i, but you can also specify dictionary completion information.

1 word
Look in the dictionary for words that match word. These words become the
new list of “near-misses”; you can select one of them as the replacement by
typing a digit. You can use ‘*’ in word as a wildcard.

C-g Quit interactive spell checking. You can restart it again afterward with C-u
M-3$.

X Same as C-g.

X Quit interactive spell checking and move point back to where it was when you

started spell checking.

q Quit interactive spell checking and kill the Ispell subprocess.

Cc-1 Refresh the screen.

C-z This key has its normal command meaning (suspend Emacs or iconify this
frame).

The command ispell-complete-word, which is bound to the key M-(TAB) in Text mode
and related modes, shows a list of completions based on spelling correction. Insert the
beginning of a word, and then type M-(TAB); the command displays a completion list window.
To choose one of the completions listed, click Mouse-2 on it, or move the cursor there in
the completions window and type RET). See Section 21.7 [Text Mode], page 208.

Once started, the Ispell subprocess continues to run (waiting for something to do), so
that subsequent spell checking commands complete more quickly. If you want to get rid of
the Ispell process, use M-x ispell-kill-ispell. This is not usually necessary, since the
process uses no time except when you do spelling correction.

Ispell uses two dictionaries: the standard dictionary and your private dictionary.
The variable ispell-dictionary specifies the file name of the standard dictionary
to use. A value of nil says to use the default dictionary. The command M-x
ispell-change-dictionary sets this variable and then restarts the Ispell subprocess, so
that it will use a different dictionary.

The dictionary used by ispell-complete-word can be customized separately by setting
the value of the variable ispell-complete-word-dict.

Chapter 14: File Handling 109

14 File Handling

The operating system stores data permanently in named files, so most of the text you
edit with Emacs comes from a file and is ultimately stored in a file.

To edit a file, you must tell Emacs to read the file and prepare a buffer containing a
copy of the file’s text. This is called visiting the file. Editing commands apply directly to
text in the buffer; that is, to the copy inside Emacs. Your changes appear in the file itself
only when you save the buffer back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, keep multiple versions of them, and operate on file directories.

14.1 File Names

Most Emacs commands that operate on a file require you to specify the file name. (Saving
and reverting are exceptions; the buffer knows which file name to use for them.) You enter
the file name using the minibuffer (see Chapter 5 [Minibuffer], page 43). Completion is
available (see Section 5.3 [Completion], page 45) to make it easier to specify long file names.
When completing file names, Emacs ignores those whose file-name extensions appear in
the variable completion-ignored-extensions; see Section 5.3.4 [Completion Options],
page 47.

For most operations, there is a default file name which is used if you type just to
enter an empty argument. Normally the default file name is the name of the file visited
in the current buffer; this makes it easy to operate on that file with any of the Emacs file
commands.

Each buffer has a default directory which is normally the same as the directory of the file
visited in that buffer. When you enter a file name without a directory, the default directory
is used. If you specify a directory in a relative fashion, with a name that does not start
with a slash, it is interpreted with respect to the default directory. The default directory is
kept in the variable default-directory, which has a separate value in every buffer.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then the default direc-
tory is ‘/u/rms/gnu/’. If you type just ‘foo’, which does not specify a directory, it is short
for ‘/u/rms/gnu/foo’. ‘../.login’ would stand for ‘/u/rms/.login’. ‘new/foo’ would
stand for the file name ‘/u/rms/gnu/new/foo’.

The command M-x pwd displays the current buffer’s default directory, and the command
M-x cd sets it (to a value read using the minibuffer). A buffer’s default directory changes
only when the cd command is used. A file-visiting buffer’s default directory is initialized to
the directory of the file that is visited in that buffer. If you create a buffer with C-x b, its
default directory is copied from that of the buffer that was current at the time.

The default directory actually appears in the minibuffer when the minibuffer becomes
active to read a file name. This serves two purposes: it shows you what the default is, so
that you can type a relative file name and know with certainty what it will mean, and it
allows you to edit the default to specify a different directory. This insertion of the default
directory is inhibited if the variable insert-default-directory is set to nil.

Note that it is legitimate to type an absolute file name after you enter the minibuffer,
ignoring the presence of the default directory name as part of the text. The final minibuffer

110 GNU Emacs Manual

contents may look invalid, but that is not so. For example, if the minibuffer starts out with
‘/usr/tmp/’ and you add ‘/x1/rms/foo’, you get ‘/usr/tmp//x1/rms/foo’; but Emacs
ignores everything through the first slash in the double slash; the result is ‘/x1/rms/foo’.
See Section 5.1 [Minibuffer File|, page 43.

‘$’ in a file name is used to substitute environment variables. For example, if you have
used the shell command export FOO=rms/hacks to set up an environment variable named
F0OO, then you can use ‘/u/$F00/test.c’ or ‘/u/${F00}/test.c’ as an abbreviation for
‘/u/rms/hacks/test.c’. The environment variable name consists of all the alphanumeric
characters after the ‘§’; alternatively, it may be enclosed in braces after the ‘$’. Note that
shell commands to set environment variables affect Emacs only if done before Emacs is
started.

You can use the ‘“/’ in a file name to mean your home directory, or ‘~user-id/’ to mean
the home directory of a user whose login name is user-id. (On DOS and Windows systems,
where a user doesn’t have a home directory, Emacs substitutes ‘~/’ with the value of the
environment variable HOME; see Section B.5.1 [General Variables|, page 427.)

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to a single ‘$’ at
the same time as variable substitution is performed for a single ‘¢’. Alternatively, quote the
whole file name with ‘/:’ (see Section 14.14 [Quoted File Names|, page 146). File names
which begin with a literal ‘~’ should also be quoted with ‘/:’.

The Lisp function that performs the substitution is called substitute-in-file-name.
The substitution is performed only on file names read as such using the minibuffer.

You can include non-ASCII characters in file names if you set the variable file-name-
coding-system to a non-nil value. See Section 18.9 [Specify Coding], page 185.

14.2 Visiting Files

C-x C-f Visit a file (find-file).
C-x C-r Visit a file for viewing, without allowing changes to it (find-file-read-only).
C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x4f Visit a file, in another window (find-file-other-window). Don’t alter what
is displayed in the selected window.

C-xb5f Visit a file, in a new frame (find-file-other-frame). Don’t alter what is
displayed in the selected frame.

M-x find-file-literally
Visit a file with no conversion of the contents.

Visiting a file means copying its contents into an Emacs buffer so you can edit them.
Emacs makes a new buffer for each file that you visit. We often say that this buffer “is
visiting” that file, or that the buffer’s “visited file” is that file. Emacs constructs the buffer
name from the file name by throwing away the directory, keeping just the name proper.
For example, a file named ‘/usr/rms/emacs.tex’ would get a buffer named ‘emacs.tex’.
If there is already a buffer with that name, Emacs constructs a unique name—the nor-
mal method is to append ‘<2>’ ‘<3>’ and so on, but you can select other methods (see

Section 15.7.1 [Uniquify|, page 155).

Chapter 14: File Handling 111

Each window’s mode line shows the name of the buffer that is being displayed in that
window, so you can always tell what buffer you are editing.

The changes you make with editing commands are made in the Emacs buffer. They do
not take effect in the file that you visited, or any place permanent, until you save the buffer.
Saving the buffer means that Emacs writes the current contents of the buffer into its visited
file. See Section 14.3 [Saving], page 113.

If a buffer contains changes that have not been saved, we say the buffer is modified. This
is important because it implies that some changes will be lost if the buffer is not saved. The
mode line displays two stars near the left margin to indicate that the buffer is modified.

To visit a file, use the command C-x C-f (find-file). Follow the command with the
name of the file you wish to visit, terminated by a (RET).

The file name is read using the minibuffer (see Chapter 5 [Minibuffer], page 43), with
defaulting and completion in the standard manner (see Section 14.1 [File Names], page 109).
While in the minibuffer, you can abort C-x C-f by typing C-g. File-name completion ignores
certain filenames; for more about this, see Section 5.3.4 [Completion Options], page 47.

When Emacs is built with a suitable GUI toolkit, it pops up the standard File Selection
dialog of that toolkit instead of prompting for the file name in the minibuffer. On Unix
and GNU/Linux platforms, Emacs does that when built with LessTif and Motif toolkits;
on MS-Windows, the GUI version does that by default.

Your confirmation that C-x C-f has completed successfully is the appearance of new text
on the screen and a new buffer name in the mode line. If the specified file does not exist
and could not be created, or cannot be read, then you get an error, with an error message
displayed in the echo area.

If you visit a file that is already in Emacs, C-x C-f does not make another copy. It
selects the existing buffer containing that file. However, before doing so, it checks that the
file itself has not changed since you visited or saved it last. If the file has changed, a warning
message is shown. See Section 14.3.2 [Simultaneous Editing], page 117.

Since Emacs reads the visited file in its entirety, files whose size is larger than the
maximum Emacs buffer size (see Chapter 15 [Buffers|, page 149) cannot be visited; if you
try, Emacs will display an error message saying that the maximum buffer size has been
exceeded.

What if you want to create a new file? Just visit it. Emacs displays ‘(New file)’ in the
echo area, but in other respects behaves as if you had visited an existing empty file. If you
make any changes and save them, the file is created.

Emacs recognizes from the contents of a file which convention it uses to separate lines—
newline (used on GNU/Linux and on Unix), carriage-return linefeed (used on Microsoft
systems), or just carriage-return (used on the Macintosh)—and automatically converts the
contents to the normal Emacs convention, which is that the newline character separates
lines. This is a part of the general feature of coding system conversion (see Section 18.7
[Coding Systems|, page 181), and makes it possible to edit files imported from different
operating systems with equal convenience. If you change the text and save the file, Emacs
performs the inverse conversion, changing newlines back into carriage-return linefeed or just
carriage-return if appropriate.

If the file you specify is actually a directory, C-x C-£ invokes Dired, the Emacs directory
browser, so that you can “edit” the contents of the directory (see Chapter 29 [Dired],

112 GNU Emacs Manual

page 319). Dired is a convenient way to delete, look at, or operate on the files in the
directory. However, if the variable find-file-run-dired is nil, then it is an error to try
to visit a directory.

Files which are actually collections of other files, or file archives, are visited in special
modes which invoke a Dired-like environment to allow operations on archive members. See
Section 14.12 [File Archives], page 144, for more about these features.

If the file name you specify contains shell-style wildcard characters, Emacs visits all the
files that match it. Wildcards include ‘?’, ‘*’, and ‘[...]’ sequences. See Section 14.14
[Quoted File Names|, page 146, for information on how to visit a file whose name actually
contains wildcard characters. You can disable the wildcard feature by customizing find-
file-wildcards.

If you visit a file that the operating system won’t let you modify, Emacs makes the buffer
read-only, so that you won’t go ahead and make changes that you’ll have trouble saving
afterward. You can make the buffer writable with C-x C-q (vc-toggle-read-only). See
Section 15.3 [Misc Buffer], page 151.

Occasionally you might want to visit a file as read-only in order to protect yourself
from entering changes accidentally; do so by visiting the file with the command C-x C-r
(find-file-read-only).

If you visit a nonexistent file unintentionally (because you typed the wrong file name),
use the C-x C-v command (find-alternate-file) to visit the file you really wanted. C-x
C-v is similar to C-x C-£, but it kills the current buffer (after first offering to save it if it is
modified). When C-x C-v reads the file name to visit, it inserts the entire default file name
in the buffer, with point just after the directory part; this is convenient if you made a slight
error in typing the name.

If you find a file which exists but cannot be read, C-x C-f signals an error.

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x
4 f continues to show the same buffer it was already showing. If this command is used
when only one window is being displayed, that window is split in two, with one window
showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 16 [Windows], page 157.

C-x 5 f (find-file-other-frame) is similar, but opens a new frame, or makes visible
any existing frame showing the file you seek. This feature is available only when you are
using a window system. See Chapter 17 [Frames], page 163.

If you wish to edit a file as a sequence of ASCII characters with no special encoding or
conversion, use the M-x find-file-literally command. It visits a file, like C-x C-£, but
does not do format conversion (see Section 21.11 [Formatted Text], page 218), character
code conversion (see Section 18.7 [Coding Systems]|, page 181), or automatic uncompression
(see Section 14.11 [Compressed Files], page 144), and does not add a final newline because of
require-final-newline. If you already have visited the same file in the usual (non-literal)
manner, this command asks you whether to visit it literally instead.

Two special hook variables allow extensions to modify the operation of visiting files.
Visiting a file that does not exist runs the functions in the list find-file-not-found-
hooks; this variable holds a list of functions, and the functions are called one by one (with

Chapter 14: File Handling 113

no arguments) until one of them returns non-nil. This is not a normal hook, and the name
ends in ‘~hooks’ rather than ‘-hook’ to indicate that fact.

Successful visiting of any file, whether existing or not, calls the functions in the list
find-file-hooks, with no arguments. This variable is really a normal hook, but it has
an abnormal name for historical compatibility. In the case of a nonexistent file, the find-
file-not-found-hooks are run first. See Section 32.2.3 [Hooks|, page 386.

There are several ways to specify automatically the major mode for editing the file (see
Section 19.1 [Choosing Modes], page 193), and to specify local variables defined for that file
(see Section 32.2.5 [File Variables], page 388).

14.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited
in the buffer.

C-x C-s Save the current buffer in its visited file on disk (save-buffer).
C-x s Save any or all buffers in their visited files (save-some-buffers).

M-~ Forget that the current buffer has been changed (not-modified). With prefix
argument (C-u), mark the current buffer as changed.

C-x C-w Save the current buffer as a specified file name (write-file).

M-x set-visited-file—name
Change the file name under which the current buffer will be saved.

When you wish to save the file and make your changes permanent, type C-x C-s (save-
buffer). After saving is finished, C-x C-s displays a message like this:

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since the buffer was
created or last saved), saving is not really done, because it would have no effect. Instead,
C-x C-s displays a message like this in the echo area:

(No changes need to be saved)

The command C-x s (save-some-buffers) offers to save any or all modified buffers. It
asks you what to do with each buffer. The possible responses are analogous to those of
query-replace:

y Save this buffer and ask about the rest of the buffers.

n Don’t save this buffer, but ask about the rest of the buffers.
! Save this buffer and all the rest with no more questions.
RET Terminate save-some-buffers without any more saving.

Save this buffer, then exit save-some-buffers without even asking about other

buffers.

C-r View the buffer that you are currently being asked about. When you exit View
mode, you get back to save-some-buffers, which asks the question again.

C-h Display a help message about these options.

114 GNU Emacs Manual

C-x C-c, the key sequence to exit Emacs, invokes save-some-buffers and therefore
asks the same questions.

If you have changed a buffer but you do not want to save the changes, you should take
some action to prevent it. Otherwise, each time you use C-x s or C-x C-c, you are liable to
save this buffer by mistake. One thing you can do is type M-~ (not-modified), which clears
out the indication that the buffer is modified. If you do this, none of the save commands will
believe that the buffer needs to be saved. (‘77 is often used as a mathematical symbol for
‘not’; thus M-~ is ‘not’, metafied.) You could also use set-visited-file-name (see below)
to mark the buffer as visiting a different file name, one which is not in use for anything
important. Alternatively, you can cancel all the changes made since the file was visited or
saved, by reading the text from the file again. This is called reverting. See Section 14.4
[Reverting], page 119. You could also undo all the changes by repeating the undo command
C-x u until you have undone all the changes; but reverting is easier.

M-x set-visited-file-name alters the name of the file that the current buffer is visit-
ing. It reads the new file name using the minibuffer. Then it marks the buffer as visiting
that file name, and changes the buffer name correspondingly. set-visited-file-name
does not save the buffer in the newly visited file; it just alters the records inside Emacs in
case you do save later. It also marks the buffer as “modified” so that C-x C-s in that buffer
will save.

If you wish to mark the buffer as visiting a different file and save it right away, use C-x
C-w (write-file). It is precisely equivalent to set-visited-file-name followed by C-x
C-s. C-x C-s used on a buffer that is not visiting a file has the same effect as C-x C-w; that
is, it reads a file name, marks the buffer as visiting that file, and saves it there. The default
file name in a buffer that is not visiting a file is made by combining the buffer name with
the buffer’s default directory (see Section 14.1 [File Names], page 109).

If the new file name implies a major mode, then C-x C-w switches to that major mode,
in most cases. The command set-visited-file-name also does this. See Section 19.1
[Choosing Modes]|, page 193.

If Emacs is about to save a file and sees that the date of the latest version on disk
does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it
probably indicates a problem caused by simultaneous editing and requires your immediate
attention. See Section 14.3.2 [Simultaneous Editing], page 117.

If the value of the variable require-final-newline is t, Emacs silently puts a newline
at the end of any file that doesn’t already end in one, every time a file is saved or written.
If the value is nil, Emacs leaves the end of the file unchanged; if it’s neither nil nor t,
Emacs asks you whether to add a newline. The default is nil.

14.3.1 Backup Files

On most operating systems, rewriting a file automatically destroys all record of what
the file used to contain. Thus, saving a file from Emacs throws away the old contents of the
file—or it would, except that Emacs carefully copies the old contents to another file, called
the backup file, before actually saving.

For most files, the variable make-backup-files determines whether to make backup

files. On most operating systems, its default value is t, so that Emacs does write backup
files.

Chapter 14: File Handling 115

For files managed by a version control system (see Section 14.7 [Version Control],
page 122), the variable vc-make-backup-files determines whether to make backup files.
By default it is nil, since backup files are redundant when you store all the previous
versions in a version control system. See Section 14.7.10.1 [General VC Options], page 140.

The default value of the backup-enable-predicate variable prevents backup files being
written for files in the directories used for temporary files, specified by temporary-file-
directory or small-temporary-file-directory.

At your option, Emacs can keep either a single backup file or a series of numbered backup
files for each file that you edit.

Emacs makes a backup for a file only the first time the file is saved from one buffer. No
matter how many times you save a file, its backup file continues to contain the contents from
before the file was visited. Normally this means that the backup file contains the contents
from before the current editing session; however, if you kill the buffer and then visit the file
again, a new backup file will be made by the next save.

You can also explicitly request making another backup file from a buffer even though it
has already been saved at least once. If you save the buffer with C-u C-x C-s, the version
thus saved will be made into a backup file if you save the buffer again. C-u C-u C-x C-s
saves the buffer, but first makes the previous file contents into a new backup file. C-u C-u
C-u C-x C-s does both things: it makes a backup from the previous contents, and arranges
to make another from the newly saved contents if you save again.

14.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (this is the default), the backup file’s name is
normally constructed by appending ‘=’ to the file name being edited; thus, the backup file

for ‘eval.c’ would be ‘eval.c™’.

You can change this behavior by defining the variable make-backup-file-name-
function to a suitable function. Alternatively you can customize the variable
backup-directory-alist to specify that files matching certain patterns should be backed
up in specific directories.

A typical use is to add an element ("." . dir) to make all backups in the directory with
absolute name dir; Emacs modifies the backup file names to avoid clashes between files
with the same names originating in different directories. Alternatively, adding, say, ("." .
".~") would make backups in the invisible subdirectory ‘.~ of the original file’s directory.
Emacs creates the directory, if necessary, to make the backup.

If access control stops Emacs from writing backup files under the usual names, it writes
the backup file as ‘);backup’~’ in your home directory. Only one such file can exist, so only
the most recently made such backup is available.

Y

If you choose to have a series of numbered backup files, backup file names contain ‘.,
the number, and another ‘~’ after the original file name. Thus, the backup files of ‘eval.c’
would be called ‘eval.c.”17’, ‘eval.c.”27’, and so on, all the way through names like
‘eval.c.”2597 and beyond. The variable backup-directory-alist applies to numbered
backups just as usual.

The choice of single backup or numbered backups is controlled by the variable version-
control. Its possible values are

116 GNU Emacs Manual

t Make numbered backups.

nil Make numbered backups for files that have numbered backups already. Other-
wise, make single backups.

never Never make numbered backups; always make single backups.

You can set version-control locally in an individual buffer to control the making of
backups for that buffer’s file. For example, Rmail mode locally sets version-control to
never to make sure that there is only one backup for an Rmail file. See Section 32.2.4
[Locals], page 387.

If you set the environment variable VERSION_CONTROL, to tell various GNU utilities
what to do with backup files, Emacs also obeys the environment variable by setting the
Lisp variable version-control accordingly at startup. If the environment variable’s value
is ‘t” or ‘numbered’, then version-control becomes t; if the value is ‘nil’ or ‘existing’,
then version-control becomes nil; if it is ‘never’ or ‘simple’, then version-control
becomes never.

14.3.1.2 Automatic Deletion of Backups

To prevent excessive consumption of disk space, Emacs can delete numbered backup
versions automatically. Generally Emacs keeps the first few backups and the latest few
backups, deleting any in between. This happens every time a new backup is made.

The two variables kept-old-versions and kept-new-versions control this deletion.
Their values are, respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a new backup is
made. The backups in the middle (excluding those oldest and newest) are the excess middle
versions—those backups are deleted. These variables’ values are used when it is time to
delete excess versions, just after a new backup version is made; the newly made backup is
included in the count in kept-new-versions. By default, both variables are 2.

If delete-old-versions is non-nil, Emacs deletes the excess backup files silently. If it
is nil, the default, Emacs asks you whether it should delete the excess backup versions.

Dired’s . (Period) command can also be used to delete old versions. See Section 29.3
[Dired Deletion], page 319.

14.3.1.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This makes a
difference when the old file has multiple names (hard links). If the old file is renamed into
the backup file, then the alternate names become names for the backup file. If the old file
is copied instead, then the alternate names remain names for the file that you are editing,
and the contents accessed by those names will be the new contents.

The method of making a backup file may also affect the file’s owner and group. If
copying is used, these do not change. If renaming is used, you become the file’s owner, and
the file’s group becomes the default (different operating systems have different defaults for
the group).

Having the owner change is usually a good idea, because then the owner always shows
who last edited the file. Also, the owners of the backups show who produced those versions.

Chapter 14: File Handling 117

Occasionally there is a file whose owner should not change; it is a good idea for such
files to contain local variable lists to set backup-by-copying-when-mismatch locally (see
Section 32.2.5 [File Variables|, page 388).

The choice of renaming or copying is controlled by four variables. Renaming is the
default choice. If the variable backup-by-copying is non-nil, copying is used. Otherwise,
if the variable backup-by-copying-when-linked is non-nil, then copying is used for files
that have multiple names, but renaming may still be used when the file being edited has only
one name. If the variable backup-by-copying-when-mismatch is non-nil, then copying is
used if renaming would cause the file’s owner or group to change. backup-by-copying-
when-mismatch is t by default if you start Emacs as the superuser. The fourth variable,
backup-by-copying-when-privileged-mismatch, gives the highest numeric user-id for
which backup-by-copying-when-mismatch will be forced on. This is useful when low-
numbered user-ids are assigned to special system users, such as root, bin, daemon, etc.,
which must maintain ownership of files.

When a file is managed with a version control system (see Section 14.7 [Version Control],
page 122), Emacs does not normally make backups in the usual way for that file. But check-
in and check-out are similar in some ways to making backups. One unfortunate similarity
is that these operations typically break hard links, disconnecting the file name you visited
from any alternate names for the same file. This has nothing to do with Emacs—the version
control system does it.

14.3.2 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
then both save them. If nobody were informed that this was happening, whichever user
saved first would later find that his changes were lost.

On some systems, Emacs notices immediately when the second user starts to change the
file, and issues an immediate warning. On all systems, Emacs checks when you save the
file, and warns if you are about to overwrite another user’s changes. You can prevent loss
of the other user’s work by taking the proper corrective action instead of saving the file.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that the file is locked by you. (It does this by creating a symbolic link in the same
directory with a different name.) Emacs removes the lock when you save the changes. The
idea is that the file is locked whenever an Emacs buffer visiting it has unsaved changes.

If you begin to modify the buffer while the visited file is locked by someone else, this
constitutes a collision. When Emacs detects a collision, it asks you what to do, by calling
the Lisp function ask-user—-about-lock. You can redefine this function for the sake of
customization. The standard definition of this function asks you a question and accepts
three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you
gain the lock.

Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked), and the buffer contents remain
unchanged—the modification you were trying to make does not actually take
place.

118 GNU Emacs Manual

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not realize that the two names are the same file and cannot prevent two users from
editing it simultaneously under different names. However, basing locking on names means
that Emacs can interlock the editing of new files that will not really exist until they are
saved.

Some systems are not configured to allow Emacs to make locks, and there are cases
where lock files cannot be written. In these cases, Emacs cannot detect trouble in advance,
but it still can detect the collision when you try to save a file and overwrite someone else’s
changes.

If Emacs or the operating system crashes, this may leave behind lock files which are
stale, so you may occasionally get warnings about spurious collisions. When you determine
that the collision is spurious, just use p to tell Emacs to go ahead anyway.

Every time Emacs saves a buffer, it first checks the last-modification date of the existing
file on disk to verify that it has not changed since the file was last visited or saved. If the
date does not match, it implies that changes were made in the file in some other way, and
these changes are about to be lost if Emacs actually does save. To prevent this, Emacs
displays a warning message and asks for confirmation before saving. Occasionally you will
know why the file was changed and know that it does not matter; then you can answer yes
and proceed. Otherwise, you should cancel the save with C-g and investigate the situation.

The first thing you should do when notified that simultaneous editing has already taken
place is to list the directory with C-u C-x C-d (see Section 14.8 [Directories|, page 142).
This shows the file’s current author. You should attempt to contact him to warn him not
to continue editing. Often the next step is to save the contents of your Emacs buffer under
a different name, and use diff to compare the two files.

14.3.3 Shadowing Files

M-x shadow-initialize
Set up file shadowing.

M-x shadow-define-literal-group
Declare a single file to be shared between sites.

M-x shadow-define-regexp-group
Make all files that match each of a group of files be shared between hosts.

M-x shadow-define-cluster name
Define a shadow file cluster name.

M-x shadow-copy-files
Copy all pending shadow files.

M-x shadow-cancel
Cancel the instruction to shadow some files.

You can arrange to keep identical shadow copies of certain files in more than one place—
possibly on different machines. To do this, first you must set up a shadow file group, which
is a set of identically-named files shared between a list of sites. The file group is permanent
and applies to further Emacs sessions as well as the current one. Once the group is set up,

Chapter 14: File Handling 119

every time you exit Emacs, it will copy the file you edited to the other files in its group.
You can also do the copying without exiting Emacs, by typing M-x shadow-copy-files.

To set up a shadow file group, use M-x shadow-define-literal-group or M-x
shadow-define-regexp-group. See their documentation strings for further information.

Before copying a file to its shadows, Emacs asks for confirmation. You can answer “no”
to bypass copying of this file, this time. If you want to cancel the shadowing permanently
for a certain file, use M-x shadow-cancel to eliminate or change the shadow file group.

A shadow cluster is a group of hosts that share directories, so that copying to or from
one of them is sufficient to update the file on all of them. Each shadow cluster has a name,
and specifies the network address of a primary host (the one we copy files to), and a regular
expression that matches the host names of all the other hosts in the cluster. You can define
a shadow cluster with M-x shadow-define-cluster.

14.3.4 Updating Time Stamps Automatically

You can arrange to put a time stamp in a file, so that it will be updated automatically
each time you edit and save the file. The time stamp has to be in the first eight lines of the
file, and you should insert it like this:

Time-stamp: <>
or like this:
Time-stamp: ""

Then add the hook function time-stamp to the hook write-file-hooks; that hook
function will automatically update the time stamp, inserting the current date and time
when you save the file. You can also use the command M-x time-stamp to update the time
stamp manually. For other customizations, see the Custom group time-stamp. Note that
non-numeric fields in the time stamp are formatted according to your locale setting (see
Section B.5 [Environment], page 426).

14.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them,
you can get rid of them by reading in the previous version of the file. To do this, use M-x
revert-buffer, which operates on the current buffer. Since reverting a buffer unintention-
ally could lose a lot of work, you must confirm this command with yes.

revert-buffer keeps point at the same distance (measured in characters) from the
beginning of the file. If the file was edited only slightly, you will be at approximately the
same piece of text after reverting as before. If you have made drastic changes, the same
value of point in the old file may address a totally different piece of text.

Reverting marks the buffer as “not modified” until another change is made.

Some kinds of buffers whose contents reflect data bases other than files, such as Dired
buffers, can also be reverted. For them, reverting means recalculating their contents from
the appropriate data base. Buffers created explicitly with C-x b cannot be reverted; revert-
buffer reports an error when asked to do so.

120 GNU Emacs Manual

When you edit a file that changes automatically and frequently—for example, a log of
output from a process that continues to run—it may be useful for Emacs to revert the file
without querying you, whenever you visit the file again with C-x C-f.

To request this behavior, set the variable revert-without-query to a list of regular
expressions. When a file name matches one of these regular expressions, find-file and
revert-buffer will revert it automatically if it has changed—provided the buffer itself is
not modified. (If you have edited the text, it would be wrong to discard your changes.)

You may find it useful to have Emacs revert files automatically when they change. Two
minor modes are available to do this. In Global Auto-Revert mode, Emacs periodically
checks all file buffers and reverts any when the corresponding file has changed. The local
variant, Auto-Revert mode, applies only to buffers in which it was activated. Checking the
files is done at intervals determined by the variable auto-revert-interval.

14.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your keystrokes)
without being asked. This is called auto-saving. It prevents you from losing more than a
limited amount of work if the system crashes.

When Emacs determines that it is time for auto-saving, each buffer is considered, and
is auto-saved if auto-saving is turned on for it and it has been changed since the last time
it was auto-saved. The message ‘Auto-saving...’ is displayed in the echo area during
auto-saving, if any files are actually auto-saved. Errors occurring during auto-saving are
caught so that they do not interfere with the execution of commands you have been typing.

14.5.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because it can be very
undesirable to save a program that is in an inconsistent state when you have made half of a
planned change. Instead, auto-saving is done in a different file called the auto-save file, and
the visited file is changed only when you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front and rear of the
visited file name. Thus, a buffer visiting file ‘foo.c’ is auto-saved in a file ‘#foo.c#’. Most
buffers that are not visiting files are auto-saved only if you request it explicitly; when they
are auto-saved, the auto-save file name is made by appending ‘#%’ to the front and ‘#’ to the
rear of buffer name. For example, the ‘*mail*’ buffer in which you compose messages to
be sent is auto-saved in a file named ‘#/*mail*#’. Auto-save file names are made this way
unless you reprogram parts of Emacs to do something different (the functions make-auto-
save-file-name and auto-save-file-name-p). The file name to be used for auto-saving
in a buffer is calculated when auto-saving is turned on in that buffer.

When you delete a substantial part of the text in a large buffer, auto save turns off
temporarily in that buffer. This is because if you deleted the text unintentionally, you
might find the auto-save file more useful if it contains the deleted text. To reenable auto-
saving after this happens, save the buffer with C-x C-s, or use C-u 1 M-x auto-save.

If you want auto-saving to be done in the visited file rather than in a separate auto-save
file, set the variable auto-save-visited-file-name to a non-nil value. In this mode,
there is no real difference between auto-saving and explicit saving.

Chapter 14: File Handling 121

A buffer’s auto-save file is deleted when you save the buffer in its visited file. To inhibit
this, set the variable delete-auto-save-files to nil. Changing the visited file name with
C-x C-w or set-visited-file-name renames any auto-save file to go with the new visited
name.

14.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Chapter 3 [Entering Emacs],
page 31). The default for this variable is t, so auto-saving is the usual practice for file-visiting
buffers. Auto-saving can be turned on or off for any existing buffer with the command M-x
auto-save-mode. Like other minor mode commands, M-x auto-save-mode turns auto-
saving on with a positive argument, off with a zero or negative argument; with no argument,
it toggles.

Emacs does auto-saving periodically based on counting how many characters you have
typed since the last time auto-saving was done. The variable auto-save-interval specifies
how many characters there are between auto-saves. By default, it is 300.

Auto-saving also takes place when you stop typing for a while. The variable auto-
save-timeout says how many seconds Emacs should wait before it does an auto save (and
perhaps also a garbage collection). (The actual time period is longer if the current buffer
is long; this is a heuristic which aims to keep out of your way when you are editing long
buffers, in which auto-save takes an appreciable amount of time.) Auto-saving during idle
periods accomplishes two things: first, it makes sure all your work is saved if you go away
from the terminal for a while; second, it may avoid some auto-saving while you are actually
typing.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as ‘kill %emacs’, or disconnecting a phone line or
network connection.

You can request an auto-save explicitly with the command M-x do-auto-save.

14.5.3 Recovering Data from Auto-Saves

You can use the contents of an auto-save file to recover from a loss of data with the
command M-x recover-file file RET). This visits file and then (after your confir-
mation) restores the contents from its auto-save file ‘#file#’. You can then save with C-x
C-s to put the recovered text into file itself. For example, to recover file ‘foo.c’ from its
auto-save file ‘#foo.c#’, do:

M-x recover-file foo.c
yes
C-x C-s
Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

If Emacs or the computer crashes, you can recover all the files you were editing from
their auto save files with the command M-x recover-session. This first shows you a list
of recorded interrupted sessions. Move point to the one you choose, and type C-c C-c.

122 GNU Emacs Manual

Then recover-session asks about each of the files that were being edited during that
session, asking whether to recover that file. If you answer y, it calls recover-file, which
works in its normal fashion. It shows the dates of the original file and its auto-save file, and
asks once again whether to recover that file.

When recover-session is done, the files you’ve chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

Emacs records interrupted sessions for later recovery in files named
‘~/.emacs.d/auto-save-list/.saves-pid-hostname’. The ‘~/.emacs.d/auto-save-list/.saves-'}j
portion of these names comes from the value of auto-save-list-file-prefix. You
can record sessions in a different place by customizing that variable. If you set
auto-save-list-file-prefix to nil in your ‘.emacs’ file, sessions are not recorded for
recovery.

14.6 File Name Aliases

Symbolic links and hard links both make it possible for several file names to refer to the
same file. Hard links are alternate names that refer directly to the file; all the names are
equally valid, and no one of them is preferred. By contrast, a symbolic link is a kind of
defined alias: when ‘foo’ is a symbolic link to ‘bar’, you can use either name to refer to the
file, but ‘bar’ is the real name, while ‘foo’ is just an alias. More complex cases occur when
symbolic links point to directories.

If you visit two names for the same file, normally Emacs makes two different buffers, but
it warns you about the situation.

Normally, if you visit a file which Emacs is already visiting under a different name,
Emacs displays a message in the echo area and uses the existing buffer visiting that file.
This can happen on systems that support symbolic links, or if you use a long file name
on a system that truncates long file names. You can suppress the message by setting the
variable find-file-suppress-same-file-warnings to a non-nil value. You can disable
this feature entirely by setting the variable find-file-existing-other-name to nil: then
if you visit the same file under two different names, you get a separate buffer for each file
name.

If the variable find-file-visit-truename is non-nil, then the file name recorded for a
buffer is the file’s truename (made by replacing all symbolic links with their target names),
rather than the name you specify. Setting find-file-visit-truename also implies the
effect of find-file-existing-other-name.

14.7 Version Control

Version control systems are packages that can record multiple versions of a source file,
usually storing the unchanged parts of the file just once. Version control systems also
record history information such as the creation time of each version, who created it, and a
description of what was changed in that version.

The Emacs version control interface is called VC. Its commands work with three version
control systems—RCS, CVS, and SCCS. The GNU project recommends RCS and CVS,
which are free software and available from the Free Software Foundation. We also have free

Chapter 14: File Handling 123

software to replace SCCS, known as CSSC; if you are using SCCS and don’t want to make
the incompatible change to RCS or CVS, you can switch to CSSC.

14.7.1 Introduction to Version Control

VC allows you to use a version control system from within Emacs, integrating the ver-
sion control operations smoothly with editing. VC provides a uniform interface to version
control, so that regardless of which version control system is in use, you can use it the same
way.

This section provides a general overview of version control, and describes the version
control systems that VC supports. You can skip this section if you are already familiar
with the version control system you want to use.

14.7.1.1 Supported Version Control Systems

VC currently works with three different version control systems or “back ends”: RCS,
CVS, and SCCS.

RCS is a free version control system that is available from the Free Software Foundation.
It is perhaps the most mature of the supported back ends, and the VC commands are
conceptually closest to RCS. Almost everything you can do with RCS can be done through
VC.

CVS is built on top of RCS, and extends the features of RCS, allowing for more sophis-
ticated release management, and concurrent multi-user development. VC supports basic
editing operations under CVS, but for some less common tasks you still need to call CVS
from the command line. Note also that before using CVS you must set up a repository,
which is a subject too complex to treat here.

SCCS is a proprietary but widely used version control system. In terms of capabilities, it
is the weakest of the three that VC supports. VC compensates for certain features missing
in SCCS (snapshots, for example) by implementing them itself, but some other VC features,
such as multiple branches, are not available with SCCS. You should use SCCS only if for
some reason you cannot use RCS.

14.7.1.2 Concepts of Version Control

When a file is under version control, we also say that it is registered in the version
control system. Each registered file has a corresponding master file which represents the
file’s present state plus its change history—enough to reconstruct the current version or any
earlier version. Usually the master file also records a log entry for each version, describing
in words what was changed in that version.

The file that is maintained under version control is sometimes called the work file cor-
responding to its master file. You edit the work file and make changes in it, as you would
with an ordinary file. (With SCCS and RCS, you must lock the file before you start to
edit it.) After you are done with a set of changes, you check the file in, which records the
changes in the master file, along with a log entry for them.

With CVS, there are usually multiple work files corresponding to a single master file—
often each user has his own copy. It is also possible to use RCS in this way, but this is not
the usual way to use RCS.

124 GNU Emacs Manual

A version control system typically has some mechanism to coordinate between users who
want to change the same file. One method is locking (analogous to the locking that Emacs
uses to detect simultaneous editing of a file, but distinct from it). The other method is to
merge your changes with other people’s changes when you check them in.

With version control locking, work files are normally read-only so that you cannot change
them. You ask the version control system to make a work file writable for you by locking it;
only one user can do this at any given time. When you check in your changes, that unlocks
the file, making the work file read-only again. This allows other users to lock the file to
make further changes. SCCS always uses locking, and RCS normally does.

The other alternative for RCS is to let each user modify the work file at any time. In
this mode, locking is not required, but it is permitted; check-in is still the way to record a
new version.

CVS normally allows each user to modify his own copy of the work file at any time, but
requires merging with changes from other users at check-in time. However, CVS can also
be set up to require locking. (see Section 14.7.10.3 [CVS Options], page 141).

14.7.2 Version Control and the Mode Line

When you visit a file that is under version control, Emacs indicates this on the mode
line. For example, ‘RCS-1.3’ says that RCS is used for that file, and the current version is
1.3.

The character between the back-end name and the version number indicates the version
control status of the file. ‘-’ means that the work file is not locked (if locking is in use),
or not modified (if locking is not in use). ‘:’ indicates that the file is locked, or that it is
modified. If the file is locked by some other user (for instance, ‘jim’), that is displayed as
‘RCS:jim:1.3".

14.7.3 Basic Editing under Version Control

The principal VC command is an all-purpose command that performs either locking or
check-in, depending on the situation.

C-x C-q
C-xvv Perform the next logical version control operation on this file.

Strictly speaking, the command for this job is ve-next-action, bound to C-x v v. How-
ever, the normal meaning of C-x C-q is to make a read-only buffer writable, or vice versa;
we have extended it to do the same job properly for files managed by version control, by per-
forming the appropriate version control operations. When you type C-x C-q on a registered
file, it acts like C-x v v.

The precise action of this command depends on the state of the file, and whether the
version control system uses locking or not. SCCS and RCS normally use locking; CVS
normally does not use locking.

14.7.3.1 Basic Version Control with Locking

If locking is used for the file (as with SCCS, and RCS in its default mode), C-x C-q can
either lock a file or check it in:

Chapter 14: File Handling 125

e If the file is not locked, C-x C-q locks it, and makes it writable so that you can change
it.

e If the file is locked by you, and contains changes, C-x C-q checks in the changes. In
order to do this, it first reads the log entry for the new version. See Section 14.7.3.4
[Log Buffer|, page 126.

e If the file is locked by you, but you have not changed it since you locked it, C-x C-q
releases the lock and makes the file read-only again.

o If the file is locked by some other user, C-x C-q asks you whether you want to “steal
the lock” from that user. If you say yes, the file becomes locked by you, but a message
is sent to the person who had formerly locked the file, to inform him of what has
happened.

These rules also apply when you use CVS in locking mode, except that there is no such
thing as stealing a lock.

14.7.3.2 Basic Version Control without Locking

When there is no locking—the default for CVS—work files are always writable; you do
not need to do anything before you begin to edit a file. The status indicator on the mode
line is ‘=’ if the file is unmodified; it flips to ‘:” as soon as you save any changes in the work
file.

Here is what C-x C-q does when using CVS:

e If some other user has checked in changes into the master file, Emacs asks you whether
you want to merge those changes into your own work file. You must do this before you
can check in your own changes. (To pick up any recent changes from the master file
without trying to commit your own changes, type C-x v m (RET).) See Section 14.7.6.3
[Merging], page 132.

e If there are no new changes in the master file, but you have made modifications in your
work file, C-x C-q checks in your changes. In order to do this, it first reads the log
entry for the new version. See Section 14.7.3.4 [Log Buffer|, page 126.

e If the file is not modified, the C-x C-q does nothing.

These rules also apply when you use RCS in the mode that does not require locking,
except that automatic merging of changes from the master file is not implemented. Unfor-
tunately, this means that nothing informs you if another user has checked in changes in the
same file since you began editing it, and when this happens, his changes will be effectively
removed when you check in your version (though they will remain in the master file, so
they will not be entirely lost). You must therefore verify the current version is unchanged,
before you check in your changes. We hope to eliminate this risk and provide automatic
merging with RCS in a future Emacs version.

In addition, locking is possible with RCS even in this mode, although it is not required;
C-x C-q with an unmodified file locks the file, just as it does with RCS in its normal (locking)
mode.

126 GNU Emacs Manual

14.7.3.3 Advanced Control in C-x C-q

When you give a prefix argument to vc-next-action (C-u C-x C-q), it still performs the
next logical version control operation, but accepts additional arguments to specify precisely
how to do the operation.

e If the file is modified (or locked), you can specify the version number to use for the new
version that you check in. This is one way to create a new branch (see Section 14.7.6
[Branches]|, page 130).

e If the file is not modified (and unlocked), you can specify the version to select; this lets
you start working from an older version, or on another branch. If you do not enter any
version, that takes you to the highest version on the current branch; therefore C-u C-x
C-q is a convenient way to get the latest version of a file from the repository.

e Instead of the version number, you can also specify the name of a version control
system. This is useful when one file is being managed with two version control systems
at the same time (see Section 14.7.7.2 [Local Version Control], page 134).

14.7.3.4 Features of the Log Entry Buffer

When you check in changes, C-x C-q first reads a log entry. It pops up a buffer called
‘*VC-Log*’ for you to enter the log entry. When you are finished, type C-c C-c in the
‘*VC-Log*’ buffer. That is when check-in really happens.

To abort check-in, just don’t type C-c C-c in that buffer. You can switch buffers and
do other editing. As long as you don’t try to check in another file, the entry you were
editing remains in the ‘*VC-Log*’ buffer, and you can go back to that buffer at any time to
complete the check-in.

If you change several source files for the same reason, it is often convenient to specify
the same log entry for many of the files. To do this, use the history of previous log entries.
The commands M-n, M-p, M-s and M-r for doing this work just like the minibuffer history
commands (except that these versions are used outside the minibuffer).

Each time you check in a file, the log entry buffer is put into VC Log mode, which
involves running two hooks: text-mode-hook and vc-log-mode-hook. See Section 32.2.3
[Hooks]|, page 386.

14.7.4 Examining And Comparing Old Versions

One of the convenient features of version control is the ability to examine any version of
a file, or compare two versions.

C-x v ~ version
Examine version version of the visited file, in a buffer of its own.

C-xv= Compare the current buffer contents with the latest checked-in version of the

file.
C-u C-x v = file oldvers newvers

Compare the specified two versions of file.

C-xvg Display the result of the CVS annotate command using colors.

Chapter 14: File Handling 127

To examine an old version in its entirety, visit the file and then type C-x v ~ version
(vc-version-other-window). This puts the text of version version in a file named
‘filename. ~version™’, and visits it in its own buffer in a separate window. (In RCS, you
can also select an old version and create a branch from it. See Section 14.7.6 [Branches],
page 130.)

It is usually more convenient to compare two versions of the file, with the command
C-x v = (ve-diff). Plain C-x v = compares the current buffer contents (saving them in the
file if necessary) with the last checked-in version of the file. C-u C-x v =, with a numeric
argument, reads a file name and two version numbers, then compares those versions of the
specified file. Both forms display the output in a special buffer in another window.

You can specify a checked-in version by its number; an empty input specifies the current
contents of the work file (which may be different from all the checked-in versions). You can
also specify a snapshot name (see Section 14.7.8 [Snapshots], page 135) instead of one or
both version numbers.

If you supply a directory name instead of the name of a registered file, this command
compares the two specified versions of all registered files in that directory and its subdirec-
tories.

C-x v = works by running a variant of the diff utility designed to work with the version
control system in use. When you invoke diff this way, in addition to the options specified
by diff-switches (see Section 14.9 [Comparing Files|, page 142), it receives those specified
by ve-diff-switches, plus those specified for the specific back end by vc-backend-diff-
switches. For instance, when the version control back end is RCS, diff uses the options
in vc-rcs-diff-switches. The ‘vc...diff-switches’ variables are nil by default.

Unlike the M-x diff command, C-x v = does not try to locate the changes in the old and
new versions. This is because normally one or both versions do not exist as files when you
compare them; they exist only in the records of the master file. See Section 14.9 [Comparing
Files|, page 142, for more information about M-x diff.

For CVS-controlled files, you can display the result of the CVS annotate command, using
colors to enhance the visual appearance. Use the command M-x vc-annotate to do this.
It creates a new buffer to display file’s text, colored to show how old each part is. Text
colored red is new, blue means old, and intermediate colors indicate intermediate ages. By
default, the time scale is 360 days, so that everything more than one year old is shown in
blue.

When you give a prefix argument to this command, it uses the minibuffer to read two
arguments: which version number to display and annotate (instead of the current file con-
tents), and a stretch factor for the time scale. A stretch factor of 0.1 means that the color
range from red to blue spans the past 36 days instead of 360 days. A stretch factor greater
than 1 means the color range spans more than a year.

14.7.5 The Secondary Commands of VC

This section explains the secondary commands of VC; those that you might use once a
day.

128 GNU Emacs Manual

14.7.5.1 Registering a File for Version Control

You can put any file under version control by simply visiting it, and then typing C-x v i
(ve-register).

C-xvi Register the visited file for version control.

To register the file, Emacs must choose which version control system to use for it. If the
file’s directory already contains files registered in a version control system, Emacs uses that
system. If there is more than one system in use for a directory, Emacs uses the one that
appears first in vc-handled-backends (see Section 14.7.10 [Customizing VC], page 139).
On the other hand, if there are no files already registered, Emacs uses the first system from
vc-handled-backends that could register the file—for example, you cannot register a file
under CVS if its directory is not already part of a CVS tree.

With the default value of vc-handled-backends, this means that Emacs uses RCS if
there are any files under RCS control, CVS if there are any files under CVS, SCCS if any
files are under SCCS, or RCS as the ultimate default.

If locking is in use, C-x v i leaves the file unlocked and read-only. Type C-x C-q if you
wish to start editing it. After registering a file with CVS, you must subsequently commit
the initial version by typing C-x C-q.

The initial version number for a newly registered file is 1.1, by default. You can specify a
different default by setting the variable vc-default-init-version, or you can give C-x v
i a numeric argument; then it reads the initial version number for this particular file using
the minibuffer.

If vc-initial-comment is non-nil, C-x v i reads an initial comment to describe the
purpose of this source file. Reading the initial comment works like reading a log entry (see
Section 14.7.3.4 [Log Buffer|, page 126).

14.7.5.2 VC Status Commands

C-xvl Display version control state and change history.

To view the detailed version control status and history of a file, type C-x v 1 (ve-print-
log). It displays the history of changes to the current file, including the text of the log
entries. The output appears in a separate window.

14.7.5.3 Undoing Version Control Actions

C-xvu Revert the buffer and the file to the last checked-in version.

C-xvec Remove the last-entered change from the master for the visited file. This undoes
your last check-in.

If you want to discard your current set of changes and revert to the last version checked
in, use C-x v u (vc-revert-buffer). This leaves the file unlocked; if locking is in use, you
must first lock the file again before you change it again. C-x v u requires confirmation,
unless it sees that you haven’t made any changes since the last checked-in version.

C-x v u is also the command to unlock a file if you lock it and then decide not to change
it.

Chapter 14: File Handling 129

To cancel a change that you already checked in, use C-x v ¢ (vc-cancel-version). This
command discards all record of the most recent checked-in version. C-x v c also offers to
revert your work file and buffer to the previous version (the one that precedes the version
that is deleted).

If you answer no, VC keeps your changes in the buffer, and locks the file. The no-revert
option is useful when you have checked in a change and then discover a trivial error in it;
you can cancel the erroneous check-in, fix the error, and check the file in again.

When C-x v ¢ does not revert the buffer, it unexpands all version control headers in the
buffer instead (see Section 14.7.9.3 [Version Headers|, page 138). This is because the buffer
no longer corresponds to any existing version. If you check it in again, the check-in process
will expand the headers properly for the new version number.

However, it is impossible to unexpand the RCS ‘Log’ header automatically. If you use
that header feature, you have to unexpand it by hand—by deleting the entry for the version
that you just canceled.

Be careful when invoking C-x v c, as it is easy to lose a lot of work with it. To help you be
careful, this command always requires confirmation with yes. Note also that this command

is disabled under CVS, because canceling versions is very dangerous and discouraged with
CVS.

14.7.5.4 Dired under VC

The VC Dired Mode described here works with all the version control systems that VC
supports. Another more powerful facility, designed specifically for CVS, is called PCL-CVS.
See section “About PCL-CVS” in PCL-CVS — The Emacs Front-End to CVS.

When you are working on a large program, it is often useful to find out which files
have changed within an entire directory tree, or to view the status of all files under version
control at once, and to perform version control operations on collections of files. You can
use the command C-x v d (vc-directory) to make a directory listing that includes only
files relevant for version control.

C-x v d creates a buffer which uses VC Dired Mode. This looks much like an ordinary
Dired buffer (see Chapter 29 [Dired], page 319); however, normally it shows only the note-
worthy files (those locked or not up-to-date). This is called terse display. If you set the
variable vc-dired-terse-display to nil, then VC Dired shows all relevant files—those
managed under version control, plus all subdirectories (full display). The command v t in
a VC Dired buffer toggles between terse display and full display (see Section 14.7.5.5 [VC
Dired Commands], page 130).

By default, VC Dired produces a recursive listing of noteworthy or relevant files at or
below the given directory. You can change this by setting the variable vc-dired-recurse
to nil; then VC Dired shows only the files in the given directory.

The line for an individual file shows the version control state in the place of the hard link
count, owner, group, and size of the file. If the file is unmodified, in sync with the master
file, the version control state shown is blank. Otherwise it consists of text in parentheses.
Under RCS and SCCS, the name of the user locking the file is shown; under CVS, an
abbreviated version of the ‘cvs status’ output is used. Here is an example using RCS:

130 GNU Emacs Manual

/home/jim/project:
-rw-r--r-- (jim) Apr 2 23:39 filel
-r—-r--r-- Apr 5 20:21 file2

The files ‘filel’ and ‘file2’ are under version control, ‘filel’ is locked by user jim, and
‘file2’ is unlocked.

Here is an example using CVS:
/home/joe/develop:

-rw-r--r-- (modified) Aug 2 1997 filel.c
-rw-r--r-- Apr 4 20:09 file2.c
-ru-r--r-- (merge) Sep 13 1996 file3.c
Here ‘filel.c’ is modified with respect to the repository, and ‘file2.c’isnot. ‘file3.c’
is modified, but other changes have also been checked in to the repository—you need to
merge them with the work file before you can check it in.

When VC Dired displays subdirectories (in the “full” display mode), it omits some
that should never contain any files under version control. By default, this includes Version
Control subdirectories such as ‘RCS’ and ‘CVS’; you can customize this by setting the variable
vc-directory-exclusion-list.

You can fine-tune VC Dired’s format by typing C-u C-x v d—as in ordinary Dired, that
allows you to specify additional switches for the ‘1s’ command.

14.7.5.5 VC Dired Commands

All the usual Dired commands work normally in VC Dired mode, except for v, which is
redefined as the version control prefix. You can invoke VC commands such as ve-diff and
ve-print-log by typing v =, or v 1, and so on. Most of these commands apply to the file
name on the current line.

The command v v (vc-next-action) operates on all the marked files, so that you can
lock or check in several files at once. If it operates on more than one file, it handles each file
according to its current state; thus, it might lock one file, but check in another file. This
could be confusing; it is up to you to avoid confusing behavior by marking a set of files that
are in a similar state.

If any files call for check-in, v v reads a single log entry, then uses it for all the files being
checked in. This is convenient for registering or checking in several files at once, as part of
the same change.

You can toggle between terse display (only locked files, or files not up-to-date) and full
display at any time by typing v t (vc-dired-toggle-terse-mode). There is also a special
command * 1 (vc-dired-mark-locked), which marks all files currently locked (or, with
CVS, all files not up-to-date). Thus, typing * 1 t k is another way to delete from the buffer
all files except those currently locked.

14.7.6 Multiple Branches of a File

One use of version control is to maintain multiple “current” versions of a file. For
example, you might have different versions of a program in which you are gradually adding

Chapter 14: File Handling 131

various unfinished new features. Each such independent line of development is called a
branch. VC allows you to create branches, switch between different branches, and merge
changes from one branch to another. Please note, however, that branches are only supported
for RCS at the moment.

A file’s main line of development is usually called the trunk. The versions on the trunk
are normally numbered 1.1, 1.2, 1.3, etc. At any such version, you can start an independent
branch. A branch starting at version 1.2 would have version number 1.2.1.1, and consecutive
versions on this branch would have numbers 1.2.1.2, 1.2.1.3, 1.2.1.4, and so on. If there
is a second branch also starting at version 1.2, it would consist of versions 1.2.2.1, 1.2.2.2,
1.2.2.3, etc.

If you omit the final component of a version number, that is called a branch number. It
refers to the highest existing version on that branch—the head version of that branch. The
branches in the example above have branch numbers 1.2.1 and 1.2.2.

14.7.6.1 Switching between Branches

To switch between branches, type C-u C-x C-q and specify the version number you want
to select. This version is then visited unlocked (write-protected), so you can examine it
before locking it. Switching branches in this way is allowed only when the file is not locked.

You can omit the minor version number, thus giving only the branch number; this takes
you to the head version on the chosen branch. If you only type RET), Emacs goes to the
highest version on the trunk.

After you have switched to any branch (including the main branch), you stay on it for
subsequent VC commands, until you explicitly select some other branch.

14.7.6.2 Creating New Branches

To create a new branch from a head version (one that is the latest in the branch that
contains it), first select that version if necessary, lock it with C-x C-q, and make whatever
changes you want. Then, when you check in the changes, use C-u C-x C-q. This lets
you specify the version number for the new version. You should specify a suitable branch
number for a branch starting at the current version. For example, if the current version
is 2.5, the branch number should be 2.5.1, 2.5.2, and so on, depending on the number of
existing branches at that point.

To create a new branch at an older version (one that is no longer the head of a branch),
first select that version (see Section 14.7.6.1 [Switching Branches], page 131), then lock it
with C-x C-q. You’ll be asked to confirm, when you lock the old version, that you really
mean to create a new branch—if you say no, you’ll be offered a chance to lock the latest
version instead.

Then make your changes and type C-x C-q again to check in a new version. This auto-
matically creates a new branch starting from the selected version. You need not specially
request a new branch, because that’s the only way to add a new version at a point that is
not the head of a branch.

After the branch is created, you “stay” on it. That means that subsequent check-ins
create new versions on that branch. To leave the branch, you must explicitly select a

132 GNU Emacs Manual

different version with C-u C-x C-q. To transfer changes from one branch to another, use
the merge command, described in the next section.

14.7.6.3 Merging Branches

When you have finished the changes on a certain branch, you will often want to in-
corporate them into the file’s main line of development (the trunk). This is not a trivial
operation, because development might also have proceeded on the trunk, so that you must
merge the changes into a file that has already been changed otherwise. VC allows you to
do this (and other things) with the vc-merge command.

C-x v m (vc-merge)
Merge changes into the work file.

C-x v m (vc-merge) takes a set of changes and merges it into the current version of the
work file. It firsts asks you in the minibuffer where the changes should come from. If you
just type ®RET), Emacs merges any changes that were made on the same branch since you
checked the file out (we call this merging the news). This is the common way to pick up
recent changes from the repository, regardless of whether you have already changed the file
yourself.

You can also enter a branch number or a pair of version numbers in the minibuffer. Then
C-x v m finds the changes from that branch, or the differences between the two versions you
specified, and merges them into the current version of the current file.

As an example, suppose that you have finished a certain feature on branch 1.3.1. In the
meantime, development on the trunk has proceeded to version 1.5. To merge the changes
from the branch to the trunk, first go to the head version of the trunk, by typing C-u C-x
C-q RET). Version 1.5 is now current. If locking is used for the file, type C-x C-q to lock
version 1.5 so that you can change it. Next, type C-x vm 1.3.1 ®RET). This takes the entire
set of changes on branch 1.3.1 (relative to version 1.3, where the branch started, up to the
last version on the branch) and merges it into the current version of the work file. You can
now check in the changed file, thus creating version 1.6 containing the changes from the
branch.

It is possible to do further editing after merging the branch, before the next check-in.
But it is usually wiser to check in the merged version, then lock it and make the further
changes. This will keep a better record of the history of changes.

When you merge changes into a file that has itself been modified, the changes might
overlap. We call this situation a conflict, and reconciling the conflicting changes is called
resolving a conflict.

Whenever conflicts occur during merging, VC detects them, tells you about them in the
echo area, and asks whether you want help in merging. If you say yes, it starts an Ediff
session (see section “Ediff” in The Ediff Manual).

If you say no, the conflicting changes are both inserted into the file, surrounded by
conflict markers. The example below shows how a conflict region looks; the file is called
‘name’ and the current master file version with user B’s changes in it is 1.11.

Chapter 14: File Handling 133

<<<<<<< name
User A’s version

User B’s version
>S>>>>>> 1.11

Then you can resolve the conflicts by editing the file manually. Or you can type M-x
vc-resolve-conflicts after visiting the file. This starts an Ediff session, as described
above. Don’t forget to check in the merged version afterwards.

14.7.6.4 Multi-User Branching

It is often useful for multiple developers to work simultaneously on different branches
of a file. CVS allows this by default; for RCS, it is possible if you create multiple source
directories. Each source directory should have a link named ‘RCS’ which points to a common
directory of RCS master files. Then each source directory can have its own choice of selected
versions, but all share the same common RCS records.

This technique works reliably and automatically, provided that the source files contain
RCS version headers (see Section 14.7.9.3 [Version Headers], page 138). The headers enable
Emacs to be sure, at all times, which version number is present in the work file.

If the files do not have version headers, you must instead tell Emacs explicitly in each
session which branch you are working on. To do this, first find the file, then type C-u C-x
C-q and specify the correct branch number. This ensures that Emacs knows which branch
it is using during this particular editing session.

14.7.7 Remote Repositories

A common way of using CVS is to set up a central CVS repository on some Internet
host, then have each developer check out a personal working copy of the files on his local
machine. Committing changes to the repository, and picking up changes from other users
into one’s own working area, then works by direct interactions with the CVS server.

One difficulty is that access to the CVS server is often slow, and that developers might
need to work off-line as well. VC is designed to reduce the amount of network interaction
necessary.

14.7.7.1 Version Backups

When VC sees that the CVS repository for a file is on a remote machine, it automatically
makes local backups of unmodified versions of the file—automatic version backups. This
means that you can compare the file to the repository version (C-x v =), or revert to that
version (C-x v u), without any network interactions.

The local copy of the unmodified file is called a version backup to indicate that it
corresponds exactly to a version that is stored in the repository. Note that version backups
are not the same as ordinary Emacs backup files (see Section 14.3.1 [Backup], page 114).
But they follow a similar naming convention.

For a file that comes from a remote CVS repository, VC makes a version backup whenever
you save the first changes to the file, and removes it after you have committed your modified

134 GNU Emacs Manual

version to the repository. You can disable the making of automatic version backups by
setting vc-cvs-stay-local to nil (see Section 14.7.10.3 [CVS Options], page 141).

The name of the automatic version backup for version version of file file is file. ~ version. ~.
This is almost the same as the name used by C-x v ~ (see Section 14.7.4 [Old Versions],
page 126), the only difference being the additional dot (‘.”) after the version number. This
similarity is intentional, because both kinds of files store the same kind of information. The
file made by C-x v ~ acts as a manual version backup.

All the VC commands that operate on old versions of a file can use both kinds of version
backups. For instance, C-x v ~ uses either an automatic or a manual version backup, if
possible, to get the contents of the version you request. Likewise, C-x v = and C-x v u use
either an automatic or a manual version backup, if one of them exists, to get the contents of a
version to compare or revert to. If you changed a file outside of Emacs, so that no automatic
version backup was created for the previous text, you can create a manual backup of that
version using C-x v ~, and thus obtain the benefit of the local copy for Emacs commands.

The only difference in Emacs’s handling of manual and automatic version backups, once
they exist, is that Emacs deletes automatic version backups when you commit to the repos-
itory. By contrast, manual version backups remain until you delete them.

14.7.7.2 Local Version Control

When you make many changes to a file that comes from a remote repository, it can
be convenient to have version control on your local machine as well. You can then record
intermediate versions, revert to a previous state, etc., before you actually commit your
changes to the remote server.

VC lets you do this by putting a file under a second, local version control system, so
that the file is effectively registered in two systems at the same time. For the description
here, we will assume that the remote system is CVS, and you use RCS locally, although the
mechanism works with any combination of version control systems (back ends).

To make it work with other back ends, you must make sure that the “more local” back
end comes before the “more remote” back end in the setting of ve-handled-backends (see
Section 14.7.10 [Customizing VC], page 139). By default, this variable is set up so that you
can use remote CVS and local RCS as described here.

To start using local RCS for a file that comes from a remote CVS server, you must
register the file in RCS, by typing C-u C-x v v rcs RET). (In other words, use vc-next-
action with a prefix argument, and specify RCS as the back end.)

You can do this at any time; it does not matter whether you have already modified the
file with respect to the version in the CVS repository. If possible, VC tries to make the
RCS master start with the unmodified repository version, then checks in any local changes
as a new version. This works if you have not made any changes yet, or if the unmodified
repository version exists locally as a version backup (see Section 14.7.7.1 [Version Backups],
page 133). If the unmodified version is not available locally, the RCS master starts with
the modified version; the only drawback to this is that you cannot compare your changes
locally to what is stored in the repository.

The version number of the RCS master is derived from the current CVS version, starting
a branch from it. For example, if the current CVS version is 1.23, the local RCS branch

Chapter 14: File Handling 135

will be 1.23.1. Version 1.23 in the RCS master will be identical to version 1.23 under CVS;
your first changes are checked in as 1.23.1.1. (If the unmodified file is not available locally,
VC will check in the modified file twice, both as 1.23 and 1.23.1.1, to make the revision
numbers consistent.)

If you do not use locking under CVS (the default), locking is also disabled for RCS, so
that editing under RCS works exactly as under CVS.

When you are done with local editing, you can commit the final version back to the
CVS repository by typing C-u C-x v v cvs RET). This initializes the log entry buffer (see
Section 14.7.3.4 [Log Buffer], page 126) to contain all the log entries you have recorded
in the RCS master; you can edit them as you wish, and then commit in CVS by typing
C-c C-c. If the commit is successful, VC removes the RCS master, so that the file is once
again registered under CVS only. (The RCS master is not actually deleted, just renamed
by appending ‘~’ to the name, so that you can refer to it later if you wish.)

While using local RCS, you can pick up recent changes from the CVS repository into
your local file, or commit some of your changes back to CVS, without terminating local
RCS version control. To do this, switch to the CVS back end temporarily, with the C-x v
b command:

C-xvb Switch to another back end that the current file is registered under (vc-switch-
backend).

C-u C-x v b backend
Switch to backend for the current file.

C-x v b does not change the buffer contents, or any files; it only changes VC’s perspective
on how to handle the file. Any subsequent VC commands for that file will operate on the
back end that is currently selected.

If the current file is registered in more than one back end, typing C-x v b “cycles”
through all of these back ends. With a prefix argument, it asks for the back end to use in
the minibuffer.

Thus, if you are using local RCS, and you want to pick up some recent changes in the
file from remote CVS, first visit the file, then type C-x v b to switch to CVS, and finally
use C-x v to merge the news (see Section 14.7.6.3 [Merging], page 132). You can
then switch back to RCS by typing C-x v b again, and continue to edit locally.

But if you do this, the revision numbers in the RCS master no longer correspond to
those of CVS. Technically, this is not a problem, but it can become difficult to keep track
of what is in the CVS repository and what is not. So we suggest that you return from time
to time to CVS-only operation, using C-u C-x v v cvs (RET).

14.7.8 Snapshots

A snapshot is a named set of file versions (one for each registered file) that you can treat
as a unit. One important kind of snapshot is a release, a (theoretically) stable version of
the system that is ready for distribution to users.

136 GNU Emacs Manual

14.7.8.1 Making and Using Snapshots

There are two basic commands for snapshots; one makes a snapshot with a given name,
the other retrieves a named snapshot.

C-x v s name
Define the last saved versions of every registered file in or under the current
directory as a snapshot named name (vc-create-snapshot).

C-x v r name
For all registered files at or below the current directory level, select whatever
versions correspond to the snapshot name (vc-retrieve-snapshot).

This command reports an error if any files are locked at or below the cur-
rent directory, without changing anything; this is to avoid overwriting work in
progress.

A snapshot uses a very small amount of resources—just enough to record the list of file
names and which version belongs to the snapshot. Thus, you need not hesitate to create
snapshots whenever they are useful.

You can give a snapshot name as an argument to C-x v = or C-x v ~ (see Section 14.7.4
[Old Versions|, page 126). Thus, you can use it to compare a snapshot against the current
files, or two snapshots against each other, or a snapshot against a named version.

14.7.8.2 Snapshot Caveats

VC’s snapshot facilities are modeled on RCS’s named-configuration support. They use
RCS’s native facilities for this, so under VC snapshots made using RCS are visible even
when you bypass VC.

For SCCS, VC implements snapshots itself. The files it uses contain name/file/version-
number triples. These snapshots are visible only through VC.

A snapshot is a set of checked-in versions. So make sure that all the files are checked in
and not locked when you make a snapshot.

File renaming and deletion can create some difficulties with snapshots. This is not a
VC-specific problem, but a general design issue in version control systems that no one has
solved very well yet.

If you rename a registered file, you need to rename its master along with it (the command
vc-rename-file does this automatically). If you are using SCCS, you must also update the
records of the snapshot, to mention the file by its new name (vc-rename-file does this,
t0o). An old snapshot that refers to a master file that no longer exists under the recorded
name is invalid; VC can no longer retrieve it. It would be beyond the scope of this manual
to explain enough about RCS and SCCS to explain how to update the snapshots by hand.

Using vc-rename-file makes the snapshot remain valid for retrieval, but it does not
solve all problems. For example, some of the files in your program probably refer to others
by name. At the very least, the makefile probably mentions the file that you renamed. If
you retrieve an old snapshot, the renamed file is retrieved under its new name, which is not
the name that the makefile expects. So the program won’t really work as retrieved.

Chapter 14: File Handling 137

14.7.9 Miscellaneous Commands and Features of VC

This section explains the less-frequently-used features of VC.

14.7.9.1 Change Logs and VC

If you use RCS or CVS for a program and also maintain a change log file for it (see
Section 24.1 [Change Log], page 267), you can generate change log entries automatically
from the version control log entries:

C-xva Visit the current directory’s change log file and, for registered files in that
directory, create new entries for versions checked in since the most recent entry
in the change log file. (vc-update-change-log).

This command works with RCS or CVS only, not with SCCS.
C-uC-xva
As above, but only find entries for the current buffer’s file.
M-1C-xva
As above, but find entries for all the currently visited files that are maintained

with version control. This works only with RCS, and it puts all entries in the
log for the default directory, which may not be appropriate.

For example, suppose the first line of ‘ChangeLog’ is dated 1999-04-10, and that the
only check-in since then was by Nathaniel Bowditch to ‘rcs2log’ on 1999-05-22 with log
text ‘Ignore log messages that start with ‘#’.’. Then C-x v a visits ‘ChangeLog’ and
inserts text like this:

1999-05-22 Nathaniel Bowditch <nat@apn.org>

* rcs2log: Ignore log messages that start with ‘#°.

You can then edit the new change log entry further as you wish.

Some of the new change log entries may duplicate what’s already in ChangeLog. You
will have to remove these duplicates by hand.
Normally, the log entry for file ‘foo’ is displayed as ‘*x foo: text of log entry’. The
after ‘foo’ is omitted if the text of the log entry starts with ‘(functionname): ’. For
example, if the log entry for ‘vc.el’ is ‘(vc-do-command) : Check call-process status.’,
then the text in ‘ChangeLog’ looks like this:

1999-05-06 Nathaniel Bowditch <nat@apn.org>

]

* vc.el (vc-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it groups related log entries
together if they all are checked in by the same author at nearly the same time. If the log
entries for several such files all have the same text, it coalesces them into a single entry. For
example, suppose the most recent check-ins have the following log entries:

e For ‘vc.texinfo’: ‘Fix expansion typos.’
e For ‘vc.el’: ‘Don’t call expand-file-name.’
e For ‘vc-hooks.el’ ‘Don’t call expand-file-name.’

They appear like this in ‘ChangeLog’:

138 GNU Emacs Manual

1999-04-01 Nathaniel Bowditch <nat@apn.org>
* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don’t call expand-file-name.

Normally, C-x v a separates log entries by a blank line, but you can mark several related
log entries to be clumped together (without an intervening blank line) by starting the text
of each related log entry with a label of the form ‘{clumpname} ’. The label itself is not
copied to ‘Changelog’. For example, suppose the log entries are:

e For ‘vc.texinfo’: ‘{expand} Fix expansion typos.’

e For ‘vc.el”: ‘{expand} Don’t call expand-file-name.’

e For ‘vc-hooks.el”: ‘{expand} Don’t call expand-file-name.’
Then the text in ‘ChangeLog’ looks like this:

1999-04-01 Nathaniel Bowditch <nat@apn.org>

* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don’t call expand-file-name.

A log entry whose text begins with ‘#’ is not copied to ‘ChangeLog’. For example, if you
merely fix some misspellings in comments, you can log the change with an entry beginning
with ‘#’ to avoid putting such trivia into ‘ChangeLog’.

14.7.9.2 Renaming VC Work Files and Master Files

When you rename a registered file, you must also rename its master file correspondingly
to get proper results. Use vc-rename-file to rename the source file as you specify, and
rename its master file accordingly. It also updates any snapshots (see Section 14.7.8 [Snap-
shots], page 135) that mention the file, so that they use the new name; despite this, the
snapshot thus modified may not completely work (see Section 14.7.8.2 [Snapshot Caveats],
page 136).

You cannot use vc-rename-file on a file that is locked by someone else.

14.7.9.3 Inserting Version Control Headers

Sometimes it is convenient to put version identification strings directly into working files.
Certain special strings called version headers are replaced in each successive version by the
number of that version.

If you are using RCS, and version headers are present in your working files, Emacs can
use them to determine the current version and the locking state of the files. This is more
reliable than referring to the master files, which is done when there are no version headers.
Note that in a multi-branch environment, version headers are necessary to make VC behave
correctly (see Section 14.7.6.4 [Multi-User Branching], page 133).

Searching for version headers is controlled by the variable ve-consult-headers. If it is
non-nil (the default), Emacs searches for headers to determine the version number you are
editing. Setting it to nil disables this feature.

You can use the C-x v h command (vc-insert-headers) to insert a suitable header
string.

Chapter 14: File Handling 139

C-xvh Insert headers in a file for use with your version-control system.

The default header string is ‘Id’ for RCS and %W}’ for SCCS. You can specify other
headers to insert by setting the variable vc-header-alist. Its value is a list of elements of
the form (program . string) where program is RCS or SCCS and string is the string to use.

Instead of a single string, you can specify a list of strings; then each string in the list is
inserted as a separate header on a line of its own.

It is often necessary to use “superfluous” backslashes when writing the strings that you
put in this variable. For instance, you might write "$Id\$" rather than "Id". The extra
backslash prevents the string constant from being interpreted as a header, if the Emacs Lisp
file containing it is maintained with version control.

Each header is inserted surrounded by tabs, inside comment delimiters, on a new line at
point. Normally the ordinary comment start and comment end strings of the current mode
are used, but for certain modes, there are special comment delimiters for this purpose; the
variable vc-comment-alist specifies them. Each element of this list has the form (mode
starter ender).

The variable vc-static-header-alist specifies further strings to add based on the
name of the buffer. Its value should be a list of elements of the form (regexp . format).
Whenever regexp matches the buffer name, format is inserted as part of the header. A
header line is inserted for each element that matches the buffer name, and for each string
specified by vc-header-alist. The header line is made by processing the string from
vc-header-alist with the format taken from the element. The default value for vc-
static-header-alist is as follows:

(C"\\.cs$"
"\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\
#endif /* lint */\n"))

It specifies insertion of text of this form:

#ifndef lint
static char vcid[] = "string";
#endif /* lint */
Note that the text above starts with a blank line.

If you use more than one version header in a file, put them close together in the file. The
mechanism in revert-buffer that preserves markers may not handle markers positioned
between two version headers.

14.7.10 Customizing VC

The variable ve-handled-backends determines which version control systems VC should
handle. The default value is (RCS CVS SCCS), so it contains all three version systems that
are currently supported. If you want VC to ignore one or more of these systems, exclude
its name from the list.

The order of systems in the list is significant: when you visit a file registered in more than
one system (see Section 14.7.7.2 [Local Version Control], page 134), VC uses the system
that comes first in vc-handled-backends by default. The order is also significant when
you register a file for the first time, see Section 14.7.5.1 [Registering], page 128 for details.

140 GNU Emacs Manual

14.7.10.1 General Options

Emacs normally does not save backup files for source files that are maintained with
version control. If you want to make backup files even for files that use version control, set
the variable vc-make-backup-files to a non-nil value.

Normally the work file exists all the time, whether it is locked or not. If you set vc-
keep-workfiles to nil, then checking in a new version with C-x C-q deletes the work file;
but any attempt to visit the file with Emacs creates it again. (With CVS, work files are
always kept.)

Editing a version-controlled file through a symbolic link can be dangerous. It bypasses
the version control system—you can edit the file without locking it, and fail to check your
changes in. Also, your changes might overwrite those of another user. To protect against
this, VC checks each symbolic link that you visit, to see if it points to a file under version
control.

The variable vc-follow-symlinks controls what to do when a symbolic link points to
a version-controlled file. If it is nil, VC only displays a warning message. If it is t, VC
automatically follows the link, and visits the real file instead, telling you about this in the
echo area. If the value is ask (the default), VC asks you each time whether to follow the
link.

If vc-suppress-confirm is non-nil, then C-x C-q and C-x v i can save the current
buffer without asking, and C-x v u also operates without asking for confirmation. (This
variable does not affect C-x v c; that operation is so drastic that it should always ask for
confirmation.)

VC mode does much of its work by running the shell commands for RCS, CVS and
SCCS. If vc-command-messages is non-nil, VC displays messages to indicate which shell
commands it runs, and additional messages when the commands finish.

You can specify additional directories to search for version control programs by setting
the variable vc-path. These directories are searched before the usual search path. It is
rarely necessary to set this variable, because VC normally finds the proper files automati-
cally.

14.7.10.2 Options for RCS and SCCS

By default, RCS uses locking to coordinate the activities of several users, but there is a
mode called non-strict locking in which you can check-in changes without locking the file
first. Use ‘rcs -U’ to switch to non-strict locking for a particular file, see the rcs manual
page for details.

When deducing the version control state of an RCS file, VC first looks for an RCS version
header string in the file (see Section 14.7.9.3 [Version Headers|, page 138). If there is no
header string, VC normally looks at the file permissions of the work file; this is fast. But
there might be situations when the file permissions cannot be trusted. In this case the
master file has to be consulted, which is rather expensive. Also the master file can only
tell you if there’s any lock on the file, but not whether your work file really contains that
locked version.

Chapter 14: File Handling 141

You can tell VC not to use version headers to determine the file status by setting vc-
consult-headers to nil. VC then always uses the file permissions (if it is supposed to
trust them), or else checks the master file.

You can specify the criterion for whether to trust the file permissions by setting the
variable ve-mistrust-permissions. Its value can be t (always mistrust the file permissions
and check the master file), nil (always trust the file permissions), or a function of one
argument which makes the decision. The argument is the directory name of the ‘RCS’
subdirectory. A non-nil value from the function says to mistrust the file permissions. If
you find that the file permissions of work files are changed erroneously, set vc-mistrust-
permissions to t. Then VC always checks the master file to determine the file’s status.

VC determines the version control state of files under SCCS much as with RCS. It does
not consider SCCS version headers, though. Thus, the variable vc-mistrust-permissions
affects SCCS use, but vc-consult-headers does not.

14.7.10.3 Options specific for CVS

By default, CVS does not use locking to coordinate the activities of several users; anyone
can change a work file at any time. However, there are ways to restrict this, resulting in
behavior that resembles locking.

For one thing, you can set the CVSREAD environment variable (the value you use makes
no difference). If this variable is defined, CVS makes your work files read-only by default.
In Emacs, you must type C-x C-q to make the file writable, so that editing works in fact
similar as if locking was used. Note however, that no actual locking is performed, so several
users can make their files writable at the same time. When setting CVSREAD for the first
time, make sure to check out all your modules anew, so that the file protections are set
correctly.

Another way to achieve something similar to locking is to use the watch feature of CVS.
If a file is being watched, CVS makes it read-only by default, and you must also use C-x
C-q in Emacs to make it writable. VC calls cvs edit to make the file writable, and CVS
takes care to notify other developers of the fact that you intend to change the file. See the
CVS documentation for details on using the watch feature.

When a file’s repository is on a remote machine, VC tries to keep network interactions to
a minimum. This is controlled by the variable ve-cvs-stay-local. If it is t (the default),
then VC uses only the entry in the local CVS subdirectory to determine the file’s state (and
possibly information returned by previous CVS commands). One consequence of this is that
when you have modified a file, and somebody else has already checked in other changes to
the file, you are not notified of it until you actually try to commit. (But you can try to pick
up any recent changes from the repository first, using C-x v m (RET), see Section 14.7.6.3
[Merging], page 132).

When vc-cvs-stay-local is t, VC also makes local version backups, so that simple diff

and revert operations are completely local (see Section 14.7.7.1 [Version Backups], page 133).

On the other hand, if you set vc-cvs-stay-local to nil, then VC queries the remote
repository before it decides what to do in vc-next-action (C-x v v), just as it does for
local repositories. It also does not make any version backups.

142 GNU Emacs Manual

You can also set vc-cvs-stay-local to a regular expression that is matched against
the repository host name; VC then stays local only for repositories from hosts that match
the pattern.

14.8 File Directories

The file system groups files into directories. A directory listing is a list of all the files
in a directory. Emacs provides commands to create and delete directories, and to make
directory listings in brief format (file names only) and verbose format (sizes, dates, and
authors included). There is also a directory browser called Dired; see Chapter 29 [Dired],
page 319.

C-x C-d dir-or-pattern
Display a brief directory listing (1ist-directory).

C-u C-x C-d dir-or-pattern
Display a verbose directory listing.

M-x make-directory dirname

Create a new directory named dirname.

M-x delete-directory dirname
Delete the directory named dirname. It must be empty, or you get an error.

The command to display a directory listing is C-x C-d (list-directory). It reads using
the minibuffer a file name which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,

C-x C-d /u2/emacs/etc

lists all the files in directory ‘/u2/emacs/etc’. Here is an example of specifying a file name
pattern:
C-x C-d /u2/emacs/src/*.c

Normally, C-x C-d displays a brief directory listing containing just file names. A numeric
argument (regardless of value) tells it to make a verbose listing including sizes, dates, and
owners (like ‘1s -17).

The text of a directory listing is obtained by running ls in an inferior process. Two
Emacs variables control the switches passed to 1s: list-directory-brief-switches is a
string giving the switches to use in brief listings ("-CF" by default), and list-directory-

verbose-switches is a string giving the switches to use in a verbose listing ("-1" by
default).

14.9 Comparing Files

The command M-x diff compares two files, displaying the differences in an Emacs buffer
named ‘xdiff*’. It works by running the diff program, using options taken from the
variable diff-switches. The value of diff-switches should be a string; the default is
"-c" to specify a context diff.

The buffer ‘*diff*’ has Compilation mode as its major mode, so you can use C-x
¢ to visit successive changed locations in the two source files. You can also move to a

Chapter 14: File Handling 143

particular hunk of changes and type or C-c C-c, or click Mouse-2 on it, to move
to the corresponding source location. You can also use the other special commands of
Compilation mode: and for scrolling, and M-p and M-n for cursor motion. See
Section 23.1 [Compilation], page 255.

The command M-x diff-backup compares a specified file with its most recent backup.
If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of.

The command M-x compare-windows compares the text in the current window with
that in the next window. Comparison starts at point in each window, and each starting
position is pushed on the mark ring in its respective buffer. Then point moves forward in
each window, a character at a time, until a mismatch between the two windows is reached.
Then the command is finished. For more information about windows in Emacs, Chapter 16
[Windows|, page 157.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, it ignores differences in case as well.

Differences between versions of files are often distributed as patches, which are the output
from diff or a version control system that uses diff. M-x diff-mode turns on Diff mode,
a major mode for viewing and editing patches, either as “unified diffs” or “context diffs.”

You can use M-x smerge-mode to turn on Smerge mode, a minor mode for editing output
from the diff3 program. This is typically the result of a failed merge from a version control
system “update” outside VC, due to conflicting changes to a file. Smerge mode provides
commands to resolve conflicts by selecting specific changes.

See also Section 24.3 [Emerge], page 276, and section “Top” in The Ediff Manual, for
convenient facilities for merging two similar files.

14.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one
file; they do not accept wildcard file names.

M-x view-file allows you to scan or read a file by sequential screenfuls. It reads a file
name argument using the minibuffer. After reading the file into an Emacs buffer, view-
file displays the beginning. You can then type to scroll forward one windowful, or
to scroll backward. Various other commands are provided for moving around in the
file, but none for changing it; type ? while viewing for a list of them. They are mostly
the same as normal Emacs cursor motion commands. To exit from viewing, type q. The
commands for viewing are defined by a special major mode called View mode.

A related command, M-x view-buffer, views a buffer already present in Emacs. See
Section 15.3 [Misc Buffer], page 151.

M-x insert-file (also C-x i) inserts a copy of the contents of the specified file into the
current buffer at point, leaving point unchanged before the contents and the mark after
them.

M-x write-region is the inverse of M-x insert-file; it copies the contents of the region
into the specified file. M-x append-to-file adds the text of the region to the end of the
specified file. See Section 9.3 [Accumulating Text], page 72.

144 GNU Emacs Manual

M-x delete-file deletes the specified file, like the rm command in the shell. If you are
deleting many files in one directory, it may be more convenient to use Dired (see Chapter 29
[Dired|, page 319).

M-x rename-file reads two file names old and new using the minibuffer, then renames
file old as new. If the file name new already exists, you must confirm with yes or renaming
is not done; this is because renaming causes the old meaning of the name new to be lost.
If old and new are on different file systems, the file old is copied and deleted.

The similar command M-x add-name-to-file is used to add an additional name to an
existing file without removing its old name. The new name is created as a “hard link” to
the existing file. The new name must belong on the same file system that the file is on. On
Windows, this command works only if the file resides in an NTF'S file system. On MS-DOS,
it works by copying the file.

M-x copy-file reads the file old and writes a new file named new with the same con-
tents. Confirmation is required if a file named new already exists, because copying has the
consequence of overwriting the old contents of the file new.

M-x make-symbolic-1link reads two file names target and linkname, then creates a sym-
bolic link named linkname, which points at target. The effect is that future attempts to
open file linkname will refer to whatever file is named target at the time the opening is
done, or will get an error if the name target is not in use at that time. This command does
not expand the argument target, so that it allows you to specify a relative name as the
target of the link.

Confirmation is required when creating the link if linkname is in use. Note that not all
systems support symbolic links; on systems that don’t support them, this command is not
defined.

14.11 Accessing Compressed Files

Emacs comes with a library that can automatically uncompress compressed files when
you visit them, and automatically recompress them if you alter them and save them. To
enable this feature, type the command M-x auto-compression-mode. You can enable it
permanently by customizing the option auto-compression-mode.

When automatic compression (which implies automatic uncompression as well) is en-
abled, Emacs recognizes compressed files by their file names. File names ending in ‘. gz’
indicate a file compressed with gzip. Other endings indicate other compression programs.

Automatic uncompression and compression apply to all the operations in which Emacs
uses the contents of a file. This includes visiting it, saving it, inserting its contents into a
buffer, loading it, and byte compiling it.

14.12 File Archives

A file whose name ends in ‘.tar’ is normally an archive made by the tar program.
Emacs views these files in a special mode called Tar mode which provides a Dired-like list
of the contents (see Chapter 29 [Dired], page 319). You can move around through the list
just as you would in Dired, and visit the subfiles contained in the archive. However, not all
Dired commands are available in Tar mode.

Chapter 14: File Handling 145

If you enable Auto Compression mode (see Section 14.11 [Compressed Files|, page 144),
then Tar mode is used also for compressed archives—files with extensions ‘.tgz’, .tar.Z
and .tar.gz.

The keys e, £ and all extract a component file into its own buffer. You can edit
it there and when you save the buffer the edited version will replace the version in the Tar
buffer. v extracts a file into a buffer in View mode. o extracts the file and displays it in
another window, so you could edit the file and operate on the archive simultaneously. d
marks a file for deletion when you later use x, and u unmarks a file, as in Dired. C copies a

file from the archive to disk and R renames a file. g reverts the buffer from the archive on
disk.

The keys M, G, and O change the file’s permission bits, group, and owner, respectively.

If your display supports colors and the mouse, moving the mouse pointer across a file
name highlights that file name, indicating that you can click on it. Clicking Mouse-2 on
the highlighted file name extracts the file into a buffer and displays that buffer.

Saving the Tar buffer writes a new version of the archive to disk with the changes you
made to the components.

You don’t need the tar program to use Tar mode—Emacs reads the archives directly.
However, accessing compressed archives requires the appropriate uncompression program.

A separate but similar Archive mode is used for archives produced by the programs arc,
jar, 1zh, zip, and zoo, which have extensions corresponding to the program names.

The key bindings of Archive mode are similar to those in Tar mode, with the addition
of the m key which marks a file for subsequent operations, and M-(DEL) which unmarks all
the marked files. Also, the a key toggles the display of detailed file information, for those
archive types where it won’t fit in a single line. Operations such as renaming a subfile, or
changing its mode or owner, are supported only for some of the archive formats.

Unlike Tar mode, Archive mode runs the archiving program to unpack and repack
archives. Details of the program names and their options can be set in the ‘Archive’
Customize group. However, you don’t need these programs to look at the archive table of
contents, only to extract or manipulate the subfiles in the archive.

14.13 Remote Files

You can refer to files on other machines using a special file name syntax:

/host : filename

/user@host: filename

/user@host#port : filename
When you do this, Emacs uses the FTP program to read and write files on the specified
host. It logs in through FTP using your user name or the name user. It may ask you for a
password from time to time; this is used for logging in on host. The form using port allows
you to access servers running on a non-default TCP port.

If you want to disable backups for remote files, set the variable ange-ftp-make-backup-
files to nil.

Normally, if you do not specify a user name in a remote file name, that means to use your
own user name. But if you set the variable ange-ftp-default-user to a string, that string
is used instead. (The Emacs package that implements FTP file access is called ange-ftp.)

146 GNU Emacs Manual

To visit files accessible by anonymous FTP, you use special user names ‘anonymous’
or ‘ftp’. Passwords for these user names are handled specially. The variable ange-ftp-
generate-anonymous-password controls what happens: if the value of this variable is a
string, then that string is used as the password; if non-nil (the default), then the value of
user-mail-address is used; if nil, the user is prompted for a password as normal.

Sometimes you may be unable to access files on a remote machine because a firewall in
between blocks the connection for security reasons. If you can log in on a gateway machine
from which the target files are accessible, and whose FTP server supports gatewaying
features, you can still use remote file names; all you have to do is specify the name of
the gateway machine by setting the variable ange-ftp-gateway-host, and set ange-ftp-
smart-gateway to t. Otherwise you may be able to make remote file names work, but the
procedure is complex. You can read the instructions by typing M-x finder-commentary

ange-ftp RET).

You can entirely turn off the FTP file name feature by removing the entries ange-ftp-
completion-hook-function and ange-ftp-hook-function from the variable file-name-
handler-alist. You can turn off the feature in individual cases by quoting the file name
with ‘/:7 (see Section 14.14 [Quoted File Names], page 146).

14.14 Quoted File Names

You can quote an absolute file name to prevent special characters and syntax in it from
having their special effects. The way to do this is to add ‘/:’ at the beginning.

For example, you can quote a local file name which appears remote, to prevent it from
being treated as a remote file name. Thus, if you have a directory named ‘/foo:’ and a file
named ‘bar’ in it, you can refer to that file in Emacs as ‘/:/foo:/bar’.

‘/:7 can also prevent ‘=’ from being treated as a special character for a user’s home
directory. For example, ‘/:/tmp/~hack’ refers to a file whose name is ‘“hack’ in directory
‘/tmp’.

Likewise, quoting with /:’ is one way to enter in the minibuffer a file name that contains
‘$’. However, the ‘//:” must be at the beginning of the minibuffer in order to quote ‘$’.

You can also quote wildcard characters with ‘/:’) for visiting. For example,
‘/:/tmp/foo*bar’ visits the file ‘//tmp/foo*bar’. However, in most cases you can simply
type the wildcard characters for themselves. For example, if the only file name in ‘/tmp’
that starts with ‘foo’ and ends with ‘bar’ is ‘foox*bar’, then specifying ‘/tmp/foo*bar’
will visit just ‘/tmp/foo*bar’. Another way is to specify ‘/tmp/foo[*]bar’.

14.15 File Name Cache

You can use the file name cache to make it easy to locate a file by name, without having
to remember exactly where it is located. When typing a file name in the minibuffer, C-(ab)
(file-cache-minibuffer-complete) completes it using the file name cache. If you repeat
C-(tab), that cycles through the possible completions of what you had originally typed. Note
that the C-{ab) character cannot be typed on most text-only terminals.

The file name cache does not fill up automatically. Instead, you load file names into the
cache using these commands:

Chapter 14: File Handling 147

M-x file-cache-add-directory directory
Add each file name in directory to the file name cache.

M-x file-cache-add-directory-using-find directory
Add each file name in directory and all of its nested subdirectories to the file
name cache.

M-x file-cache-add-directory-using-locate directory
Add each file name in directory and all of its nested subdirectories to the file
name cache, using locate to find them all.

M-x file-cache-add-directory-list variable
Add each file name in each directory listed in variable to the file name cache.
variable should be a Lisp variable such as load-path or exec-path, whose
value is a list of directory names.

M-x file-cache-clear-cache
Clear the cache; that is, remove all file names from it.

14.16 Convenience Features for Finding Files

If you enable Recentf mode, with M-x recentf-mode, the ‘File’ menu includes a sub-
menu containing a list of recently opened files. M-x recentf-save-list saves the current
recent-file-list to a file, and M-x recentf-edit-1list edits it.

When Auto-image-file minor mode is enabled, visiting an image file displays it as an
image, not as text. Likewise, inserting an image file into a buffer inserts it as an image. This
works only when Emacs can display the relevant image type. The variables image-file-
name-extensions or image-file-name-regexps control which file names are recognized
as containing images.

The M-x ffap command generalizes find-file with more powerful heuristic defaults
(see Section 31.15.3 [FFAP], page 372), often based on the text at point. Partial Comple-
tion mode offers other features extending find-file, which can be used with ffap. See
Section 5.3.4 [Completion Options], page 47.

148 GNU Emacs Manual

Chapter 15: Using Multiple Buffers 149

15 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer. Each time
you visit a file, a buffer is created to hold the file’s text. Each time you invoke Dired, a
buffer is created to hold the directory listing. If you send a message with C-x m, a buffer
named ‘*mail*’ is used to hold the text of the message. When you ask for a command’s
documentation, that appears in a buffer called ‘*Helpx*’.

At any time, one and only one buffer is current. It is also called the selected buffer.
Often we say that a command operates on “the buffer” as if there were only one; but really
this means that the command operates on the current buffer (most commands do).

When Emacs has multiple windows, each window has its own chosen buffer and displays
it; at any time, only one of the windows is selected, and its chosen buffer is the current
buffer. Each window’s mode line normally displays the name of the window’s chosen buffer
(see Chapter 16 [Windows], page 157).

Each buffer has a name, which can be of any length, and you can select any buffer by
giving its name. Most buffers are made by visiting files, and their names are derived from
the files’” names. But you can also create an empty buffer with any name you want. A
newly started Emacs has a buffer named ‘*scratch*’ which can be used for evaluating
Lisp expressions in Emacs. The distinction between upper and lower case matters in buffer
names.

Each buffer records individually what file it is visiting, whether it is modified, and what
major mode and minor modes are in effect in it (see Chapter 19 [Major Modes], page 193).
Any Emacs variable can be made local to a particular buffer, meaning its value in that
buffer can be different from the value in other buffers. See Section 32.2.4 [Locals|, page 387.

A buffer’s size cannot be larger than some maximum, which is defined by the largest
buffer position representable by the Emacs integer data type. This is because Emacs tracks
buffer positions using that data type. For 32-bit machines, the largest buffer size is 128
megabytes.

15.1 Creating and Selecting Buffers

C-x b buffer

Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer

Similar, but select buffer in another window (switch-to-buffer-other-
window).

C-x 5 b buffer
Similar, but select buffer in a separate frame (switch-to-buffer-other-
frame).

To select the buffer named bufname, type C-x b bufname RET). This runs the command
switch-to-buffer with argument bufname. You can use completion on an abbreviation
for the buffer name you want (see Section 5.3 [Completion], page 45). An empty argument
to C-x b specifies the buffer that was current most recently among those not now displayed
in any window.

150 GNU Emacs Manual

To select a buffer in a window other than the current one, type C-x 4 b bufname (RET).
This runs the command switch-to-buffer-other-window which displays the buffer buf-
name in another window. By default, if displaying the buffer causes two vertically adjacent
windows to be displayed, the heights of those windows are evened out; to countermand that
and preserve the window configuration, set the variable even-window-heights to nil.

Similarly, C-x 5 b buffer runs the command switch-to-buffer-other-frame
which selects a buffer in another frame.

You can control how certain buffers are handled by these commands by customizing the
variables special-display-buffer-names, special-display-regexps, same-window-—
buffer-names, and same-window-regexps. See Section 16.5 [Force Same Window],
page 160, and Section 17.11 [Special Buffer Frames], page 169, for more about these
variables. In addition, if the value of display-buffer-reuse-frames is non-nil, and the
buffer you want to switch to is already displayed in some frame, Emacs will raise that
frame.

Most buffers are created by visiting files, or by Emacs commands that want to display
some text, but you can also create a buffer explicitly by typing C-x b bufname ®RET). This
makes a new, empty buffer that is not visiting any file, and selects it for editing. Such buffers
are used for making notes to yourself. If you try to save one, you are asked for the file name
to use. The new buffer’s major mode is determined by the value of default-major-mode
(see Chapter 19 [Major Modes|, page 193).

Note that C-x C-f, and any other command for visiting a file, can also be used to switch
to an existing file-visiting buffer. See Section 14.2 [Visiting], page 110.

Emacs uses buffer names that start with a space for internal purposes. It treats these
buffers specially in minor ways—for example, by default they do not record undo informa-
tion. It is best to avoid using such buffer names yourself.

15.2 Listing Existing Buffers

C-x C-b List the existing buffers (1ist-buffers).

To display a list of all the buffers that exist, type C-x C-b. Each line in the list shows
one buffer’s name, major mode and visited file. The buffers are listed in the order that they
were current; the buffers that were current most recently come first.

‘*’ at the beginning of a line indicates the buffer is “modified.” If several buffers are
modified, it may be time to save some with C-x s (see Section 14.3 [Saving], page 113). ‘%’
indicates a read-only buffer. ‘.’ marks the current buffer. Here is an example of a buffer

list:

MR Buffer Size Mode File

.* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex
Help 1287 Fundamental
files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el

% RMAIL 64042 RMAIL /u/rms/RMAIL

*% man 747 Dired /u2/emacs/man/

net.emacs 343885 Fundamental /u/rms/net .emacs

fileio.c 27691 C /u2/emacs/src/fileio.c

Chapter 15: Using Multiple Buffers 151

NEWS 67340 Text /u2/emacs/etc/NEWS
scratchx 0 Lisp Interaction

Note that the buffer ‘*Help*’ was made by a help request; it is not visiting any file. The
buffer man was made by Dired on the directory ‘/u2/emacs/man/’. You can list only buffers
that are visiting files by giving the command a prefix; for instance, by typing C-u C-x C-b.

15.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (vc-toggle-read-only).

M-x rename-buffer name
Change the name of the current buffer.

M-x rename-uniquely
Rename the current buffer by adding ‘<number>’ to the end.

M-x view-buffer buffer
Scroll through buffer buffer.

A buffer can be read-only, which means that commands to change its contents are not
allowed. The mode line indicates read-only buffers with ‘%%’ or ‘%*’ near the left margin.
Read-only buffers are usually made by subsystems such as Dired and Rmail that have
special commands to operate on the text; also by visiting a file whose access control says
you cannot write it.

If you wish to make changes in a read-only buffer, use the command C-x C-q (vc-
toggle-read-only). It makes a read-only buffer writable, and makes a writable buffer
read-only. In most cases, this works by setting the variable buffer-read-only, which has
a local value in each buffer and makes the buffer read-only if its value is non-nil. If the
file is maintained with version control, C-x C-q works through the version control system
to change the read-only status of the file as well as the buffer. See Section 14.7 [Version
Control], page 122.

M-x rename-buffer changes the name of the current buffer. Specify the new name as
a minibuffer argument. There is no default. If you specify a name that is in use for some
other buffer, an error happens and no renaming is done.

M-x rename-uniquely renames the current buffer to a similar name with a numeric suffix
added to make it both different and unique. This command does not need an argument.
It is useful for creating multiple shell buffers: if you rename the ‘*Shell*’ buffer, then do
M-x shell again, it makes a new shell buffer named ‘*Shell*’; meanwhile, the old shell
buffer continues to exist under its new name. This method is also good for mail buffers,
compilation buffers, and most Emacs features that create special buffers with particular
names.

M-x view-buffer is much like M-x view-file (see Section 14.10 [Misc File Ops],
page 143) except that it examines an already existing Emacs buffer. View mode provides
commands for scrolling through the buffer conveniently but not for changing it. When
you exit View mode with q, that switches back to the buffer (and the position) which
was previously displayed in the window. Alternatively, if you exit View mode with e, the
buffer and the value of point that resulted from your perusal remain in effect.

152 GNU Emacs Manual

The commands M-x append-to-buffer and M-x insert-buffer can be used to copy
text from one buffer to another. See Section 9.3 [Accumulating Text], page 72.

15.4 Killing Buffers

If you continue an Emacs session for a while, you may accumulate a large number of
buffers. You may then find it convenient to kill the buffers you no longer need. On most
operating systems, killing a buffer releases its space back to the operating system so that
other programs can use it. Here are some commands for killing buffers:

C-x k bufname
Kill buffer bufname (kill-buffer).

M-x kill-some-buffers
Offer to kill each buffer, one by one.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. The
default, used if you type just in the minibuffer, is to kill the current buffer. If you
kill the current buffer, another buffer becomes current: one that was current in the recent
past but is not displayed in any window now. If you ask to kill a file-visiting buffer that is
modified (has unsaved editing), then you must confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of y means to kill the buffer. Killing the current buffer or a buffer containing unsaved
changes selects a new buffer or asks for confirmation just like kill-buffer.

The buffer menu feature (see Section 15.5 [Several Buffers|, page 152) is also convenient
for killing various buffers.

If you want to do something special every time a buffer is killed, you can add hook
functions to the hook kill-buffer-hook (see Section 32.2.3 [Hooks|, page 386).

If you run one Emacs session for a period of days, as many people do, it can fill up
with buffers that you used several days ago. The command M-x clean-buffer-list is a
convenient way to purge them; it kills all the unmodified buffers that you have not used for
a long time. An ordinary buffer is killed if it has not been displayed for three days; however,
you can specify certain buffers that should never be killed automatically, and others that
should be killed if they have been unused for a mere hour.

You can also have this buffer purging done for you, every day at midnight, by enabling
Midnight mode. Midnight mode operates each day at midnight; at that time, it runs clean-
buffer-list, or whichever functions you have placed in the normal hook midnight-hook
(see Section 32.2.3 [Hooks|, page 386).

To enable Midnight mode, use the Customization buffer to set the variable midnight-
mode to t. See Section 32.2.2 [Easy Customization], page 380.

15.5 Operating on Several Buffers

The buffer-menu facility is like a “Dired for buffers”; it allows you to request operations
on various Emacs buffers by editing an Emacs buffer containing a list of them. You can
save buffers, kill them (here called deleting them, for consistency with Dired), or display
them.

Chapter 15: Using Multiple Buffers 153

M-x buffer-menu
Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the buffer ‘*Buffer
List*’, and selects that buffer in Buffer Menu mode. The buffer is read-only, and can be
changed only through the special commands described in this section. The usual Emacs cur-
sor motion commands can be used in the ‘*Buffer List*’ buffer. The following commands
apply to the buffer described on the current line.

d Request to delete (kill) the buffer, then move down. The request shows as a ‘D’
on the line, before the buffer name. Requested deletions take place when you
type the x command.

Cc-d Like d but move up afterwards instead of down.

s Request to save the buffer. The request shows as an ‘S’ on the line. Requested
saves take place when you type the x command. You may request both saving
and deletion for the same buffer.

X Perform previously requested deletions and saves.
u Remove any request made for the current line, and move down.
DEL Move to previous line and remove any request made for that line.

The d, C-d, s and u commands to add or remove flags also move down (or up) one line.
They accept a numeric argument as a repeat count.

These commands operate immediately on the buffer listed on the current line:

Mark the buffer “unmodified.” The command ~ does this immediately when

you type it.

% Toggle the buffer’s read-only flag. The command % does this immediately when
you type it.

t Visit the buffer as a tags table. See Section 24.2.4 [Select Tags Table], page 273.

There are also commands to select another buffer or buffers:

q Quit the buffer menu—immediately display the most recent formerly visible
buffer in its place.

RET

f Immediately select this line’s buffer in place of the ‘*Buffer List*’ buffer.

) Immediately select this line’s buffer in another window as if by C-x 4 b, leaving
‘*Buffer List*’ visible.

C-o Immediately display this line’s buffer in another window, but don’t select the
window.

1 Immediately select this line’s buffer in a full-screen window.

2 Immediately set up two windows, with this line’s buffer in one, and the previ-

ously current buffer (aside from the buffer ‘*Buffer List*’) in the other.

b Bury the buffer listed on this line.

154 GNU Emacs Manual

m Mark this line’s buffer to be displayed in another window if you exit with the
v command. The request shows as a ‘>’ at the beginning of the line. (A single
buffer may not have both a delete request and a display request.)

v Immediately select this line’s buffer, and also display in other windows any
buffers previously marked with the m command. If you have not marked any
buffers, this command is equivalent to 1.

All that buffer-menu does directly is create and switch to a suitable buffer, and turn
on Buffer Menu mode. Everything else described above is implemented by the special
commands provided in Buffer Menu mode. One consequence of this is that you can switch
from the ‘*Buffer List*’ buffer to another Emacs buffer, and edit there. You can reselect
the ‘*Buffer List*’ buffer later, to perform the operations already requested, or you can
kill it, or pay no further attention to it.

The only difference between buffer-menu and list-buffers is that buffer-menu
switches to the ‘*Buffer List*’ buffer in the selected window; list-buffers displays it
in another window. If you run list-buffers (that is, type C-x C-b) and select the buffer
list manually, you can use all of the commands described here.

The buffer ‘*Buffer List*’ is not updated automatically when buffers are created and
killed; its contents are just text. If you have created, deleted or renamed buffers, the way
to update ‘*Buffer List*’ to show what you have done is to type g (revert-buffer) or
repeat the buffer-menu command.

15.6 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of

the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link between
files.

M-x make-indirect-buffer base-buffer indirect-name
Create an indirect buffer named indirect-name whose base buffer is base-buffer.

M-x clone-indirect-buffer
Create an indirect buffer that is a twin copy of the current buffer.

C-x4c Create an indirect buffer that is a twin copy of the current buffer, and select it
in another window (clone-indirect-buffer-other-window).

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. But in all other respects,
the indirect buffer and its base buffer are completely separate. They have different names,
different values of point, different narrowing, different markers, different major modes, and
different local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect
buffer, that actually works by saving the base buffer. Killing the base buffer effectively kills
the indirect buffer, but killing an indirect buffer has no effect on its base buffer.

One way to use indirect buffers is to display multiple views of an outline. See Sec-
tion 21.8.4 [Outline Views], page 212.

Chapter 15: Using Multiple Buffers 155

A quick and handy way to make an indirect buffer is with the command M-x
clone-indirect-buffer. It creates and selects an indirect buffer whose base buffer is
the current buffer. With a numeric argument, it prompts for the name of the indirect
buffer; otherwise it defaults to the name of the current buffer, modifying it by adding a
‘<n>’ prefix if required. C-x 4 ¢ (clone-indirect-buffer-other-window) works like
M-x clone-indirect-buffer, but it selects the cloned buffer in another window. These
commands come in handy if you want to create new ‘*infox’ or ‘*Helpx’ buffers, for
example.

The more general way is with the command M-x make-indirect-buffer. It creates an
indirect buffer from buffer base-buffer, under the name indirect-name. It prompts for both
base-buffer and indirect-name using the minibuffer.

15.7 Convenience Features and Customization of Buffer
Handling

This section describes several modes and features that make it more convenient to switch
between buffers.

15.7.1 Making Buffer Names Unique

When several buffers visit identically-named files, Emacs must give the buffers distinct
names. The usual method for making buffer names unique adds ‘<2>’; ‘<3>’, etc. to the
end of the buffer names (all but one of them).

Other methods work by adding parts of each file’s directory to the buffer name. To
select one, customize the variable uniquify-buffer-name-style (see Section 32.2.2 [Easy
Customization], page 380).

For instance, the forward naming method puts part of the directory name at the be-
ginning of the buffer name; using this method, buffers visiting ‘/u/mernst/tmp/Makefile’
and ‘/usr/projects/zaphod/Makefile’ would be named ‘tmp/Makefile’ and
‘zaphod/Makefile’, respectively (instead of ‘Makefile’ and ‘Makefile<2>’).

By contrast, the post-forward naming method would call the buffers ‘Makefile|tmp’
and ‘Makefile|zaphod’, and the reverse naming method would call them ‘Makefile\tmp’
and ‘Makefile\zaphod’. The nontrivial difference between post-forward and reverse
occurs when just one directory name is not enough to distinguish two files; then
reverse puts the directory names in reverse order, so that ‘/top/middle/file’ becomes
‘file\middle\top’, while post-forward puts them in forward order after the file name,
as in ‘file|top/middle’.

Which rule to follow for putting the directory names in the buffer name is not very
important if you are going to look at the buffer names before you type one. But as an
experienced user, if you know the rule, you won’t have to look. And then you may find that
one rule or another is easier for you to remember and utilize fast.

15.7.2 Switching Between Buffers using Substrings

Iswitchb global minor mode provides convenient switching between buffers using sub-
strings of their names. It replaces the normal definitions of C-x b, C-x 4 b, C-x 5 b, and
C-x 4 C-o with alternative commands that are somewhat “smarter.”

156 GNU Emacs Manual

When one of these commands prompts you for a buffer name, you can type in just a
substring of the name you want to choose. As you enter the substring, Iswitchb mode
continuously displays a list of buffers that match the substring you have typed.

At any time, you can type to select the first buffer in the list. So the way to select
a particular buffer is to make it the first in the list. There are two ways to do this. You can
type more of the buffer name and thus narrow down the list, excluding unwanted buffers
above the desired one. Alternatively, you can use C-s and C-r to rotate the list until the
desired buffer is first.

while entering the buffer name performs completion on the string you have entered,
based on the displayed list of buffers.

To enable Iswitchb mode, type M-x iswitchb-mode, or customize the variable iswitchb-
mode to t (see Section 32.2.2 [Easy Customization], page 380).

15.7.3 Customizing Buffer Menus

M-x bs-show
Make a list of buffers similarly to M-x list-buffers but customizable.

M-x bs-show pops up a buffer list similar to the one normally displayed by C-x C-b
but which you can customize. If you prefer this to the usual buffer list, you can bind
this command to C-x C-b. To customize this buffer list, use the bs Custom group (see
Section 32.2.2 [Easy Customization], page 380).

MSB global minor mode (“MSB” stands for “mouse select buffer”) provides a different
and customizable mouse buffer menu which you may prefer. It replaces the bindings of
mouse-buffer-menu, normally on C-Down-Mouse-1, and the menu bar buffer menu. You
can customize the menu in the msb Custom group.

Chapter 16: Multiple Windows 157

16 Multiple Windows

Emacs can split a frame into two or many windows. Multiple windows can display parts
of different buffers, or different parts of one buffer. Multiple frames always imply multiple
windows, because each frame has its own set of windows. Each window belongs to one and
only one frame.

16.1 Concepts of Emacs Windows

Each Emacs window displays one Emacs buffer at any time. A single buffer may appear
in more than one window; if it does, any changes in its text are displayed in all the windows
where it appears. But the windows showing the same buffer can show different parts of it,
because each window has its own value of point.

At any time, one of the windows is the selected window; the buffer this window is
displaying is the current buffer. The terminal’s cursor shows the location of point in this
window. Each other window has a location of point as well, but since the terminal has only
one cursor there is no way to show where those locations are. When multiple frames are
visible in X, each frame has a cursor which appears in the frame’s selected window. The
cursor in the selected frame is solid; the cursor in other frames is a hollow box.

Commands to move point affect the value of point for the selected Emacs window only.
They do not change the value of point in any other Emacs window, even one showing the
same buffer. The same is true for commands such as C-x b to change the current buffer
in the selected window; they do not affect other windows at all. However, there are other
commands such as C-x 4 b that select a different window and switch buffers in it. Also, all
commands that display information in a window, including (for example) C-h f (describe-
function) and C-x C-b (list-buffers), work by switching buffers in a nonselected window
without affecting the selected window.

When multiple windows show the same buffer, they can have different regions, because
they can have different values of point. However, they all have the same value for the mark,
because each buffer has only one mark position.

Each window has its own mode line, which displays the buffer name, modification status
and major and minor modes of the buffer that is displayed in the window. See Section 1.3
[Mode Line], page 23, for full details on the mode line.

158 GNU Emacs Manual

16.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-
window-vertically).

C-x 3 Split the selected window into two windows positioned side by side (split-
window-horizontally).

C-Mouse-2
In the mode line or scroll bar of a window, split that window.

The command C-x 2 (split-window-vertically) breaks the selected window into two
windows, one above the other. Both windows start out displaying the same buffer, with the
same value of point. By default the two windows each get half the height of the window
that was split; a numeric argument specifies how many lines to give to the top window.

C-x 3 (split-window-horizontally) breaks the selected window into two side-by-side
windows. A numeric argument specifies how many columns to give the one on the left. A
line of vertical bars separates the two windows. Windows that are not the full width of
the screen have mode lines, but they are truncated. On terminals where Emacs does not
support highlighting, truncated mode lines sometimes do not appear in inverse video.

You can split a window horizontally or vertically by clicking C-Mouse-2 in the mode
line or the scroll bar. (This does not work in scroll bars implemented by X toolkits.) The
line of splitting goes through the place where you click: if you click on the mode line, the
new scroll bar goes above the spot; if you click in the scroll bar, the mode line of the split
window is side by side with your click.

When a window is less than the full width, text lines too long to fit are frequent. Contin-
uing all those lines might be confusing. The variable truncate-partial-width-windows
can be set non-nil to force truncation in all windows less than the full width of the screen,
independent of the buffer being displayed and its value for truncate-lines. See Section 4.8
[Continuation Lines|, page 39.

Horizontal scrolling is often used in side-by-side windows. See Chapter 11 [Display],
page 79.

If split-window-keep-point is non-nil, the default, both of the windows resulting
from C-x 2 inherit the value of point from the window that was split. This means that
scrolling is inevitable. If this variable is nil, then C-x 2 tries to avoid scrolling the text
currently visible on the screen, by putting point in each window at a position already visible
in the window. It also selects whichever window contain the screen line that the cursor was
previously on. Some users prefer the latter mode on slow terminals.

16.3 Using Other Windows

C-x o Select another window (other-window). That is o, not zero.
C-M-v Scroll the next window (scroll-other-window).

M-x compare-windows
Find next place where the text in the selected window does not match the text
in the next window.

Chapter 16: Multiple Windows 159

Mouse-1 Mouse-1, in a window’s mode line, selects that window but does not move point
in it (mouse-select-window).

To select a different window, click with Mouse-1 on its mode line. With the keyboard,
you can switch windows by typing C-x o (other-window). That is an o, for “other,” not
a zero. When there are more than two windows, this command moves through all the
windows in a cyclic order, generally top to bottom and left to right. After the rightmost
and bottommost window, it goes back to the one at the upper left corner. A numeric
argument means to move several steps in the cyclic order of windows. A negative argument
moves around the cycle in the opposite order. When the minibuffer is active, the minibuffer
is the last window in the cycle; you can switch from the minibuffer window to one of the
other windows, and later switch back and finish supplying the minibuffer argument that is
requested. See Section 5.2 [Minibuffer Edit|, page 44.

The usual scrolling commands (see Chapter 11 [Display], page 79) apply to the selected
window only, but there is one command to scroll the next window. C-M-v (scroll-other-
window) scrolls the window that C-x o would select. It takes arguments, positive and
negative, like C-v. (In the minibuffer, C-M-v scrolls the window that contains the minibuffer
help display, if any, rather than the next window in the standard cyclic order.)

The command M-x compare-windows lets you compare two files or buffers visible in two
windows, by moving through them to the next mismatch. See Section 14.9 [Comparing
Files], page 142, for details.

16.4 Displaying in Another Window

C-x 4 is a prefix key for commands that select another window (splitting the window
if there is only one) and select a buffer in that window. Different C-x 4 commands have
different ways of finding the buffer to select.

C-x 4 b bufname
Select buffer bufname in another window. This runs switch-to-buffer-
other-window.

C-x 4 C-o bufname
Display buffer bufname in another window, but don’t select that buffer or that
window. This runs display-buffer.

C-x 4 f filename
Visit file filename and select its buffer in another window. This runs find-
file-other-window. See Section 14.2 [Visiting], page 110.

C-x 4 d directory
Select a Dired buffer for directory directory in another window. This runs
dired-other-window. See Chapter 29 [Dired], page 319.

C-x4m Start composing a mail message in another window. This runs mail-other-
window; its same-window analogue is C-x m (see Chapter 27 [Sending Mail],
page 293).

C-x4 . Find a tag in the current tags table, in another window. This runs find-tag-

other-window, the multiple-window variant of M-. (see Section 24.2 [Tags],
page 268).

160 GNU Emacs Manual

C-x 4 r filename
Visit file filename read-only, and select its buffer in another window. This runs
find-file-read-only-other-window. See Section 14.2 [Visiting], page 110.

16.5 Forcing Display in the Same Window

Certain Emacs commands switch to a specific buffer with special contents. For example,
M-x shell switches to a buffer named ‘*Shell#*’. By convention, all these commands are
written to pop up the buffer in a separate window. But you can specify that certain of
these buffers should appear in the selected window.

If you add a buffer name to the list same-window-buffer-names, the effect is that such
commands display that particular buffer by switching to it in the selected window. For
example, if you add the element "*grep*" to the list, the grep command will display its
output buffer in the selected window.

The default value of same-window-buffer-names is not nil: it specifies buffer names
‘“*info*’, ‘*mail*’ and ‘*shell*’ (as well as others used by more obscure Emacs packages).
This is why M-x shell normally switches to the ‘*shell*’ buffer in the selected window. If
you delete this element from the value of same-window-buffer-names, the behavior of M-x
shell will change—it will pop up the buffer in another window instead.

You can specify these buffers more generally with the variable same-window-regexps.
Set it to a list of regular expressions; then any buffer whose name matches one of those
regular expressions is displayed by switching to it in the selected window. (Once again,
this applies only to buffers that normally get displayed for you in a separate window.) The
default value of this variable specifies Telnet and rlogin buffers.

An analogous feature lets you specify buffers which should be displayed in their own
individual frames. See Section 17.11 [Special Buffer Frames|, page 169.

16.6 Deleting and Rearranging Windows

C-x 0 Delete the selected window (delete-window). The last character in this key
sequence is a zero.

C-x1 Delete all windows in the selected frame except the selected window (delete-
other-windows).

C-x40 Delete the selected window and kill the buffer that was showing in it (kill-
buffer-and-window). The last character in this key sequence is a zero.

C-x ~ Make selected window taller (enlarge-window).

C-x } Make selected window wider (enlarge-window-horizontally).

C-x { Make selected window narrower (shrink-window-horizontally).

C-x - Shrink this window if its buffer doesn’t need so many lines (shrink-window-

if-larger-than-buffer).

C-x + Make all windows the same height (balance-windows).

Chapter 16: Multiple Windows 161

Drag-Mouse-1
Dragging a window’s mode line up or down with Mouse-1 changes window
heights.

Mouse-2 Mouse-2 in a window’s mode line deletes all other windows in the frame (mouse-
delete-other-windows).

Mouse-3 Mouse-3 in a window’s mode line deletes that window (mouse-delete-window),
unless the frame has only one window, in which case it buries the current buffer
instead and switches to another buffer.

To delete a window, type C-x 0 (delete-window). (That is a zero.) The space occupied
by the deleted window is given to an adjacent window (but not the minibuffer window,
even if that is active at the time). Once a window is deleted, its attributes are forgotten;
only restoring a window configuration can bring it back. Deleting the window has no effect
on the buffer it used to display; the buffer continues to exist, and you can select it in any
window with C-x b.

C-x 4 0 (kill-buffer-and-window) is a stronger command than C-x 0; it kills the cur-
rent buffer and then deletes the selected window.

C-x 1 (delete-other-windows) is more powerful in a different way; it deletes all the
windows except the selected one (and the minibuffer); the selected window expands to use
the whole frame except for the echo area.

You can also delete a window by clicking on its mode line with Mouse-2, and delete all
the windows in a frame except one window by clicking on that window’s mode line with
Mouse-3.

The easiest way to adjust window heights is with a mouse. If you press Mouse-1 on a
mode line, you can drag that mode line up or down, changing the heights of the windows
above and below it.

To readjust the division of space among vertically adjacent windows, use C-x ~
(enlarge-window). It makes the currently selected window get one line bigger, or as
many lines as is specified with a numeric argument. With a negative argument, it makes
the selected window smaller. C-x } (enlarge-window-horizontally) makes the selected
window wider by the specified number of columns. C-x { (shrink-window-horizontally)
makes the selected window narrower by the specified number of columns.

When you make a window bigger, the space comes from one of its neighbors. If this
makes any window too small, it is deleted and its space is given to an adjacent window.
The minimum size is specified by the variables window-min-height and window-min-width.

The command C-x - (shrink-window-if-larger-than-buffer) reduces the height of
the selected window, if it is taller than necessary to show the whole text of the buffer it is
displaying. It gives the extra lines to other windows in the frame.

You can also use C-x + (balance-windows) to even out the heights of all the windows
in the selected frame.

16.7 Window Handling Convenience Features and
Customization

M-x winner-mode is a global minor mode that records the changes in the window config-
uration (i.e. how the frames are partitioned into windows), so that you can “undo” them.

162 GNU Emacs Manual

To undo, use C-x left (winner-undo). If you change your mind while undoing, you can
redo the changes you had undone using C-x right (M-x winner-redo). Another way to
enable Winner mode is by customizing the variable winner-mode.

The Windmove commands move directionally between neighboring windows in
a frame. M-x windmove-right selects the window immediately to the right of the
currently selected one, and similarly for the “left,” “up,” and “down” counterparts.
M-x windmove-default-keybindings binds these commands to S-right etc. (Not all
terminals support shifted arrow keys, however.)

Follow minor mode (M-x follow-mode) synchronizes several windows on the same buffer
so that they always display adjacent sections of that buffer. See Section 11.8 [Follow Mode],
page 87.

M-x scroll-all-mode provides commands to scroll all visible windows together. You
can also turn it on by customizing the variable scroll-all-mode. The commands provided
are M-x scroll-all-scroll-down-all, M-x scroll-all-page-down-all and their corre-
sponding “up” equivalents. To make this mode useful, you should bind these commands to
appropriate keys.

Chapter 17: Frames and X Windows 163

17 Frames and X Windows

When using the X Window System, you can create multiple windows at the X level in
a single Emacs session. Each X window that belongs to Emacs displays a frame which can
contain one or several Emacs windows. A frame initially contains a single general-purpose
Emacs window which you can subdivide vertically or horizontally into smaller windows. A
frame normally contains its own echo area and minibuffer, but you can make frames that
don’t have these—they use the echo area and minibuffer of another frame.

Editing you do in one frame also affects the other frames. For instance, if you put text
in the kill ring in one frame, you can yank it in another frame. If you exit Emacs through
C-x C-c in one frame, it terminates all the frames. To delete just one frame, use C-x 5 0
(that is zero, not o).

To avoid confusion, we reserve the word “window” for the subdivisions that Emacs
implements, and never use it to refer to a frame.

Emacs compiled for MS-DOS emulates some aspects of the window system so that you
can use many of the features described in this chapter. See Section E.1 [MS-DOS Input],
page 451, for more information.

Emacs compiled for MS Windows mostly supports the same features as under X. How-
ever, images, tool bars, and tooltips are not yet available in Emacs version 21.1 on MS-
Windows.

17.1 Mouse Commands for Editing

The mouse commands for selecting and copying a region are mostly compatible with the
xterm program. You can use the same mouse commands for copying between Emacs and
other X client programs.

If you select a region with any of these mouse commands, and then immediately afterward
type the function key, it deletes the region that you selected. The
function key and the ASCII character do not do this; if you type any other key in
between the mouse command and (DELETE), it does not do this.

Mouse-1 Move point to where you click (mouse-set-point). This is normally the left
button.

Drag-Mouse-1
Set the region to the text you select by dragging, and copy it to the kill ring
(mouse-set-region). You can specify both ends of the region with this single
command.

If you move the mouse off the top or bottom of the window while dragging,
the window scrolls at a steady rate until you move the mouse back into the
window. This way, you can select regions that don’t fit entirely on the screen.
The number of lines scrolled per step depends on how far away from the window
edge the mouse has gone; the variable mouse-scroll-min-lines specifies a
minimum step size.

Mouse-2 Yank the last killed text, where you click (mouse-yank-at-click). This is
normally the middle button.

164

Mouse-3

GNU Emacs Manual

This command, mouse-save-then-kill, has several functions depending on
where you click and the status of the region.

The most basic case is when you click Mouse-1 in one place and then Mouse-3
in another. This selects the text between those two positions as the region. It
also copies the new region to the kill ring, so that you can copy it to someplace
else.

If you click Mouse-1 in the text, scroll with the scroll bar, and then click
Mouse-3, it remembers where point was before scrolling (where you put it with
Mouse-1), and uses that position as the other end of the region. This is so that
you can select a region that doesn’t fit entirely on the screen.

More generally, if you do not have a highlighted region, Mouse-3 selects the
text between point and the click position as the region. It does this by setting
the mark where point was, and moving point to where you click.

If you have a highlighted region, or if the region was set just before by dragging
button 1, Mouse-3 adjusts the nearer end of the region by moving it to where
you click. The adjusted region’s text also replaces the old region’s text in the
kill ring.

If you originally specified the region using a double or triple Mouse-1, so that
the region is defined to consist of entire words or lines, then adjusting the region
with Mouse-3 also proceeds by entire words or lines.

If you use Mouse-3 a second time consecutively, at the same place, that kills
the region already selected.

Double-Mouse-1

This key sets the region around the word which you click on. If you click on
a character with “symbol” syntax (such as underscore, in C mode), it sets the
region around the symbol surrounding that character.

If you click on a character with open-parenthesis or close-parenthesis syntax, it
sets the region around the parenthetical grouping which that character starts
or ends. If you click on a character with string-delimiter syntax (such as a
singlequote or doublequote in C), it sets the region around the string constant
(using heuristics to figure out whether that character is the beginning or the
end of it).

Double-Drag-Mouse-1

This key selects a region made up of the words you drag across.

Triple-Mouse-1

This key sets the region around the line you click on.

Triple-Drag-Mouse-1

This key selects a region made up of the lines you drag across.

The simplest way to kill text with the mouse is to press Mouse-1 at one end, then press
Mouse-3 twice at the other end. See Section 9.1 [Killing], page 67. To copy the text into the
kill ring without deleting it from the buffer, press Mouse-3 just once—or just drag across
the text with Mouse-1. Then you can copy it elsewhere by yanking it.

Chapter 17: Frames and X Windows 165

To yank the killed or copied text somewhere else, move the mouse there and press
Mouse-2. See Section 9.2 [Yanking], page 70. However, if mouse-yank-at-point is non-
nil, Mouse-2 yanks at point. Then it does not matter where you click, or even which of the
frame’s windows you click on. The default value is nil. This variable also affects yanking
the secondary selection.

To copy text to another X window, kill it or save it in the kill ring. Under X, this
also sets the primary selection. Then use the “paste” or “yank” command of the program
operating the other window to insert the text from the selection.

)

To copy text from another X window, use the “cut” or “copy” command of the program
operating the other window, to select the text you want. Then yank it in Emacs with C-y
or Mouse-2.

The standard coding system for X selections is compound-text. To specify another
coding system for X selections, use C-x x or C-x X. See Section 18.9 [Specify
Coding], page 185.

These cutting and pasting commands also work on MS-Windows.

When Emacs puts text into the kill ring, or rotates text to the front of the kill ring, it
sets the primary selection in the X server. This is how other X clients can access the text.
Emacs also stores the text in the cut buffer, but only if the text is short enough (the value
of x-cut-buffer-max specifies the maximum number of characters); putting long strings
in the cut buffer can be slow.

The commands to yank the first entry in the kill ring actually check first for a primary
selection in another program; after that, they check for text in the cut buffer. If neither of
those sources provides text to yank, the kill ring contents are used.

17.2 Secondary Selection

The secondary selection is another way of selecting text using X. It does not use point
or the mark, so you can use it to kill text without setting point or the mark.

M-Drag-Mouse-1
Set the secondary selection, with one end at the place where you press down
the button, and the other end at the place where you release it (mouse-set-
secondary). The highlighting appears and changes as you drag. You can
control the appearance of the highlighting by customizing the secondary-
selection face (see Section 32.2.2.3 [Face Customization], page 384).

If you move the mouse off the top or bottom of the window while dragging, the
window scrolls at a steady rate until you move the mouse back into the window.
This way, you can mark regions that don’t fit entirely on the screen.

M-Mouse-1
Set one endpoint for the secondary selection (mouse-start-secondary).

M-Mouse-3
Make a secondary selection, using the place specified with M-Mouse-1 as the
other end (mouse-secondary-save-then-kill). A second click at the same
place kills the secondary selection just made.

166 GNU Emacs Manual

M-Mouse-2
Insert the secondary selection where you click (mouse-yank-secondary). This
places point at the end of the yanked text.

Double or triple clicking of M-Mouse-1 operates on words and lines, much like Mouse-1.

If mouse-yank-at-point is non-nil, M-Mouse-2 yanks at point. Then it does not matter
precisely where you click; all that matters is which window you click on. See Section 17.1
[Mouse Commands|, page 163.

17.3 Using the Clipboard

As well as the primary and secondary selection types, X supports a clipboard selection
type which is used by some applications, particularly under OpenWindows and Gnome.

The command M-x menu-bar-enable-clipboard makes the Cut, Paste and Copy menu
items, as well as the keys of the same names, all use the clipboard.

You can customize the option x-select-enable-clipboard to make the Emacs yank
functions consult the clipboard before the primary selection, and to make the kill functions
to store in the clipboard as well as the primary selection. Otherwise they do not access the
clipboard at all. Using the clipboard is the default on MS-Windows, unlike most systems.

17.4 Following References with the Mouse

Some Emacs buffers display lists of various sorts. These include lists of files, of buffers,
of possible completions, of matches for a pattern, and so on.

Since yanking text into these buffers is not very useful, most of them define Mouse-2
specially, as a command to use or view the item you click on.

For example, if you click Mouse-2 on a file name in a Dired buffer, you visit that file. If
you click Mouse-2 on an error message in the ‘*Compilation*’ buffer, you go to the source
code for that error message. If you click Mouse-2 on a completion in the ‘*Completions*’
buffer, you choose that completion.

You can usually tell when Mouse-2 has this special sort of meaning because the sensitive
text highlights when you move the mouse over it.

17.5 Mouse Clicks for Menus

Mouse clicks modified with the and keys bring up menus.

C-Mouse-1
This menu is for selecting a buffer.

The MSB (“mouse select buffer”) global minor mode makes this menu smarter
and more customizable. See Section 15.7.3 [Buffer Menus|, page 156.

C-Mouse-2
This menu is for specifying faces and other text properties for editing formatted
text. See Section 21.11 [Formatted Text], page 218.

Chapter 17: Frames and X Windows 167

C-Mouse-3
This menu is mode-specific. For most modes if Menu-bar mode is on, this menu
has the same items as all the mode-specific menu-bar menus put together. Some
modes may specify a different menu for this button.! If Menu-bar mode is off,
this menu contains all the items which would be present in the menu bar—not
just the mode-specific ones—so that you can access them without having to
display the menu bar.

S-Mouse-1
This menu is for specifying the frame’s principal font.

17.6 Mode Line Mouse Commands

You can use mouse clicks on window mode lines to select and manipulate windows.

Mouse-1 Mouse-1 on a mode line selects the window above. By dragging Mouse-1 on
the mode line, you can move it, thus changing the height of the windows above
and below.

Mouse-2 Mouse-2 on a mode line expands that window to fill its frame.

Mouse-3 Mouse-3 on a mode line deletes the window above. If the frame has only one
window, it buries the current buffer instead and switches to another buffer.

C-Mouse-2
C-Mouse-2 on a mode line splits the window above horizontally, above the place
in the mode line where you click.

C-Mouse-2 on a scroll bar splits the corresponding window vertically, unless you are using
an X toolkit’s implementation of scroll bars. See Section 16.2 [Split Window], page 158.

The commands above apply to areas of the mode line which do not have special mouse
bindings of their own. Some areas, such as the buffer name and the major mode name, have
their own special mouse bindings. Emacs displays information about these bindings when
you hold the mouse over such a place (see Section 17.18 [Tooltips], page 173).

17.7 Creating Frames

The prefix key C-x 5 is analogous to C-x 4, with parallel subcommands. The difference
is that C-x 5 commands create a new frame rather than just a new window in the selected
frame (see Section 16.4 [Pop Up Window], page 159). If an existing visible or iconified
frame already displays the requested material, these commands use the existing frame,
after raising or deiconifying as necessary.

The various C-x 5 commands differ in how they find or create the buffer to select:
C-x52 Create a new frame (make-frame-command).

C-x 5 b bufname
Select buffer bufname in another frame. This runs switch-to-buffer-other-
frame.

1 Some systems use Mouse-3 for a mode-specific menu. We took a survey of users, and found they preferred
to keep Mouse-3 for selecting and killing regions. Hence the decision to use C-Mouse-3 for this menu.

168 GNU Emacs Manual

C-x 5 f filename
Visit file filename and select its buffer in another frame. This runs find-file-
other-frame. See Section 14.2 [Visiting], page 110.

C-x 5 d directory
Select a Dired buffer for directory directory in another frame. This runs dired-
other-frame. See Chapter 29 [Dired], page 319.

C-x5m Start composing a mail message in another frame. This runs mail-other-
frame. It is the other-frame variant of C-x m. See Chapter 27 [Sending Mail],
page 293.

C-x 5. Find a tag in the current tag table in another frame. This runs find-tag-
other-frame, the multiple-frame variant of M-.. See Section 24.2 [Tags],
page 268.

C-x 5 r filename
Visit file filename read-only, and select its buffer in another frame. This runs
find-file-read-only-other-frame. See Section 14.2 [Visiting], page 110.

You can control the appearance of new frames you create by setting the frame parame-
ters in default-frame-alist. You can use the variable initial-frame-alist to specify
parameters that affect only the initial frame. See section “Initial Parameters” in The Emacs
Lisp Reference Manual, for more information.

The easiest way to specify the principal font for all your Emacs frames is with an X
resource (see Section B.7 [Font X], page 430), but you can also do it by modifying default-
frame-alist to specify the font parameter, as shown here:

(add-to-1list ’default-frame-alist ’(font . "10x20"))
Here’s a similar example for specifying a foreground color:

(add-to-1list ’default-frame-alist ’(background-color . "blue"))

17.8 Frame Commands

The following commands let you create, delete and operate on frames:

C-z Iconify the selected Emacs frame (iconify-or-deiconify-frame). The normal
meaning of C-z, to suspend Emacs, is not useful under a window system, so it
has a different binding in that case.

If you type this command on an Emacs frame’s icon, it deiconifies the frame.

C-x50 Delete the selected frame (delete-frame). This is not allowed if there is only
one frame.

C-x5o0 Select another frame, raise it, and warp the mouse to it so that it stays selected.
If you repeat this command, it cycles through all the frames on your terminal.

C-x51 Delete all frames except the selected one.

Chapter 17: Frames and X Windows 169

17.9 Making and Using a Speedbar Frame

An Emacs frame can have a speedbar, which is a vertical window that serves as a
scrollable menu of files you could visit and tags within those files. To create a speedbar,
type M-x speedbar; this creates a speedbar window for the selected frame. From then on,
you can click on a file name in the speedbar to visit that file in the corresponding Emacs
frame, or click on a tag name to jump to that tag in the Emacs frame.

Initially the speedbar lists the immediate contents of the current directory, one file per
line. Each line also has a box, ‘[+]’ or ‘<+>’, that you can click on with Mouse-2 to “open
up” the contents of that item. If the line names a directory, opening it adds the contents of
that directory to the speedbar display, underneath the directory’s own line. If the line lists
an ordinary file, opening it up adds a list of the tags in that file to the speedbar display.
When a file is opened up, the ‘[+]’ changes to ‘[-]’; you can click on that box to “close
up” that file (hide its contents).

Some major modes, including Rmail mode, Info, and GUD, have specialized ways of
putting useful items into the speedbar for you to select. For example, in Rmail mode, the
speedbar shows a list of Rmail files, and lets you move the current message to another Rmail
file by clicking on its ‘<M>’ box.

A speedbar belongs to one Emacs frame, and always operates on that frame. If you use
multiple frames, you can make a speedbar for some or all of the frames; type M-x speedbar
in any given frame to make a speedbar for it.

17.10 Multiple Displays

A single Emacs can talk to more than one X display. Initially, Emacs uses just one
display—the one specified with the DISPLAY environment variable or with the ‘--display’
option (see Section B.2 [Initial Options], page 424). To connect to another display, use the
command make-frame-on-display:

M-x make-frame-on-display display
Create a new frame on display display.

A single X server can handle more than one screen. When you open frames on two
screens belonging to one server, Emacs knows they share a single keyboard, and it treats
all the commands arriving from these screens as a single stream of input.

When you open frames on different X servers, Emacs makes a separate input stream for
each server. This way, two users can type simultaneously on the two displays, and Emacs
will not garble their input. Each server also has its own selected frame. The commands
you enter with a particular X server apply to that server’s selected frame.

Despite these features, people using the same Emacs job from different displays can still
interfere with each other if they are not careful. For example, if any one types C-x C-c,
that exits the Emacs job for all of them!

17.11 Special Buffer Frames

You can make certain chosen buffers, for which Emacs normally creates a second window
when you have just one window, appear in special frames of their own. To do this, set the

170 GNU Emacs Manual

variable special-display-buffer-names to a list of buffer names; any buffer whose name
is in that list automatically gets a special frame, when an Emacs command wants to display
it “in another window.”
For example, if you set the variable this way,
(setq special-display-buffer-names
> ("xCompletions*" "kgrep*" "stex-shellx*"))

then completion lists, grep output and the TEX mode shell buffer get individual frames of
their own. These frames, and the windows in them, are never automatically split or reused
for any other buffers. They continue to show the buffers they were created for, unless you
alter them by hand. Killing the special buffer deletes its frame automatically.

More generally, you can set special-display-regexps to a list of regular expressions;
then a buffer gets its own frame if its name matches any of those regular expressions. (Once
again, this applies only to buffers that normally get displayed for you in a separate window.)

The variable special-display-frame-alist specifies the frame parameters for these
frames. It has a default value, so you don’t need to set it.

For those who know Lisp, an element of special-display-buffer-names or special-
display-regexps can also be a list. Then the first element is the buffer name or regular
expression; the rest of the list specifies how to create the frame. It can be an association
list specifying frame parameter values; these values take precedence over parameter values
specified in special-display-frame-alist. Alternatively, it can have this form:

(function args...)
where function is a symbol. Then the frame is constructed by calling function; its first
argument is the buffer, and its remaining arguments are args.

An analogous feature lets you specify buffers which should be displayed in the selected
window. See Section 16.5 [Force Same Window]|, page 160. The same-window feature takes
precedence over the special-frame feature; therefore, if you add a buffer name to special-
display-buffer-names and it has no effect, check to see whether that feature is also in
use for the same buffer name.

17.12 Setting Frame Parameters

This section describes commands for altering the display style and window management
behavior of the selected frame.

M-x set-foreground-color color
Specify color color for the foreground of the selected frame. (This also changes
the foreground color of the default face.)

M-x set-background-color color
Specify color color for the background of the selected frame. (This also changes

the background color of the default face.)
M-x set-cursor-color color

Specify color color for the cursor of the selected frame.

M-x set-mouse-color color

Specify color color for the mouse cursor when it is over the selected frame.

Chapter 17: Frames and X Windows 171

M-x set-border-color color

Specify color color for the border of the selected frame.

M-x list-colors—-display
Display the defined color names and show what the colors look like. This
command is somewhat slow.

M-x auto-raise-mode
Toggle whether or not the selected frame should auto-raise. Auto-raise means
that every time you move the mouse onto the frame, it raises the frame.

Note that this auto-raise feature is implemented by Emacs itself. Some window
managers also implement auto-raise. If you enable auto-raise for Emacs frames
in your X window manager, it should work, but it is beyond Emacs’s control
and therefore auto-raise-mode has no effect on it.

M-x auto-lower-mode
Toggle whether or not the selected frame should auto-lower. Auto-lower means
that every time you move the mouse off the frame, the frame moves to the
bottom of the stack of X windows.

The command auto-lower-mode has no effect on auto-lower implemented by
the X window manager. To control that, you must use the appropriate window
manager features.

M-x set-frame-font font
Specify font font as the principal font for the selected frame. The principal font
controls several face attributes of the default face (see Section 11.1 [Faces],
page 79). For example, if the principal font has a height of 12 pt, all text will
be drawn in 12 pt fonts, unless you use another face that specifies a different
height. See Section B.7 [Font X], page 430, for ways to list the available fonts
on your system.

You can also set a frame’s principal font through a pop-up menu. Press
S-Mouse-1 to activate this menu.

In Emacs versions that use an X toolkit, the color-setting and font-setting functions
don’t affect menus and the menu bar, since they are displayed by their own widget classes.
To change the appearance of the menus and menu bar, you must use X resources (see
Section B.13 [Resources X]|, page 435). See Section B.8 [Colors X], page 432, regarding
colors. See Section B.7 [Font X], page 430, regarding choice of font.

Colors, fonts, and other attributes of the frame’s display can also be customized by
setting frame parameters in the variable default-frame-alist (see Section 17.7 [Creating
Frames|, page 167). For a detailed description of frame parameters and customization, see
section “Frame Parameters” in The Emacs Lisp Reference Manual.

17.13 Scroll Bars

When using X, Emacs normally makes a scroll bar at the left of each Emacs window.?
The scroll bar runs the height of the window, and shows a moving rectangular inner box

2 Placing it at the left is usually more useful with overlapping frames with text starting at the left margin.

172 GNU Emacs Manual

which represents the portion of the buffer currently displayed. The entire height of the
scroll bar represents the entire length of the buffer.

You can use Mouse-2 (normally, the middle button) in the scroll bar to move or drag
the inner box up and down. If you move it to the top of the scroll bar, you see the top of
the buffer. If you move it to the bottom of the scroll bar, you see the bottom of the buffer.

The left and right buttons in the scroll bar scroll by controlled increments. Mouse-1
(normally, the left button) moves the line at the level where you click up to the top of the
window. Mouse-3 (normally, the right button) moves the line at the top of the window
down to the level where you click. By clicking repeatedly in the same place, you can scroll
by the same distance over and over.

If you are using Emacs’s own implementation of scroll bars, as opposed to scroll bars
from an X toolkit, you can also click C-Mouse-2 in the scroll bar to split a window vertically.
The split occurs on the line where you click.

You can enable or disable Scroll Bar mode with the command M-x scroll-bar-mode.
With no argument, it toggles the use of scroll bars. With an argument, it turns use of
scroll bars on if and only if the argument is positive. This command applies to all frames,
including frames yet to be created. Customize the option scroll-bar-mode to control the
use of scroll bars at startup. You can use it to specify that they are placed at the right of
windows if you prefer that. You can use the X resource ‘verticalScrollBars’ to control
the initial setting of Scroll Bar mode similarly. See Section B.13 [Resources X]|, page 435.

To enable or disable scroll bars for just the selected frame, use the M-x
toggle-scroll-bar command.

You can control the scroll bar width by changing the value of the scroll-bar-width
frame parameter.

17.14 Scrolling With “Wheeled” Mice

Some mice have a “wheel” instead of a third button. You can usually click the wheel
to act as either Mouse-2 or Mouse-3, depending on the setup. You can also use the wheel
to scroll windows instead of using the scroll bar or keyboard commands. To do so, turn
on Mouse Wheel global minor mode with the command M-x mouse-wheel-mode or by cus-
tomizing the option mouse-wheel-mode. Support for the wheel depends on the system
generating appropriate events for Emacs.

The wvariables mouse-wheel-follow-mouse and mouse-wheel-scroll-amount
determine where and by how much buffers are scrolled.

17.15 Menu Bars

You can turn display of menu bars on or off with M-x menu-bar-mode or by customizing
the option menu-bar-mode. With no argument, this command toggles Menu Bar mode, a
minor mode. With an argument, the command turns Menu Bar mode on if the argument
is positive, off if the argument is not positive. You can use the X resource ‘menuBarLines’
to control the initial setting of Menu Bar mode. See Section B.13 [Resources X]|, page 435.

Expert users often turn off the menu bar, especially on text-only terminals, where this
makes one additional line available for text. If the menu bar is off, you can still pop up

Chapter 17: Frames and X Windows 173

a menu of its contents with C-Mouse-3 on a display which supports pop-up menus. See
Section 17.5 [Menu Mouse Clicks], page 166.

See Section 1.4 [Menu Bar], page 25, for information on how to invoke commands with
the menu bar.

17.16 Tool Bars

The tool bar is a line (or multiple lines) of icons at the top of the Emacs window. You
can click on these icons with the mouse to do various jobs.

The global tool bar contains general commands. Some major modes define their own
tool bars to replace it. A few “special” modes that are not designed for ordinary editing
remove some items from the global tool bar.

Tool bars work only on a graphical display. The tool bar uses colored XPM icons if Emacs
was built with XPM support. Otherwise, the tool bar uses monochrome icons (PBM or
XBM format).

You can turn display of tool bars on or off with M-x tool-bar-mode.

17.17 Using Dialog Boxes

A dialog box is a special kind of menu for asking you a yes-or-no question or some other
special question. Many Emacs commands use a dialog box to ask a yes-or-no question, if
you used the mouse to invoke the command to begin with.

You can customize the option use-dialog-box to suppress the use of dialog boxes. This
also controls whether to use file selection windows (but those are not supported on all
platforms).

17.18 Tooltips (or “Balloon Help”)

Tooltips are small X windows displaying a help string at the current mouse position,
typically over text—including the mode line—which can be activated with the mouse or
other keys. (This facility is sometimes known as balloon help.) Help text may be available
for menu items too.

To use tooltips, enable Tooltip mode with the command M-x tooltip-mode. The cus-
tomization group tooltip controls various aspects of how tooltips work. When Tooltip
mode is disabled, the help text is displayed in the echo area instead.

As of Emacs 21.1, tooltips are not supported on MS-Windows. So help text always
appears in the echo area.

17.19 Mouse Avoidance

Mouse Avoidance mode keeps the window system mouse pointer away from point, to
avoid obscuring text. Whenever it moves the mouse, it also raises the frame. To use Mouse
Avoidance mode, customize the option mouse-avoidance-mode. You can set this to various
values to move the mouse in several ways:

banish Move the mouse to the upper-right corner on any key-press;

174 GNU Emacs Manual

exile Move the mouse to the corner only if the cursor gets too close, and allow it to
return once the cursor is out of the way;

jump If the cursor gets too close to the mouse, displace the mouse a random distance
& direction;

animate As jump, but shows steps along the way for illusion of motion;

cat—-and-mouse
The same as animate;

proteus As animate, but changes the shape of the mouse pointer too.

You can also use the command M-x mouse-avoidance-mode to enable the mode.

17.20 Non-Window Terminals

If your terminal does not have a window system that Emacs supports, then it can display
only one Emacs frame at a time. However, you can still create multiple Emacs frames, and
switch between them. Switching frames on these terminals is much like switching between
different window configurations.

Use C-x 5 2 to create a new frame and switch to it; use C-x 5 o to cycle through the
existing frames; use C-x 5 0 to delete the current frame.

Each frame has a number to distinguish it. If your terminal can display only one frame
at a time, the selected frame’s number n appears near the beginning of the mode line, in
the form ‘Fn’.

‘Fn’ is actually the frame’s name. You can also specify a different name if you wish, and
you can select a frame by its name. Use the command M-x set-frame-name name
to specify a new name for the selected frame, and use M-x select-frame-by-name
name to select a frame according to its name. The name you specify appears in
the mode line when the frame is selected.

17.21 Using a Mouse in Terminal Emulators

Some terminal emulators under X support mouse clicks in the terminal window. In a
terminal emulator which is compatible with xterm, you can use M-x xterm-mouse-mode to
enable simple use of the mouse—only single clicks are supported. The normal xterm mouse
functionality is still available by holding down the SHIFT key when you press the mouse
button. The Linux console supports this mode if it has support for the mouse enabled, e.g.
using the gpm daemon.

Chapter 18: International Character Set Support 175

18 International Character Set Support

Emacs supports a wide variety of international character sets, including European vari-
ants of the Latin alphabet, as well as Chinese, Cyrillic, Devanagari (Hindi and Marathi),
Ethiopic, Greek, Hebrew, IPA, Japanese, Korean, Lao, Thai, Tibetan, and Vietnamese
scripts. These features have been merged from the modified version of Emacs known as
MULE (for “MULti-lingual Enhancement to GNU Emacs”)

Emacs also supports various encodings of these characters used by other internationalized
software, such as word processors and mailers.

Emacs allows editing text with international characters by supporting all the related
activities:

e You can visit files with non-ASCII characters, save non-ASCII text, and pass non-
ASCII text between Emacs and programs it invokes (such as compilers, spell-checkers,
and mailers). Setting your language environment (see Section 18.3 [Language Environ-
ments|, page 177) takes care of setting up the coding systems and other options for a
specific language or culture. Alternatively, you can specify how Emacs should encode
or decode text for each command; see Section 18.9 [Specify Coding], page 185.

e You can display non-ASCII characters encoded by the various scripts. This works by
using appropriate fonts on X and similar graphics displays (see Section 18.11 [Defining
Fontsets|, page 188), and by sending special codes to text-only displays (see Section 18.9
[Specify Coding], page 185). If some characters are displayed incorrectly, refer to
Section 18.12 [Undisplayable Characters], page 190, which describes possible problems
and explains how to solve them.

e You can insert non-ASCII characters or search for them. To do that, you can specify
an input method (see Section 18.5 [Select Input Method], page 180) suitable for your
language, or use the default input method set up when you set your language environ-
ment. (Emacs input methods are part of the Leim package, which must be installed for
you to be able to use them.) If your keyboard can produce non-ASCII characters, you
can select an appropriate keyboard coding system (see Section 18.9 [Specify Coding],
page 185), and Emacs will accept those characters. Latin-1 characters can also be input
by using the C-x 8 prefix, see Section 18.13 [Single-Byte Character Support], page 190.
On X Window systems, your locale should be set to an appropriate value to make sure
Emacs interprets keyboard input correctly, see Section 18.3 [Language Environments],
page 177.

The rest of this chapter describes these issues in detail.

18.1 Introduction to International Character Sets

The users of international character sets and scripts have established many more-or-less
standard coding systems for storing files. Emacs internally uses a single multibyte character
encoding, so that it can intermix characters from all these scripts in a single buffer or string.
This encoding represents each non-ASCII character as a sequence of bytes in the range 0200
through 0377. Emacs translates between the multibyte character encoding and various other
coding systems when reading and writing files, when exchanging data with subprocesses,
and (in some cases) in the C-q command (see Section 18.6 [Multibyte Conversion], page 181).

176 GNU Emacs Manual

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which shows how
to say “hello” in many languages. This illustrates various scripts. If some characters can’t
be displayed on your terminal, they appear as ‘?” or as hollow boxes (see Section 18.12
[Undisplayable Characters|, page 190).

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. So Emacs supports various input methods, typically
one for each script or language, to make it convenient to type them.

The prefix key C-x is used for commands that pertain to multibyte characters,
coding systems, and input methods.

18.2 Enabling Multibyte Characters

You can enable or disable multibyte character support, either for Emacs as a whole,
or for a single buffer. When multibyte characters are disabled in a buffer, then each byte
in that buffer represents a character, even codes 0200 through 0377. The old features for
supporting the European character sets, ISO Latin-1 and ISO Latin-2, work as they did in
FEmacs 19 and also work for the other ISO 8859 character sets.

However, there is no need to turn off multibyte character support to use ISO Latin; the
Emacs multibyte character set includes all the characters in these character sets, and Emacs
can translate automatically to and from the ISO codes.

By default, Emacs starts in multibyte mode, because that allows you to use all the
supported languages and scripts without limitations.

To edit a particular file in unibyte representation, visit it using find-file-literally.
See Section 14.2 [Visiting], page 110. To convert a buffer in multibyte representation into a
single-byte representation of the same characters, the easiest way is to save the contents in
a file, kill the buffer, and find the file again with find-file-literally. You can also use
C-x c (universal-coding-system-argument) and specify ‘raw-text’ as the coding
system with which to find or save a file. See Section 18.9 [Specify Coding], page 185.
Finding a file as ‘raw-text’ doesn’t disable format conversion, uncompression and auto
mode selection as find-file-literally does.

To turn off multibyte character support by default, start Emacs with the ‘~-unibyte’
option (see Section B.2 [Initial Options], page 424), or set the environment variable EMACS_
UNIBYTE. You can also customize enable-multibyte-characters or, equivalently, directly
set the variable default-enable-multibyte-characters to nil in your init file to have
basically the same effect as ‘~-unibyte’.

To convert a unibyte session to a multibyte session, set default-enable-multibyte-
characters to t. Buffers which were created in the unibyte session before you turn on
multibyte support will stay unibyte. You can turn on multibyte support in a specific buffer
by invoking the command toggle-enable-multibyte-characters in that buffer.

With ‘--unibyte’, multibyte strings are not created during initialization from the values
of environment variables, ‘/etc/passwd’ entries etc. that contain non-ASCII 8-bit charac-
ters.

Emacs normally loads Lisp files as multibyte, regardless of whether you used ‘~-unibyte’.
This includes the Emacs initialization file, ‘.emacs’, and the initialization files of Emacs
packages such as Gnus. However, you can specify unibyte loading for a particular Lisp file,

Chapter 18: International Character Set Support 177

by putting ‘~*-unibyte: t;-*-" in a comment on the first line. Then that file is always
loaded as unibyte text, even if you did not start Emacs with ‘~-unibyte’. The motivation
for these conventions is that it is more reliable to always load any particular Lisp file in the
same way. However, you can load a Lisp file as unibyte, on any one occasion, by typing C-x
c raw-text immediately before loading it.

The mode line indicates whether multibyte character support is enabled in the current
buffer. If it is, there are two or more characters (most often two dashes) before the colon
near the beginning of the mode line. When multibyte characters are not enabled, just one
dash precedes the colon.

18.3 Language Environments

All supported character sets are supported in Emacs buffers whenever multibyte char-
acters are enabled; there is no need to select a particular language in order to display its
characters in an Emacs buffer. However, it is important to select a language environment
in order to set various defaults. The language environment really represents a choice of
preferred script (more or less) rather than a choice of language.

The language environment controls which coding systems to recognize when reading
text (see Section 18.8 [Recognize Coding], page 183). This applies to files, incoming mail,
netnews, and any other text you read into Emacs. It may also specify the default coding
system to use when you create a file. Each language environment also specifies a default
input method.

To select a language environment, customize the option current-language-
environment or use the command M-x set-language-environment. It makes no
difference which buffer is current when you use this command, because the effects apply
globally to the Emacs session. The supported language environments include:

Chinese-BIG5, Chinese-CNS, Chinese-GB, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-
KOI8, Czech, Devanagari, Dutch, English, Ethiopic, German, Greek, Hebrew,
IPA, Japanese, Korean, Lao, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5, Latin-
8 (Celtic), Latin-9 (updated Latin-1, with the Euro sign), Polish, Romanian,
Slovak, Slovenian, Spanish, Thai, Tibetan, Turkish, and Vietnamese.

To display the script(s) used by your language environment on a graphical display, you
need to have a suitable font. If some of the characters appear as empty boxes, you should
install the GNU Intlfonts package, which includes fonts for all supported scripts.! See
Section 18.10 [Fontsets], page 188, for more details about setting up your fonts.

Some operating systems let you specify the character-set locale you are using by setting
the locale environment variables LC_ALL, LC_CTYPE, or LANG.? During startup, Emacs looks
up your character-set locale’s name in the system locale alias table, matches its canonical
name against entries in the value of the variables locale-charset-language-names and

Lof you run Emacs on X, you need to inform the X server about the location of the newly installed fonts
with the following commands:

xset fp+ /usr/local/share/emacs/fonts
xset fp rehash

2 If more than one of these is set, the first one that is nonempty specifies your locale for this purpose.

178 GNU Emacs Manual

locale-language-names, and selects the corresponding language environment if a match
is found. (The former variable overrides the latter.) It also adjusts the display table and
terminal coding system, the locale coding system, the preferred coding system as needed
for the locale, and—Ilast but not least—the way Emacs decodes non-ASCII characters sent
by your keyboard.

If you modify the LC_ALL, LC_CTYPE, or LANG environment variables while running
Emacs, you may want to invoke the set-locale-environment function afterwards to read-
just the language environment from the new locale.

The set-locale-environment function normally uses the preferred coding system es-
tablished by the language environment to decode system messages. But if your locale
matches an entry in the variable locale-preferred-coding-systems, Emacs uses the
corresponding coding system instead. For example, if the locale ‘ja_JP.PCK’ matches
japanese-shift-jis in locale-preferred-coding-systems, Emacs uses that encoding
even though it might normally use japanese-iso-8bit.

You can override the language environment chosen at startup with explicit use of the
command set-language-environment, or with customization of current-language-
environment in your init file.

To display information about the effects of a certain language environment lang-env, use
the command C-h L lang-env (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. By default, this command describes the chosen
language environment.

You can customize any language environment with the normal hook set-language-
environment-hook. The command set-language-environment runs that hook after set-
ting up the new language environment. The hook functions can test for a specific language
environment by checking the variable current-language-environment. This hook is where
you should put non-default settings for specific language environment, such as coding sys-
tems for keyboard input and terminal output, the default input method, etc.

Before it starts to set up the new language environment, set-language-environment
first runs the hook exit-language-environment-hook. This hook is useful for undoing
customizations that were made with set-language-environment-hook. For instance, if
you set up a special key binding in a specific language environment using set-language-
environment-hook, you should set up exit-language-environment-hook to restore the
normal binding for that key.

18.4 Input Methods

An input method is a kind of character conversion designed specifically for interactive
input. In FEmacs, typically each language has its own input method; sometimes several
languages which use the same characters can share one input method. A few languages
support several input methods.

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet; this allows you to use one other alphabet instead of ASCII. The Greek and Russian
input methods work this way.

Chapter 18: International Character Set Support 179

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII
letter from a sequence that consists of a letter followed by accent characters (or vice versa).
For example, some methods convert the sequence a’ into a single accented letter. These
input methods have no special commands of their own; all they do is compose sequences of
printing characters.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these which make up a
whole syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). One input sequence typically corresponds to many possible Chi-
nese characters. You select the one you mean using keys such as C-f, C-b, C-n, C-p, and
digits, which have special meanings in this situation.

The possible characters are conceptually arranged in several rows, with each row holding
up to 10 alternatives. Normally, Emacs displays just one row at a time, in the echo area;
(i/j) appears at the beginning, to indicate that this is the ith row out of a total of j rows.
Type C-n or C-p to display the next row or the previous row.

Type C-f and C-b to move forward and backward among the alternatives in the current
row. As you do this, Emacs highlights the current alternative with a special color; type
C-(SPC) to select the current alternative and use it as input. The alternatives in the row are
also numbered; the number appears before the alternative. Typing a digit n selects the nth
alternative of the current row and uses it as input.

in these Chinese input methods displays a buffer showing all the possible characters
at once; then clicking Mouse-2 on one of them selects that alternative. The keys C-f, C-b,
C-n, C-p, and digits continue to work as usual, but they do the highlighting in the buffer
showing the possible characters, rather than in the echo area.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, Emacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to a number of different Japanese words; to
select one of them, use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence e > combines to form an ‘e’ with an accent. What if you
want to enter them as separate characters?

One way is to type the accent twice; this is a special feature for entering the separate
letter and accent. For example, e > ’ gives you the two characters ‘e’’. Another way is to
type another letter after the e—something that won’t combine with that—and immediately
delete it. For example, you could type e e ’ to get separate ‘e’ and ‘.

Another method, more general but not quite as easy to type, is to use C-\ C-\ between
two characters to stop them from combining. This is the command C-\ (toggle-input-
method) used twice.

180 GNU Emacs Manual

C-\ C-\ is especially useful inside an incremental search, because it stops waiting for
more characters to combine, and starts searching for what you have already entered.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer (for most input methods—some
disable this feature). If input-method-verbose-flag is non-nil, the list of possible char-
acters to type next is displayed in the echo area (but not when you are in the minibuffer).

Input methods are implemented in the separate Leim package: they are available only
if the system administrator used Leim when building Emacs. If Emacs was built without
Leim, you will find that no input methods are defined.

18.5 Selecting an Input Method

Cc-\ Enable or disable use of the selected input method.
C-x C-\ method

Select a new input method for the current buffer.

C-h I method

C-h C-\ method
Describe the input method method (describe-input-method). By default, it
describes the current input method (if any). This description should give you
the full details of how to use any particular input method.

M-x list-input-methods
Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x C-\ (set-input-
method). This command reads the input method name from the minibuffer; the name
normally starts with the language environment that it is meant to be used with. The
variable current-input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts for you to
specify one. This has the same effect as using C-x C-\ to specify an input method.

When invoked with a numeric argument, as in C-u C-\, toggle-input-method always
prompts you for an input method, suggesting the most recently selected one as the default.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

In some language environments, which support several different input methods, you
might want to use an input method different from the default chosen by set-language-
environment. You can instruct Emacs to select a different default input method for a
certain language environment, if you wish, by using set-language-environment-hook (see
Section 18.3 [Language Environments|, page 177). For example:

Chapter 18: International Character Set Support 181

(defun my-chinese-setup ()
"Set up my private Chinese environment."
(if (equal current-language-environment "Chinese-GB")
(setq default-input-method "chinese-tonepy")))
(add-hook ’set-language-environment-hook ’my-chinese-setup)

This sets the default input method to be chinese-tonepy whenever you choose a Chinese-
GB language environment.

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this
remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout.

To display a list of all the supported input methods, type M-x list-input-methods.
The list gives information about each input method, including the string that stands for it
in the mode line.

18.6 Unibyte and Multibyte Non-ASCII characters

When multibyte characters are enabled, character codes 0240 (octal) through 0377 (oc-
tal) are not really legitimate in the buffer. The valid non-ASCII printing characters have
codes that start from 0400.

If you type a self-inserting character in the range 0240 through 0377, or if you use C-q
to insert one, Emacs assumes you intended to use one of the ISO Latin-n character sets,
and converts it to the Emacs code representing that Latin-n character. You select which
ISO Latin character set to use through your choice of language environment (see above). If
you do not specify a choice, the default is Latin-1.

If you insert a character in the range 0200 through 0237, which forms the eight-bit-
control character set, it is inserted literally. You should normally avoid doing this since
buffers containing such characters have to be written out in either the emacs-mule or raw-
text coding system, which is usually not what you want.

18.7 Coding Systems

Users of various languages have established many more-or-less standard coding systems
for representing them. Emacs does not use these coding systems internally; instead, it
converts from various coding systems to its own system when reading data, and converts the
internal coding system to other coding systems when writing data. Conversion is possible
in reading or writing files, in sending or receiving from the terminal, and in exchanging data
with subprocesses.

Emacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems no-conversion, raw-text and emacs-mule which do not convert
printing characters at all.

A special class of coding systems, collectively known as codepages, is designed to support
text encoded by MS-Windows and MS-DOS software. To use any of these systems, you need

182 GNU Emacs Manual

to create it with M-x codepage-setup. See Section E.6 [MS-DOS and MULE], page 458.
After creating the coding system for the codepage, you can use it as any other coding
system. For example, to visit a file encoded in codepage 850, type C-x ¢ cp850
C-x C-f filename (RET).

In addition to converting various representations of non-ASCII characters, a coding
system can perform end-of-line conversion. Emacs handles three different conventions for
how to separate lines in a file: newline, carriage-return linefeed, and just carriage-return.

C-h C coding

Describe coding system coding.

C-h C RET)

Describe the coding systems currently in use.

M-x list-coding-systems
Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular
coding systems. You can specify a coding system name as the argument; alternatively, with
an empty argument, it describes the coding systems currently selected for various purposes,
both in the current buffer and as the defaults, and the priority list for recognizing coding
systems (see Section 18.8 [Recognize Coding], page 183).

To display a list of all the supported coding systems, type M-x 1list-coding-systems.
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 23).

Each of the coding systems that appear in this list—except for no-conversion, which
means no conversion of any kind—specifies how and whether to convert printing characters,
but leaves the choice of end-of-line conversion to be decided based on the contents of each
file. For example, if the file appears to use the sequence carriage-return linefeed to separate
lines, DOS end-of-line conversion will be used.

Each of the listed coding systems has three variants which specify exactly what to do
for end-of-line conversion:

..—unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems.)

..—dos Assume the file uses carriage-return linefeed to separate lines, and do the appro-
priate conversion. (This is the convention normally used on Microsoft systems.?)

..-mac Assume the file uses carriage-return to separate lines, and do the appropriate
conversion. (This is the convention normally used on the Macintosh system.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-latin-1
has variants iso-latin-1-unix, iso-latin-1-dos and iso-latin-1-mac.

The coding system raw-text is good for a file which is mainly ASCII text, but may con-
tain byte values above 127 which are not meant to encode non-ASCII characters. With raw-
text, Emacs copies those byte values unchanged, and sets enable-multibyte-characters

3 1t is also specified for MIME ‘text/*’ bodies and in other network transport contexts. It is different
from the SGML reference syntax record-start/record-end format which Emacs doesn’t support directly.

Chapter 18: International Character Set Support 183

to nil in the current buffer so that they will be interpreted properly. raw-text handles
end-of-line conversion in the usual way, based on the data encountered, and has the usual
three variants to specify the kind of end-of-line conversion to use.

In contrast, the coding system no-conversion specifies no character code conversion at
all—none for non-ASCII byte values and none for end of line. This is useful for reading or
writing binary files, tar files, and other files that must be examined verbatim. It, too, sets
enable-multibyte-characters to nil.

The easiest way to edit a file with no conversion of any kind is with the M-x
find-file-literally command. This uses no-conversion, and also suppresses other
Emacs features that might convert the file contents before you see them. See Section 14.2
[Visiting], page 110.

The coding system emacs-mule means that the file contains non-ASCII characters stored
with the internal Emacs encoding. It handles end-of-line conversion based on the data
encountered, and has the usual three variants to specify the kind of end-of-line conversion.

18.8 Recognizing Coding Systems

Emacs tries to recognize which coding system to use for a given text as an integral part
of reading that text. (This applies to files being read, output from subprocesses, text from
X selections, etc.) Emacs can select the right coding system automatically most of the
time—once you have specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

Emacs handles this situation by means of a priority list of coding systems. Whenever
Emacs reads a file, if you do not specify the coding system to use, Emacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 18.3 [Language Environments], page 177). For example, if you use French, you
probably want Emacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the priority list in detail with the command M-x
prefer-coding-system. This command reads the name of a coding system from the
minibuffer, and adds it to the front of the priority list, so that it is preferred to all others.
If you use this command several times, each use adds one element to the front of the
priority list.

If you use a coding system that specifies the end-of-line conversion type, such as iso-
8859-1-dos, what this means is that Emacs should attempt to recognize iso-8859-1 with
priority, and should use DOS end-of-line conversion when it does recognize iso-8859-1.

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For example, to read and

184 GNU Emacs Manual

write all ‘.txt’ files using the coding system china-iso-8bit, you can execute this Lisp
expression:

(modify-coding-system-alist ’file "\\.txt\\’" ’china-iso-8bit)
The first argument should be file, the second argument should be a regular expression that

determines which files this applies to, and the third argument says which coding system to
use for these files.

Emacs recognizes which kind of end-of-line conversion to use based on the contents of
the file: if it sees only carriage-returns, or only carriage-return linefeed sequences, then it
chooses the end-of-line conversion accordingly. You can inhibit the automatic use of end-
of-line conversion by setting the variable inhibit-eol-conversion to non-nil. If you do
that, DOS-style files will be displayed with the ‘"M’ characters visible in the buffer; some
people prefer this to the more subtle ‘(D0OS)’ end-of-line type indication near the left edge
of the mode line (see Section 1.3 [Mode Line], page 23).

By default, the automatic detection of coding system is sensitive to escape sequences. If
Emacs sees a sequence of characters that begin with an escape character, and the sequence
is valid as an ISO-2022 code, that tells Emacs to use one of the ISO-2022 encodings to
decode the file.

However, there may be cases that you want to read escape sequences in a file as is. In
such a case, you can set the variable inhibit-iso-escape-detection to non-nil. Then
the code detection ignores any escape sequences, and never uses an 1S0O-2022 encoding. The
result is that all escape sequences become visible in the buffer.

The default value of inhibit-iso-escape-detection is nil. We recommend that you
not change it permanently, only for one specific operation. That’s because many Emacs
Lisp source files in the Emacs distribution contain non-ASCII characters encoded in the
coding system iso-2022-7bit, and they won’t be decoded correctly when you visit those
files if you suppress the escape sequence detection.

You can specify the coding system for a particular file using the ‘-=*-. . .-*-" construct at
the beginning of a file, or a local variables list at the end (see Section 32.2.5 [File Variables],
page 388). You do this by defining a value for the “variable” named coding. Emacs does
not really have a variable coding; instead of setting a variable, this uses the specified coding
system for the file. For example, ‘~*-mode: C; coding: latin-1;-*-" specifies use of the
Latin-1 coding system, as well as C mode. When you specify the coding explicitly in the
file, that overrides file-coding-system-alist.

The variables auto-coding-alist and auto-coding-regexp-alist are the strongest
way to specify the coding system for certain patterns of file names, or for files containing
certain patterns; these variables even override ‘~*-coding: —*-" tags in the file itself. Emacs
uses auto-coding-alist for tar and archive files, to prevent it from being confused by a
‘-x-coding:-*-’ tag in a member of the archive and thinking it applies to the archive file
as a whole. Likewise, Emacs uses auto-coding-regexp-alist to ensure that RMAIL files,
whose names in general don’t match any particular pattern, are decoded correctly.

If Emacs recognizes the encoding of a file incorrectly, you can reread the file using
the correct coding system by typing C-x ¢ coding-system M-x revert-buffer
RET). To see what coding system Emacs actually used to decode the file, look at the coding
system mnemonic letter near the left edge of the mode line (see Section 1.3 [Mode Line],
page 23), or type C-h C RET).

Chapter 18: International Character Set Support 185

Once Emacs has chosen a coding system for a buffer, it stores that coding system in
buffer-file-coding-system and uses that coding system, by default, for operations that
write from this buffer into a file. This includes the commands save-buffer and write-
region. If you want to write files from this buffer using a different coding system, you can
specify a different coding system for the buffer using set-buffer-file-coding-system
(see Section 18.9 [Specify Coding], page 185).

You can insert any possible character into any Emacs buffer, but most coding systems
can only handle some of the possible characters. This means that it is possible for you
to insert characters that cannot be encoded with the coding system that will be used to
save the buffer. For example, you could start with an ASCII file and insert a few Latin-1
characters into it, or you could edit a text file in Polish encoded in is0-8859-2 and add
some Russian words to it. When you save the buffer, Emacs cannot use the current value
of buffer-file-coding-system, because the characters you added cannot be encoded by
that coding system.

When that happens, Emacs tries the most-preferred coding system (set by M-x
prefer-coding-system or M-x set-language-environment), and if that coding system
can safely encode all of the characters in the buffer, Emacs uses it, and stores its value in
buffer-file-coding-system. Otherwise, Emacs displays a list of coding systems suitable
for encoding the buffer’s contents, and asks you to choose one of those coding systems.

If you insert the unsuitable characters in a mail message, Emacs behaves a bit differently.
It additionally checks whether the most-preferred coding system is recommended for use in
MIME messages; if not, Emacs tells you that the most-preferred coding system is not rec-
ommended and prompts you for another coding system. This is so you won’t inadvertently
send a message encoded in a way that your recipient’s mail software will have difficulty
decoding. (If you do want to use the most-preferred coding system, you can still type its
name in response to the question.)

When you send a message with Mail mode (see Chapter 27 [Sending Mail], page 293),
Emacs has four different ways to determine the coding system to use for encoding the
message text. It tries the buffer’s own value of buffer-file-coding-system, if that is
non-nil. Otherwise, it uses the value of sendmail-coding-system, if that is non-nil. The
third way is to use the default coding system for new files, which is controlled by your
choice of language environment, if that is non-nil. If all of these three values are nil,
Emacs encodes outgoing mail using the Latin-1 coding system.

When you get new mail in Rmail, each message is translated automatically from the
coding system it is written in, as if it were a separate file. This uses the priority list of
coding systems that you have specified. If a MIME message specifies a character set, Rmail
obeys that specification, unless rmail-decode-mime-charset is nil.

For reading and saving Rmail files themselves, Emacs uses the coding system specified
by the variable rmail-file-coding-system. The default value is nil, which means that

Rmail files are not translated (they are read and written in the Emacs internal character
code).

18.9 Specifying a Coding System

In cases where Emacs does not automatically choose the right coding system, you can
use these commands to specify one:

186 GNU Emacs Manual

C-x f coding

Use coding system coding for the visited file in the current buffer.

C-x c coding

Specify coding system coding for the immediately following command.

C-x k coding
Use coding system coding for keyboard input.

C-x t coding

Use coding system coding for terminal output.

C-x p input-coding output-coding
Use coding systems input-coding and output-coding for subprocess input and
output in the current buffer.

C-x x coding

Use coding system coding for transferring selections to and from other programs
through the window system.

C-x X coding

Use coding system coding for transferring one selection—the next one—to or
from the window system.

The command C-x f (set-buffer-file-coding-system) specifies the file coding
system for the current buffer—in other words, which coding system to use when saving or
rereading the visited file. You specify which coding system using the minibuffer. Since this
command applies to a file you have already visited, it affects only the way the file is saved.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-x c (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

So if the immediately following command is C-x C-£, for example, it reads the file using
that coding system (and records the coding system for when the file is saved). Or if the
immediately following command is C-x C-w, it writes the file using that coding system.
Other file commands affected by a specified coding system include C-x C-i and C-x C-v, as
well as the other-window variants of C-x C-f.

C-x c also affects commands that start subprocesses, including M-x shell (see
Section 31.2 [Shell], page 351).

However, if the immediately following command does not use the coding system, then
C-x c ultimately has no effect.

An easy way to visit a file with no conversion is with the M-x find-file-literally
command. See Section 14.2 [Visiting], page 110.

The variable default-buffer-file-coding-system specifies the choice of coding sys-
tem to use when you create a new file. It applies when you find a new file, and when you
create a buffer and then save it in a file. Selecting a language environment typically sets
this variable to a good choice of default coding system for that language environment.

The command C-x t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

Chapter 18: International Character Set Support 187

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets. You need to specify the terminal coding system when using multibyte
text, so that Emacs knows which characters the terminal can actually handle.

By default, output to the terminal is not translated at all, unless Emacs can deduce the
proper coding system from your terminal type or your locale specification (see Section 18.3
[Language Environments|, page 177).

The command C-x k (set-keyboard-coding-system) or the Custom option
keyboard-coding-system specifies the coding system for keyboard input. Character-code
translation of keyboard input is useful for terminals with keys that send non-ASCII
graphic characters—for example, some terminals designed for ISO Latin-1 or subsets of it.

By default, keyboard input is not translated at all.

There is a similarity between using a coding system translation for keyboard input, and
using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

The command C-x x (set-selection-coding-system) specifies the coding system
for sending selected text to the window system, and for receiving the text of selections made
in other applications. This command applies to all subsequent selections, until you override
it by using the command again. The command C-x X (set-next-selection-coding-
system) specifies the coding system for the next selection made in Emacs or read by Emacs.

The command C-x p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding

buffer.

The default for translation of process input and output depends on the current language
environment.

The variable file-name-coding-system specifies a coding system to use for encoding
file names. If you set the variable to a coding system name (as a Lisp symbol or a string),
Emacs encodes file names using that coding system for all file operations. This makes it
possible to use non-ASCII characters in file names—or, at least, those non-ASCII characters
which the specified coding system can encode.

If file-name-coding-system is nil, Emacs uses a default coding system determined by
the selected language environment. In the default language environment, any non-ASCII
characters in file names are not encoded specially; they appear in the file system using the
internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and cannot be encoded (or are encoded
differently) under the new coding system. If you try to save one of these buffers under the
visited file name, saving may use the wrong file name, or it may get an error. If such a
problem happens, use C-x C-w to specify a new file name for that buffer.

188 GNU Emacs Manual

The variable locale-coding-system specifies a coding system to use when encoding
and decoding system strings such as system error messages and format-time-string for-
mats and time stamps. That coding system is also used for decoding non-ASCII keyboard
input on X Window systems. You should choose a coding system that is compatible with
the underlying system’s text representation, which is normally specified by one of the envi-
ronment variables LC_ALL, LC_CTYPE, and LANG. (The first one, in the order specified above,
whose value is nonempty is the one that determines the text representation.)

18.10 Fontsets

A font for X typically defines shapes for a single alphabet or script. Therefore, displaying
the entire range of scripts that Emacs supports requires a collection of many fonts. In Emacs,
such a collection is called a fontset. A fontset is defined by a list of fonts, each assigned to
handle a range of character codes.

Each fontset has a name, like a font. The available X fonts are defined by the X server;
fontsets, however, are defined within Emacs itself. Once you have defined a fontset, you
can use it within Emacs by specifying its name, anywhere that you could use a single font.
Of course, Emacs fontsets can use only the fonts that the X server supports; if certain
characters appear on the screen as hollow boxes, this means that the fontset in use for them
has no font for those characters.*

Emacs creates two fontsets automatically: the standard fontset and the startup fontset.
The standard fontset is most likely to have fonts for a wide variety of non-ASCII characters;
however, this is not the default for Emacs to use. (By default, Emacs tries to find a font
that has bold and italic variants.) You can specify use of the standard fontset with the ‘~fn’
option, or with the ‘Font’ X resource (see Section B.7 [Font X], page 430). For example,

emacs —-fn fontset-standard

A fontset does not necessarily specify a font for every character code. If a fontset specifies
no font for a certain character, or if it specifies a font that does not exist on your system,
then it cannot display that character properly. It will display that character as an empty
box instead.

The fontset height and width are determined by the ASCII characters (that is, by the
font used for ASCII characters in that fontset). If another font in the fontset has a different
height, or a different width, then characters assigned to that font are clipped to the fontset’s
size. If highlight-wrong-size-font is non-nil, a box is displayed around these wrong-size
characters as well.

18.11 Defining fontsets

Emacs creates a standard fontset automatically according to the value of standard-
fontset-spec. This fontset’s name is
-*-fixed-medium-r-normal-*-16-*-*—x-*-x-fontset-standard
or just ‘fontset-standard’ for short.

Bold, italic, and bold-italic variants of the standard fontset are created automatically.
Their names have ‘bold’ instead of ‘medium’, or ‘i’ instead of ‘r’, or both.

4 The Emacs installation instructions have information on additional font support.

Chapter 18: International Character Set Support 189

If you specify a default ASCII font with the ‘Font’ resource or the ‘~fn’ argument,
Emacs generates a fontset from it automatically. This is the startup fontset and its name
is fontset-startup. It does this by replacing the foundry, family, add_style, and aver-
age_width fields of the font name with ‘*’, replacing charset_registry field with ‘fontset’,
and replacing charset_encoding field with ‘startup’, then using the resulting string to spec-
ify a fontset.

For instance, if you start Emacs this way,

emacs —-fn "*courier-medium-r-normal--14-140-*-iso8859-1"
Emacs generates the following fontset and uses it for the initial X window frame:
—*—*-medium-r-normal-*-14-140-*-*-*x—*-fontset-startup

With the X resource ‘Emacs.Font’, you can specify a fontset name just like an ac-
tual font name. But be careful not to specify a fontset name in a wildcard resource
like ‘Emacs*Font’—that wildcard specification matches various other resources, such as
for menus, and menus cannot handle fontsets.

You can specify additional fontsets using X resources named ‘Fontset-n’, where n is an
integer starting from 0. The resource value should have this form:

fontpattern, [charsetname:fontname]. . .

fontpattern should have the form of a standard X font name, except for the last two fields.
They should have the form ‘fontset-alias’.

The fontset has two names, one long and one short. The long name is fontpattern. The
short name is ‘fontset-alias’. You can refer to the fontset by either name.

The construct ‘charset : font’ specifies which font to use (in this fontset) for one particular
character set. Here, charset is the name of a character set, and font is the font to use for
that character set. You can use this construct any number of times in defining one fontset.

For the other character sets, Emacs chooses a font based on fontpattern. It replaces
‘fontset-alias’ with values that describe the character set. For the ASCII character font,
‘fontset-alias’ is replaced with ‘IS08859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not useful because it is better
to use the smaller font in its own size, which is what Emacs does.

Thus if fontpattern is this,
—-x-fixed-medium-r-normal-*-24—*—*-x—*x—*x—fontset-24
the font specification for ASCII characters would be this:
-*-fixed-medium-r-normal-*-24-%-1S08859-1
and the font specification for Chinese GB2312 characters would be this:
—-*-fixed-medium-r-normal-*-24-*-gb2312*-x*
You may not have any Chinese font matching the above font specification. Most X

distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in family
field. In such a case, ‘Fontset-n’ can be specified as below:

Emacs.Fontset-0: —-*-fixed-medium-r-normal-*-24-*—x—*—x—*-fontset-24,\
chinese-gb2312:-*—*-medium-r-normal-*-24-*x-gb2312*—x*

190 GNU Emacs Manual

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

The function that processes the fontset resource value to create the fontset is called
create-fontset-from-fontset-spec. You can also call this function explicitly to create
a fontset.

See Section B.7 [Font X]|, page 430, for more information about font naming in X.

18.12 Undisplayable Characters

Your terminal may be unable to display some non-ASCII characters. Most
non-windowing terminals can only use a single character set (use the variable
default-terminal-coding-system (see Section 18.9 [Specify Coding|, page 185) to tell
Emacs which one); characters which can’t be encoded in that coding system are displayed
as ‘?’ by default.

Windowing terminals can display a broader range of characters, but you may not have
fonts installed for all of them; characters that have no font appear as a hollow box.

If you use Latin-1 characters but your terminal can’t display Latin-1, you can arrange
to display mnemonic ASCII sequences instead, e.g. ‘"o’ for o-umlaut. Load the library
‘iso-ascii’ to do this.

If your terminal can display Latin-1, you can display characters from other European
character sets using a mixture of equivalent Latin-1 characters and ASCII mnemonics. Use
the Custom option latinl-display to enable this. The mnemonic ASCII sequences mostly
correspond to those of the prefix input methods.

18.13 Single-byte Character Set Support

The ISO 8859 Latin-n character sets define character codes in the range 0240 to 0377
octal (160 to 255 decimal) to handle the accented letters and punctuation needed by various
European languages (and some non-European ones). If you disable multibyte characters,
Emacs can still handle one of these character codes at a time. To specify which of these codes
to use, invoke M-x set-language-environment and specify a suitable language environment
such as ‘Latin-n’.

For more information about unibyte operation, see Section 18.2 [Enabling Multibyte],
page 176. Note particularly that you probably want to ensure that your initialization files
are read as unibyte if they contain non-ASCII characters.

Emacs can also display those characters, provided the terminal or font in use supports
them. This works automatically. Alternatively, if you are using a window system, Emacs
can also display single-byte characters through fontsets, in effect by displaying the equivalent
multibyte characters according to the current language environment. To request this, set
the variable unibyte-display-via-language-environment to a non-nil value.

If your terminal does not support display of the Latin-1 character set, Emacs can dis-
play these characters as ASCII sequences which at least give you a clear idea of what the
characters are. To do this, load the library iso-ascii. Similar libraries for other Latin-n
character sets could be implemented, but we don’t have them yet.

Chapter 18: International Character Set Support 191

Normally non-ISO-8859 characters (decimal codes between 128 and 159 inclusive) are
displayed as octal escapes. You can change this for non-standard “extended” versions of
ISO-8859 character sets by using the function standard-display-8bit in the disp-table
library.

There are several ways you can input single-byte non-ASCII characters:

e If your keyboard can generate character codes 128 (decimal) and up, representing non-
ASCII characters, you can type those character codes directly.

On a windowing terminal, you should not need to do anything special to use these
keys; they should simply work. On a text-only terminal, you should use the command
M-x set-keyboard-coding-system or the Custom option keyboard-coding-system
to specify which coding system your keyboard uses (see Section 18.9 [Specify Coding],
page 185). Enabling this feature will probably require you to use ESC to type Meta
characters; however, on a Linux console or in xterm, you can arrange for Meta to be
converted to ESC and still be able type 8-bit characters present directly on the keyboard
or using Compose or A1tGr keys. See Section 2.1 [User Input], page 27.

e You can use an input method for the selected language environment. See Section 18.4
[Input Methods], page 178. When you use an input method in a unibyte buffer, the
non-ASCII character you specify with it is converted to unibyte.

e For Latin-1 only, you can use the key C-x 8 as a “compose character” prefix for entry
of non-ASCII Latin-1 printing characters. C-x 8 is good for insertion (in the minibuffer
as well as other buffers), for searching, and in any other context where a key sequence
is allowed.

C-x 8 works by loading the iso-transl library. Once that library is loaded, the
modifier key, if you have one, serves the same purpose as C-x 8; use together with
an accent character to modify the following letter. In addition, if you have keys for the
Latin-1 “dead accent characters,” they too are defined to compose with the following
character, once iso-transl is loaded. Use C-x 8 C-h to list the available translations
as mnemonic command names.

e For Latin-1, Latin-2 and Latin-3, M-x iso-accents-mode enables a minor mode that
works much like the latin-1-prefix input method, but does not depend on having
the input methods installed. This mode is buffer-local. It can be customized for various
languages with M-x iso-accents-customize.

192 GNU Emacs Manual

Chapter 19: Major Modes 193

19 Major Modes

Emacs provides many alternative major modes, each of which customizes Emacs for
editing text of a particular sort. The major modes are mutually exclusive, and each buffer
has one major mode at any time. The mode line normally shows the name of the current
major mode, in parentheses (see Section 1.3 [Mode Line], page 23).

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific redefinitions or variable settings, so that each Emacs command behaves in its most
general manner, and each option is in its default state. For editing text of a specific type
that Emacs knows about, such as Lisp code or English text, you should switch to the
appropriate major mode, such as Lisp mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become more specifically
adapted to the language being edited. The ones that are changed frequently are (TAB), (DEL),
and C-j. The prefix key C-c normally contains mode-specific commands. In addition, the
commands which handle comments use the mode to determine how comments are to be
delimited. Many major modes redefine the syntactical properties of characters appearing
in the buffer. See Section 32.6 [Syntax], page 403.

The major modes fall into three major groups. The first group contains modes for normal
text, either plain or with mark-up. It includes Text mode, HTML mode, SGML mode,
TEX mode and Outline mode. The second group contains modes for specific programming
languages. These include Lisp mode (which has several variants), C mode, Fortran mode,
and others. The remaining major modes are not intended for use on users’ files; they are
used in buffers created for specific purposes by Emacs, such as Dired mode for buffers made
by Dired (see Chapter 29 [Dired], page 319), Mail mode for buffers made by C-x m (see
Chapter 27 [Sending Mail], page 293), and Shell mode for buffers used for communicating
with an inferior shell process (see Section 31.2.2 [Interactive Shell], page 352).

Most programming-language major modes specify that only blank lines separate para-
graphs. This is to make the paragraph commands useful. (See Section 21.3 [Paragraphs],
page 201.) They also cause Auto Fill mode to use the definition of to indent the new
lines it creates. This is because most lines in a program are usually indented (see Chapter 20
[Indentation], page 195).

19.1 How Major Modes are Chosen

You can select a major mode explicitly for the current buffer, but most of the time
FEmacs determines which mode to use based on the file name or on special text in the file.

Explicit selection of a new major mode is done with a M-x command. From the name of
a major mode, add -mode to get the name of a command to select that mode. Thus, you
can enter Lisp mode by executing M-x 1isp-mode.

When you visit a file, Emacs usually chooses the right major mode based on the file’s
name. For example, files whose names end in . ¢’ are edited in C mode. The correspondence
between file names and major modes is controlled by the variable auto-mode-alist. Its
value is a list in which each element has this form,

(regexp . mode-function)

or this form,

194 GNU Emacs Manual

(regexp mode-function flag)

For example, one element normally found in the list has the form ("\\.c\\’" . c-mode),
and it is responsible for selecting C mode for files whose names end in ‘.c’. (Note that
‘\\’ is needed in Lisp syntax to include a ‘\’ in the string, which must be used to suppress
the special meaning of ‘.’ in regexps.) If the element has the form (regexp mode-function
flag) and flag is non-nil, then after calling mode-function, the suffix that matched regexp
is discarded and the list is searched again for another match.

You can specify which major mode should be used for editing a certain file by a special
sort of text in the first nonblank line of the file. The mode name should appear in this
line both preceded and followed by ‘=*-’. Other text may appear on the line as well. For
example,

;—*—Lisp—*-—
tells Emacs to use Lisp mode. Such an explicit specification overrides any defaults based on
the file name. Note how the semicolon is used to make Lisp treat this line as a comment.

Another format of mode specification is
-*%— mode: modename;—*-
which allows you to specify local variables as well, like this:
-*- mode: modename; var: value; ... —*-
See Section 32.2.5 [File Variables], page 388, for more information about this.

When a file’s contents begin with ‘#!’, it can serve as an executable shell command,
which works by running an interpreter named on the file’s first line. The rest of the file is
used as input to the interpreter.

When you visit such a file in Emacs, if the file’s name does not specify a major mode,
Emacs uses the interpreter name on the first line to choose a mode. If the first line is the
name of a recognized interpreter program, such as ‘perl’ or ‘tcl’, Emacs uses a mode appro-
priate for programs for that interpreter. The variable interpreter-mode-alist specifies
the correspondence between interpreter program names and major modes.

When the first line starts with ‘“#!’, you cannot (on many systems) use the ‘—x-’ feature
on the first line, because the system would get confused when running the interpreter. So
FEmacs looks for ‘=*-" on the second line in such files as well as on the first line.

When you visit a file that does not specify a major mode to use, or when you create
a new buffer with C-x b, the variable default-major-mode specifies which major mode
to use. Normally its value is the symbol fundamental-mode, which specifies Fundamental
mode. If default-major-mode is nil, the major mode is taken from the previously current
buffer.

If you change the major mode of a buffer, you can go back to the major mode Emacs
would choose automatically: use the command M-x normal-mode to do this. This is the
same function that find-file calls to choose the major mode. It also processes the file’s
local variables list (if any).

The commands C-x C-w and set-visited-file-name change to a new major mode if
the new file name implies a mode (see Section 14.3 [Saving], page 113). However, this does
not happen if the buffer contents specify a major mode, and certain “special” major modes
do not allow the mode to change. You can turn off this mode-changing feature by setting
change-major-mode-with-file-name to nil.

Chapter 20: Indentation 195

20 Indentation

This chapter describes the Emacs commands that add, remove, or adjust indentation.

TAB Indent the current line “appropriately” in a mode-dependent fashion.
C-j Perform followed by (newline-and-indent).
M- Merge the previous and the current line (delete-indentation). This would

cancel out the effect of C-j.

C-M-o Split the current line at point; text on the line after point becomes a new line
indented to the same column where point is located (split-line).

M-m Move (forward or back) to the first nonblank character on the current line
(back-to-indentation).

C-M-\ Indent several lines to the same column (indent-region).
C-x Shift a block of lines rigidly right or left (indent-rigidly).
M-i Indent from point to the next prespecified tab stop column (tab-to-tab-stop).

M-x indent-relative
Indent from point to under an indentation point in the previous line.

Most programming languages have some indentation convention. For Lisp code, lines
are indented according to their nesting in parentheses. The same general idea is used for C
code, though many details are different.

Whatever the language, to indent a line, use the command. Each major mode
defines this command to perform the sort of indentation appropriate for the particular
language. In Lisp mode, aligns the line according to its depth in parentheses. No
matter where in the line you are when you type (TAB), it aligns the line as a whole. In
C mode, implements a subtle and sophisticated indentation style that knows about
many aspects of C syntax.

In Text mode, runs the command tab-to-tab-stop, which indents to the next
tab stop column. You can set the tab stops with M-x edit-tab-stops.

Normally, inserts an optimal mix of tabs and spaces for the intended indentation.
See Section 20.3 [Just Spaces|, page 197, for how to prevent use of tabs.

20.1 Indentation Commands and Techniques

To move over the indentation on a line, do M-m (back-to-indentation). This command,
given anywhere on a line, positions point at the first nonblank character on the line.

To insert an indented line before the current line, do C-a C-o (TAB). To make an indented
line after the current line, use C-e C-j.

If you just want to insert a tab character in the buffer, you can type C-q (TAB).

C-M-o (split-line) moves the text from point to the end of the line vertically down, so
that the current line becomes two lines. C-M-o first moves point forward over any spaces and
tabs. Then it inserts after point a newline and enough indentation to reach the same column
point is on. Point remains before the inserted newline; in this regard, C-M-o resembles C-o.

196 GNU Emacs Manual

To join two lines cleanly, use the M-~ (delete-indentation) command. It deletes the
indentation at the front of the current line, and the line boundary as well, replacing them
with a single space. As a special case (useful for Lisp code) the single space is omitted if
the characters to be joined are consecutive open parentheses or closing parentheses, or if
the junction follows another newline. To delete just the indentation of a line, go to the
beginning of the line and use M-\ (delete-horizontal-space), which deletes all spaces
and tabs around the cursor.

If you have a fill prefix, M-~ deletes the fill prefix if it appears after the newline that is
deleted. See Section 21.5.4 [Fill Prefix], page 205.

There are also commands for changing the indentation of several lines at once. C-M-\
(indent-region) applies to all the lines that begin in the region; it indents each line in the
“usual” way, as if you had typed at the beginning of the line. A numeric argument
specifies the column to indent to, and each line is shifted left or right so that its first
nonblank character appears in that column. C-x (indent-rigidly) moves all of the
lines in the region right by its argument (left, for negative arguments). The whole group of
lines moves rigidly sideways, which is how the command gets its name.

M-x indent-relative indents at point based on the previous line (actually, the last
nonempty line). It inserts whitespace at point, moving point, until it is underneath an
indentation point in the previous line. An indentation point is the end of a sequence of
whitespace or the end of the line. If point is farther right than any indentation point in the
previous line, the whitespace before point is deleted and the first indentation point then
applicable is used. If no indentation point is applicable even then, indent-relative runs
tab-to-tab-stop (see next section), unless it is called with a numeric argument, in which
case it does nothing.

indent-relative is the definition of in Indented Text mode. See Chapter 21
[Text], page 199.

See Section 21.11.6 [Format Indentation], page 221, for another way of specifying the
indentation for part of your text.

20.2 Tab Stops

For typing in tables, you can use Text mode’s definition of (TAB), tab-to-tab-stop.
This command inserts indentation before point, enough to reach the next tab stop column.
If you are not in Text mode, this command can be found on the key M-i.

You can specify the tab stops used by M-i. They are stored in a variable called tab-
stop-list, as a list of column-numbers in increasing order.

The convenient way to set the tab stops is with M-x edit-tab-stops, which creates and
selects a buffer containing a description of the tab stop settings. You can edit this buffer to
specify different tab stops, and then type C-c C-c to make those new tab stops take effect.
edit-tab-stops records which buffer was current when you invoked it, and stores the tab
stops back in that buffer; normally all buffers share the same tab stops and changing them
in one buffer affects all, but if you happen to make tab-stop-1list local in one buffer then
edit-tab-stops in that buffer will edit the local settings.

Here is what the text representing the tab stops looks like for ordinary tab stops every
eight columns.

Chapter 20: Indentation 197

0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The remaining lines are present just to
help you see where the colons are and know what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to do with display-
ing tab characters in the buffer. See Section 11.12 [Display Custom], page 89, for more
information on that.

20.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation
can be made from spaces only. To request this, set indent-tabs-mode to nil. This is a
per-buffer variable, so altering the variable affects only the current buffer, but there is a
default value which you can change as well. See Section 32.2.4 [Locals], page 387.

There are also commands to convert tabs to spaces or vice versa, always preserving the
columns of all nonblank text. M-x tabify scans the region for sequences of spaces, and
converts sequences of at least three spaces to tabs if that can be done without changing
indentation. M-x untabify changes all tabs in the region to appropriate numbers of spaces.

198 GNU Emacs Manual

Chapter 21: Commands for Human Languages 199

21 Commands for Human Languages

The term text has two widespread meanings in our area of the computer field. One is
data that is a sequence of characters. Any file that you edit with Emacs is text, in this sense
of the word. The other meaning is more restrictive: a sequence of characters in a human
language for humans to read (possibly after processing by a text formatter), as opposed to
a program or commands for a program.

Human languages have syntactic/stylistic conventions that can be supported or used to
advantage by editor commands: conventions involving words, sentences, paragraphs, and
capital letters. This chapter describes Emacs commands for all of these things. There
are also commands for filling, which means rearranging the lines of a paragraph to be
approximately equal in length. The commands for moving over and killing words, sentences
and paragraphs, while intended primarily for editing text, are also often useful for editing
programs.

Emacs has several major modes for editing human-language text. If the file contains text
pure and simple, use Text mode, which customizes Emacs in small ways for the syntactic
conventions of text. Outline mode provides special commands for operating on text with
an outline structure. See Section 21.8 [Outline Mode], page 208.

For text which contains embedded commands for text formatters, Emacs has other major
modes, each for a particular text formatter. Thus, for input to TEX, you would use TEX
mode (see Section 21.9 [TeX Mode], page 213). For input to nroff, use Nroff mode.

Instead of using a text formatter, you can edit formatted text in WYSIWYG style (“what
you see is what you get”), with Enriched mode. Then the formatting appears on the screen
in Emacs while you edit. See Section 21.11 [Formatted Text], page 218.

The “automatic typing” features may be useful when writing text. See section “Auto-
typing” in Features for Automatic Typing.

21.1 Words

Emacs has commands for moving over or operating on words. By convention, the keys
for them are all Meta characters.

M-f Move forward over a word (forward-word).
M-b Move backward over a word (backward-word).
M-d Kill up to the end of a word (kill-word).

M-(DEL) Kill back to the beginning of a word (backward-kill-word).
M-Q Mark the end of the next word (mark-word).
M-t Transpose two words or drag a word across other words (transpose-words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d,
and C-t. M-@ is cognate to C-@, which is an alias for C-SPQ).
The commands M-f (forward-word) and M-b (backward-word) move forward and back-

ward over words. These Meta characters are thus analogous to the corresponding control
characters, C-f and C-b, which move over single characters in the text. The analogy extends

200 GNU Emacs Manual

to numeric arguments, which serve as repeat counts. M-f with a negative argument moves
backward, and M-b with a negative argument moves forward. Forward motion stops right
after the last letter of the word, while backward motion stops right before the first letter.

M-d (kill-word) kills the word after point. To be precise, it kills everything from point
to the place M-f would move to. Thus, if point is in the middle of a word, M-d kills just the
part after point. If some punctuation comes between point and the next word, it is killed
along with the word. (If you wish to kill only the next word but not the punctuation before
it, simply do M-f to get the end, and kill the word backwards with M-(DEL).) M-d takes
arguments just like M-f£.

M-(DEL) (backward-kill-word) kills the word before point. It kills everything from point
back to where M-b would move to. If point is after the space in ‘F00, BAR’, then ‘FO0, ’ is
killed. (If you wish to kill just ‘FO0’, and not the comma and the space, use M-b M-d instead
of M-(DEL).)

M-t (transpose-words) exchanges the word before or containing point with the following
word. The delimiter characters between the words do not move. For example, ‘F00, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR F0O,’. See Section 13.2 [Transpose], page 105,
for more on transposition and on arguments to transposition commands.

To operate on the next n words with an operation which applies between point and
mark, you can either set the mark at point and then move over the words, or you can use
the command M-@ (mark-word) which does not move point, but sets the mark where M-f
would move to. M-@ accepts a numeric argument that says how many words to scan for the
place to put the mark. In Transient Mark mode, this command activates the mark.

The word commands’ understanding of syntax is completely controlled by the syntax
table. Any character can, for example, be declared to be a word delimiter. See Section 32.6
[Syntax], page 403.

21.2 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta
keys, so as to be like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).
M-e Move forward to the end of the sentence (forward-sentence).
M-k Kill forward to the end of the sentence (kill-sentence).

C-x Kill back to the beginning of the sentence (backward-kill-sentence).

The commands M-a and M-e (backward-sentence and forward-sentence) move to the
beginning and end of the current sentence, respectively. They were chosen to resemble C-a
and C-e, which move to the beginning and end of a line. Unlike them, M-a and M-e if
repeated or given numeric arguments move over successive sentences.

Moving backward over a sentence places point just before the first character of the
sentence; moving forward places point right after the punctuation that ends the sentence.
Neither one moves over the whitespace at the sentence boundary.

Just as C-a and C-e have a kill command, C-k, to go with them, so M-a and M-e have a
corresponding kill command M-k (kill-sentence) which kills from point to the end of the

Chapter 21: Commands for Human Languages 201

sentence. With minus one as an argument it kills back to the beginning of the sentence.
Larger arguments serve as a repeat count. There is also a command, C-x (backward-
kill-sentence), for killing back to the beginning of a sentence. This command is useful
when you change your mind in the middle of composing text.

The sentence commands assume that you follow the American typist’s convention of
putting two spaces at the end of a sentence; they consider a sentence to end wherever there
isa‘.”, “?” or ‘1’ followed by the end of a line or two spaces, with any number of ©)’, ‘17, ©>7,
or ‘"’ characters allowed in between. A sentence also begins or ends wherever a paragraph
begins or ends.

The variable sentence-end controls recognition of the end of a sentence. It is a regexp
that matches the last few characters of a sentence, together with the whitespace following
the sentence. Its normal value is

"C2UTON"D NG SANINENN T A\ [\t\n] ="
This example is explained in the section on regexps. See Section 12.5 [Regexps|, page 95.

If you want to use just one space between sentences, you should set sentence-end to
this value:

"L ON" 2D TN\ INENN T \\D [\t\n]*"

You should also set the variable sentence-end-double-space to nil so that the fill com-
mands expect and leave just one space at the end of a sentence. Note that this makes
it impossible to distinguish between periods that end sentences and those that indicate
abbreviations.

21.3 Paragraphs

The Emacs commands for manipulating paragraphs are also Meta keys.

M-{ Move back to previous paragraph beginning (backward-paragraph).
M-} Move forward to next paragraph end (forward-paragraph).
M-h Put point and mark around this or next paragraph (mark-paragraph).

M-{ moves to the beginning of the current or previous paragraph, while M-} moves to
the end of the current or next paragraph. Blank lines and text-formatter command lines
separate paragraphs and are not considered part of any paragraph. In Fundamental mode,
but not in Text mode, an indented line also starts a new paragraph. (If a paragraph is
preceded by a blank line, these commands treat that blank line as the beginning of the
paragraph.)

In major modes for programs, paragraphs begin and end only at blank lines. This makes
the paragraph commands continue to be useful even though there are no paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines which don’t start
with the fill prefix. See Section 21.5 [Filling], page 203.

When you wish to operate on a paragraph, you can use the command M-h (mark-
paragraph) to set the region around it. Thus, for example, M-h C-w kills the paragraph
around or after point. The M~h command puts point at the beginning and mark at the end
of the paragraph point was in. In Transient Mark mode, it activates the mark. If point is
between paragraphs (in a run of blank lines, or at a boundary), the paragraph following

202 GNU Emacs Manual

point is surrounded by point and mark. If there are blank lines preceding the first line of
the paragraph, one of these blank lines is included in the region.

The precise definition of a paragraph boundary is controlled by the variables paragraph-
separate and paragraph-start. The value of paragraph-start is a regexp that should
match any line that either starts or separates paragraphs. The value of paragraph-
separate is another regexp that should match only lines that separate paragraphs without
being part of any paragraph (for example, blank lines). Lines that start a new paragraph and
are contained in it must match only paragraph-start, not paragraph-separate. For ex-
ample, in Fundamental mode, paragraph-start is " [\t\n\f]", and paragraph-separate
is "[\t\f]=*$".

Normally it is desirable for page boundaries to separate paragraphs. The default values
of these variables recognize the usual separator for pages.

21.4 Pages

Files are often thought of as divided into pages by the formfeed character (ASCII control-
L, octal code 014). When you print hardcopy for a file, this character forces a page break;
thus, each page of the file goes on a separate page on paper. Most Emacs commands treat
the page-separator character just like any other character: you can insert it with C-q C-1,
and delete it with (DEL). Thus, you are free to paginate your file or not. However, since
pages are often meaningful divisions of the file, Emacs provides commands to move over
them and operate on them.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).
C-x1 Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after the previous
page delimiter. If point is already right after a page delimiter, it skips that one and stops at
the previous one. A numeric argument serves as a repeat count. The C-x] (forward-page)
command moves forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page and
the mark at the end. The page delimiter at the end is included (the mark follows it). The
page delimiter at the front is excluded (point follows it). In Transient Mark mode, this
command activates the mark.

C-x C-p C-w is a handy way to kill a page to move it elsewhere. If you move to another
page delimiter with C-x [and C-x], then yank the killed page, all the pages will be properly
delimited once again. The reason C-x C-p includes only the following page delimiter in the
region is to ensure that.

A numeric argument to C-x C-p is used to specify which page to go to, relative to the
current one. Zero means the current page. One means the next page, and —1 means the
previous one.

The C-x 1 command (count-lines-page) is good for deciding where to break a page
in two. It displays in the echo area the total number of lines in the current page, and then
divides it up into those preceding the current line and those following, as in

Chapter 21: Commands for Human Languages 203

Page has 96 (72+25) lines
Notice that the sum is off by one; this is correct if point is not at the beginning of a line.

The variable page-delimiter controls where pages begin. Its value is a regexp that
matches the beginning of a line that separates pages. The normal value of this variable is
"~\f", which matches a formfeed character at the beginning of a line.

21.5 Filling Text

Filling text means breaking it up into lines that fit a specified width. Emacs does
filling in two ways. In Auto Fill mode, inserting text with self-inserting characters also
automatically fills it. There are also explicit fill commands that you can use when editing
text leaves it unfilled. When you edit formatted text, you can specify a style of filling for
each portion of the text (see Section 21.11 [Formatted Text], page 218).

21.5.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically when they
become too wide. Breaking happens only when you type a or (RET).

M-x auto-fill-mode
Enable or disable Auto Fill mode.

RET In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was on. With a
positive numeric argument it always turns Auto Fill mode on, and with a negative argument
always turns it off. You can see when Auto Fill mode is in effect by the presence of the word
‘Fill’ in the mode line, inside the parentheses. Auto Fill mode is a minor mode which is
enabled or disabled for each buffer individually. See Section 32.1 [Minor Modes|, page 377.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than
the desired width. Line breaking and rearrangement takes place only when you type
or (RET). If you wish to insert a space or newline without permitting line-breaking, type
C-q or C-q C-j (recall that a newline is really a control-J). Also, C-o inserts a newline
without line breaking.

Auto Fill mode works well with programming-language modes, because it indents new
lines with (TAB). If a line ending in a comment gets too long, the text of the comment is
split into two comment lines. Optionally, new comment delimiters are inserted at the end
of the first line and the beginning of the second so that each line is a separate comment; the
variable comment-multi-line controls the choice (see Section 22.5 [Comments], page 235).

Adaptive filling (see Section 21.5.5 [Adaptive Fill], page 206) works for Auto Filling as
well as for explicit fill commands. It takes a fill prefix automatically from the second or
first line of a paragraph.

Auto Fill mode does not refill entire paragraphs; it can break lines but cannot merge
lines. So editing in the middle of a paragraph can result in a paragraph that is not correctly
filled. The easiest way to make the paragraph properly filled again is usually with the
explicit fill commands.

204 GNU Emacs Manual

Many users like Auto Fill mode and want to use it in all text files. The section on init
files says how to arrange this permanently for yourself. See Section 32.7 [Init File], page 403.

21.5.2 Refill Mode

Refill minor mode provides support for keeping paragraphs filled as you type or modify
them in other ways. It provides an effect similar to typical word processor behavior. This
works by running a paragraph-filling command at suitable times.

When you are typing text, only characters which normally trigger auto filling, like the
space character, will trigger refilling. This is to avoid making it too slow. Apart from
self-inserting characters, other commands which modify the text cause refilling.

The current implementation is preliminary and probably not robust. We expect to
improve on it.

To toggle the use of Refill mode in the current buffer, type M-x refill-mode.
21.5.3 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).
C-x f Set the fill column (set-fill-column).

M-x fill-region
Fill each paragraph in the region (fill-region).

M-x fill-region-as-paragraph
Fill the region, considering it as one paragraph.

M-s Center a line.

To refill a paragraph, use the command M-q (fill-paragraph). This operates on the
paragraph that point is inside, or the one after point if point is between paragraphs. Refilling
works by removing all the line-breaks, then inserting new ones where necessary.

To refill many paragraphs, use M-x fill-region, which divides the region into para-
graphs and fills each of them.

M-q and fill-region use the same criteria as M-h for finding paragraph boundaries
(see Section 21.3 [Paragraphs|, page 201). For more control, you can use M-x
fill-region-as-paragraph, which refills everything between point and mark. This
command deletes any blank lines within the region, so separate blocks of text end up
combined into one block.

A numeric argument to M-q causes it to justify the text as well as filling it. This means
that extra spaces are inserted to make the right margin line up exactly at the fill column. To
remove the extra spaces, use M-q with no argument. (Likewise for fill-region.) Another
way to control justification, and choose other styles of filling, is with the justification
text property; see Section 21.11.7 [Format Justification], page 222.

The command M-s (center-1line) centers the current line within the current fill column.
With an argument n, it centers n lines individually and moves past them.

The maximum line width for filling is in the variable fill-column. Altering the value
of £ill-column makes it local to the current buffer; until that time, the default value is in

Chapter 21: Commands for Human Languages 205

effect. The default is initially 70. See Section 32.2.4 [Locals|, page 387. The easiest way
to set fill-column is to use the command C-x f (set-fill-column). With a numeric
argument, it uses that as the new fill column. With just C-u as argument, it sets £ill-
column to the current horizontal position of point.

Emacs commands normally consider a period followed by two spaces or by a newline as
the end of a sentence; a period followed by just one space indicates an abbreviation and
not the end of a sentence. To preserve the distinction between these two ways of using a
period, the fill commands do not break a line after a period followed by just one space.

If the variable sentence-end-double-space is nil, the fill commands expect and leave
just one space at the end of a sentence. Ordinarily this variable is t, so the fill commands in-
sist on two spaces for the end of a sentence, as explained above. See Section 21.2 [Sentences],
page 200.

If the variable colon-double-space is non-nil, the fill commands put two spaces after
a colon.

Some languages do not use period to indicate end of sentence. For example, a sentence
in Thai text ends with double space but without a period. Set the variable sentence-end-
without-period to t to tell the sentence commands that a period is not necessary.

21.5.4 The Fill Prefix

To fill a paragraph in which each line starts with a special marker (which might be a few
spaces, giving an indented paragraph), you can use the fill prefix feature. The fill prefix is
a string that Emacs expects every line to start with, and which is not included in filling.
You can specify a fill prefix explicitly; Emacs can also deduce the fill prefix automatically
(see Section 21.5.5 [Adaptive Fill], page 206).

C-x . Set the fill prefix (set-fill-prefix).
M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs
Fill the region, considering each change of indentation as starting a new para-
graph.

M-x fill-nonuniform-paragraphs
Fill the region, considering only paragraph-separator lines as starting a new
paragraph.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at
the end of the prefix, and give the command C-x . (set-fill-prefix). That’s a period
after the C-x. To turn off the fill prefix, specify an empty prefix: type C-x . with point at
the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line
before filling and insert it on each line after filling. Auto Fill mode also inserts the fill prefix
automatically when it makes a new line. The C-o command inserts the fill prefix on new
lines it creates, when you use it at the beginning of a line (see Section 4.7 [Blank Lines],
page 38). Conversely, the command M-~ deletes the prefix (if it occurs) after the newline
that it deletes (see Chapter 20 [Indentation], page 195).

206 GNU Emacs Manual

For example, if £ill-column is 40 and you set the fill prefix to ‘;; ’, then M-q in the
following text
;; This is an
;; example of a paragraph
;; inside a Lisp-style comment.
produces this:
;; This is an example of a paragraph
;; inside a Lisp-style comment.

Lines that do not start with the fill prefix are considered to start paragraphs, both in
M-q and the paragraph commands; this gives good results for paragraphs with hanging
indentation (every line indented except the first one). Lines which are blank or indented
once the prefix is removed also separate or start paragraphs; this is what you want if you
are writing multi-paragraph comments with a comment delimiter on each line.

You can use M-x fill-individual-paragraphs to set the fill prefix for each paragraph
automatically. This command divides the region into paragraphs, treating every change in
the amount of indentation as the start of a new paragraph, and fills each of these para-
graphs. Thus, all the lines in one “paragraph” have the same amount of indentation. That
indentation serves as the fill prefix for that paragraph.

M-x fill-nonuniform-paragraphs is a similar command that divides the region into
paragraphs in a different way. It considers only paragraph-separating lines (as defined by
paragraph-separate) as starting a new paragraph. Since this means that the lines of one
paragraph may have different amounts of indentation, the fill prefix used is the smallest
amount of indentation of any of the lines of the paragraph. This gives good results with
styles that indent a paragraph’s first line more or less that the rest of the paragraph.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when
there is no fill prefix. This is a per-buffer variable; altering the variable affects only the
current buffer, but there is a default value which you can change as well. See Section 32.2.4
[Locals], page 387.

The indentation text property provides another way to control the amount of inden-
tation paragraphs receive. See Section 21.11.6 [Format Indentation], page 221.

21.5.5 Adaptive Filling

The fill commands can deduce the proper fill prefix for a paragraph automatically in
certain cases: either whitespace or certain punctuation characters at the beginning of a line
are propagated to all lines of the paragraph.

If the paragraph has two or more lines, the fill prefix is taken from the paragraph’s
second line, but only if it appears on the first line as well.

If a paragraph has just one line, fill commands may take a prefix from that line. The
decision is complicated because there are three reasonable things to do in such a case:

e Use the first line’s prefix on all the lines of the paragraph.

e Indent subsequent lines with whitespace, so that they line up under the text that follows
the prefix on the first line, but don’t actually copy the prefix from the first line.

e Don’t do anything special with the second and following lines.

Chapter 21: Commands for Human Languages 207

All three of these styles of formatting are commonly used. So the fill commands try to
determine what you would like, based on the prefix that appears and on the major mode.
Here is how.

If the prefix found on the first line matches adaptive-fill-first-line-regexp, or if
it appears to be a comment-starting sequence (this depends on the major mode), then the
prefix found is used for filling the paragraph, provided it would not act as a paragraph
starter on subsequent lines.

Otherwise, the prefix found is converted to an equivalent number of spaces, and those
spaces are used as the fill prefix for the rest of the lines, provided they would not act as a
paragraph starter on subsequent lines.

In Text mode, and other modes where only blank lines and page delimiters separate
paragraphs, the prefix chosen by adaptive filling never acts as a paragraph starter, so it can
always be used for filling.

The variable adaptive-fill-regexp determines what kinds of line beginnings can serve
as a fill prefix: any characters at the start of the line that match this regular expression
are used. If you set the variable adaptive-fill-mode to nil, the fill prefix is never chosen
automatically.

You can specify more complex ways of choosing a fill prefix automatically by setting the
variable adaptive-fill-function to a function. This function is called with point after
the left margin of a line, and it should return the appropriate fill prefix based on that line.
If it returns nil, that means it sees no fill prefix in that line.

21.6 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text
to upper case or to lower case.

M-1 Convert following word to lower case (downcase-word).
M-u Convert following word to upper case (upcase-word).
M-c Capitalize the following word (capitalize-word).

C-x C-1 Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are the most useful. M-1 (downcase-word) converts the
word after point to lower case, moving past it. Thus, repeating M-1 converts successive
words. M-u (upcase-word) converts to all capitals instead, while M-c (capitalize-word)
puts the first letter of the word into upper case and the rest into lower case. All these com-
mands convert several words at once if given an argument. They are especially convenient
for converting a large amount of text from all upper case to mixed case, because you can
move through the text using M-1, M-u or M-c on each word as appropriate, occasionally
using M-f instead to skip a word.

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient when
you have just typed a word in the wrong case: you can give the case conversion command
and continue typing.

208 GNU Emacs Manual

If a word case conversion command is given in the middle of a word, it applies only to
the part of the word which follows point. This is just like what M-d (kill-word) does. With
a negative argument, case conversion applies only to the part of the word before point.

The other case conversion commands are C-x C-u (upcase-region) and C-x C-1
(downcase-region), which convert everything between point and mark to the specified
case. Point and mark do not move.

The region case conversion commands upcase-region and downcase-region are nor-
mally disabled. This means that they ask for confirmation if you try to use them. When
you confirm, you may enable the command, which means it will not ask for confirmation
again. See Section 32.4.11 [Disabling], page 402.

21.7 Text Mode

When you edit files of text in a human language, it’s more convenient to use Text mode
rather than Fundamental mode. To enter Text mode, type M-x text-mode.

In Text mode, only blank lines and page delimiters separate paragraphs. As a result,
paragraphs can be indented, and adaptive filling determines what indentation to use when
filling a paragraph. See Section 21.5.5 [Adaptive Fill], page 206.

Text mode defines to run indent-relative (see Chapter 20 [Indentation],
page 195), so that you can conveniently indent a line like the previous line. When the
previous line is not indented, indent-relative runs tab-to-tab-stop, which uses Emacs
tab stops that you can set (see Section 20.2 [Tab Stops|, page 196).

Text mode turns off the features concerned with comments except when you explicitly
invoke them. It changes the syntax table so that periods are not considered part of a word,
while apostrophes, backspaces and underlines are considered part of words.

If you indent the first lines of paragraphs, then you should use Paragraph-Indent
Text mode rather than Text mode. In this mode, you do not need to have
blank lines between paragraphs, because the first-line indentation is sufficient to
start a paragraph; however paragraphs in which every line is indented are not
supported. = Use M-x paragraph-indent-text-mode to enter this mode. Use M-x
paragraph-indent-minor-mode to enter an equivalent minor mode, for instance during
mail composition.

Text mode, and all the modes based on it, define M-(TAB) as the command ispell-
complete-word, which performs completion of the partial word in the buffer before point,
using the spelling dictionary as the space of possible words. See Section 13.4 [Spelling],
page 106.

Entering Text mode runs the hook text-mode-hook. Other major modes related to
Text mode also run this hook, followed by hooks of their own; this includes Paragraph-
Indent Text mode, Nroff mode, TEX mode, Outline mode, and Mail mode. Hook functions
on text-mode-hook can look at the value of major-mode to see which of these modes is
actually being entered. See Section 32.2.3 [Hooks], page 386.

21.8 Outline Mode

Outline mode is a major mode much like Text mode but intended for editing outlines.
It allows you to make parts of the text temporarily invisible so that you can see the outline

Chapter 21: Commands for Human Languages 209

structure. Type M-x outline-mode to switch to Outline mode as the major mode of the
current buffer.

When Outline mode makes a line invisible, the line does not appear on the screen. The
screen appears exactly as if the invisible line were deleted, except that an ellipsis (three
periods in a row) appears at the end of the previous visible line (only one ellipsis no matter
how many invisible lines follow).

Editing commands that operate on lines, such as C-n and C-p, treat the text of the
invisible line as part of the previous visible line. Killing an entire visible line, including its
terminating newline, really kills all the following invisible lines along with it.

Outline minor mode provides the same commands as the major mode, Outline mode,
but you can use it in conjunction with other major modes. Type M-x outline-minor-mode
to enable the Outline minor mode in the current buffer. You can also specify this in the text
of a file, with a file local variable of the form ‘mode: outline-minor’ (see Section 32.2.5
[File Variables|, page 388).

The major mode, Outline mode, provides special key bindings on the C-c prefix. Outline
minor mode provides similar bindings with C-c @ as the prefix; this is to reduce the conflicts
with the major mode’s special commands. (The variable outline-minor-mode-prefix
controls the prefix used.)

Entering Outline mode runs the hook text-mode-hook followed by the hook outline-
mode-hook (see Section 32.2.3 [Hooks|, page 386).

21.8.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading lines and
body lines. A heading line represents a topic in the outline. Heading lines start with one or
more stars; the number of stars determines the depth of the heading in the outline structure.
Thus, a heading line with one star is a major topic; all the heading lines with two stars
between it and the next one-star heading are its subtopics; and so on. Any line that is not
a heading line is a body line. Body lines belong with the preceding heading line. Here is
an example:

* Food

This is the body,
which says something about the topic of food.

** Delicious Food
This is the body of the second-level header.

** Distasteful Food
This could have

a body too, with
several lines.

**x*x Dormitory Food

* Shelter
Another first-level topic with its header line.

210 GNU Emacs Manual

A heading line together with all following body lines is called collectively an entry. A
heading line together with all following deeper heading lines and their body lines is called
a subtree.

You can customize the criterion for distinguishing heading lines by setting the vari-
able outline-regexp. Any line whose beginning has a match for this regexp is consid-
ered a heading line. Matches that start within a line (not at the left margin) do not
count. The length of the matching text determines the level of the heading; longer matches
make a more deeply nested level. Thus, for example, if a text formatter has commands
‘Qchapter’, ‘Gsection’ and ‘@subsection’ to divide the document into chapters and sec-
tions, you could make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\ (sub\\)*section"’. Note the trick: the two words ‘chapter’ and ‘section’
are equally long, but by defining the regexp to match only ‘chap’ we ensure that the length
of the text matched on a chapter heading is shorter, so that Outline mode will know that
sections are contained in chapters. This works as long as no other command starts with
‘Qchap’.

You can change the rule for calculating the level of a heading line by setting the variable
outline-level. The value of outline-level should be a function that takes no arguments
and returns the level of the current heading. Some major modes such as C, Nroff, and Emacs
Lisp mode set this variable and outline-regexp in order to work with Outline minor mode.

21.8.2 Outline Motion Commands

Outline mode provides special motion commands that move backward and forward to
heading lines.

C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-c C-p Move point to the previous visible heading line (outline-previous-visible-
heading).

C-c C-f Move point to the next visible heading line at the same level as the one point
is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-
backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-
up-heading).

C-c C-n (outline-next-visible-heading) moves down to the next heading line. C-c
C-p (outline-previous-visible-heading) moves similarly backward. Both accept nu-
meric arguments as repeat counts. The names emphasize that invisible headings are skipped,
but this is not really a special feature. All editing commands that look for lines ignore the
invisible lines automatically.

More powerful motion commands understand the level structure of headings. C-c
C-f (outline-forward-same-level) and C-c C-b (outline-backward-same-level) move
from one heading line to another visible heading at the same depth in the outline. C-c C-u
(outline-up-heading) moves backward to another heading that is less deeply nested.

Chapter 21: Commands for Human Languages 211

21.8.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible or invisible.
Their names all start with hide or show. Most of them fall into pairs of opposites. They
are not undoable; instead, you can undo right past them. Making lines visible or invisible
is simply not recorded by the undo mechanism.

C-c C-t Make all body lines in the buffer invisible (hide-body).
C-c C-a Make all lines in the buffer visible (show-all).

C-c C-d Make everything under this heading invisible, not including this heading itself
(hide-subtree).

C-c C-s Make everything under this heading visible, including body, subheadings, and
their bodies (show-subtree).

C-c C-1 Make the body of this heading line, and of all its subheadings, invisible (hide-
leaves).

C-c C-k Make all subheadings of this heading line, at all levels, visible (show-branches).

C-c C-i Make immediate subheadings (one level down) of this heading line visible (show-
children).

C-c C-c¢ Make this heading line’s body invisible (hide-entry).
C-c C-e Make this heading line’s body visible (show-entry).
C-c C-q Hide everything except the top n levels of heading lines (hide-sublevels).

C-c C-o Hide everything except for the heading or body that point is in, plus the head-
ings leading up from there to the top level of the outline (hide-other).

Two commands that are exact opposites are C-c C-c (hide-entry) and C-c C-e (show-
entry). They are used with point on a heading line, and apply only to the body lines of
that heading. Subheadings and their bodies are not affected.

Two more powerful opposites are C-c C-d (hide-subtree) and C-c C-s (show-subtree).
Both expect to be used when point is on a heading line, and both apply to all the lines of
that heading’s subtree: its body, all its subheadings, both direct and indirect, and all of
their bodies. In other words, the subtree contains everything following this heading line,
up to and not including the next heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all the subheadings
visible but none of the body. There are two commands for doing this, depending on whether
you want to hide the bodies or make the subheadings visible. They are C-c C-1 (hide-
leaves) and C-c C-k (show-branches).

A little weaker than show-branches is C-c C-i (show-children). It makes just the
direct subheadings visible—those one level down. Deeper subheadings remain invisible, if
they were invisible.

Two commands have a blanket effect on the whole file. C-c C-t (hide-body) makes all
body lines invisible, so that you see just the outline structure. C-c C-a (show-all) makes
all lines visible. These commands can be thought of as a pair of opposites even though C-c
C-a applies to more than just body lines.

212 GNU Emacs Manual

The command C-c C-q (hide-sublevels) hides all but the top level headings. With a
numeric argument n, it hides everything except the top n levels of heading lines.

The command C-c C-o (hide-other) hides everything except the heading or body text
that point is in, plus its parents (the headers leading up from there to top level in the
outline).

You can turn off the use of ellipses at the ends of visible lines by setting selective-
display-ellipses to nil. Then there is no visible indication of the presence of invisible
lines.

When incremental search finds text that is hidden by Outline mode, it makes that part
of the buffer visible. If you exit the search at that position, the text remains visible.

21.8.4 Viewing One Outline in Multiple Views

You can display two views of a single outline at the same time, in different windows.
To do this, you must create an indirect buffer using M-x make-indirect-buffer. The first
argument of this command is the existing outline buffer name, and its second argument is
the name to use for the new indirect buffer. See Section 15.6 [Indirect Buffers], page 154.

Once the indirect buffer exists, you can display it in a window in the normal fashion,
with C-x 4 b or other Emacs commands. The Outline mode commands to show and hide
parts of the text operate on each buffer independently; as a result, each buffer can have its
own view. If you want more than two views on the same outline, create additional indirect
buffers.

21.8.5 Folding Editing

The Foldout package extends Outline mode and Outline minor mode with “folding”
commands. The idea of folding is that you zoom in on a nested portion of the outline, while
hiding its relatives at higher levels.

Consider an Outline mode buffer all the text and subheadings under level-1 headings
hidden. To look at what is hidden under one of these headings, you could use C-c C-e (M-x
show-entry) to expose the body, or C-c C-i to expose the child (level-2) headings.

With Foldout, you use C-c C-z (M-x foldout-zoom-subtree). This exposes the body
and child subheadings, and narrows the buffer so that only the level-1 heading, the body
and the level-2 headings are visible. Now to look under one of the level-2 headings, position
the cursor on it and use C-c C-z again. This exposes the level-2 body and its level-3 child
subheadings and narrows the buffer again. Zooming in on successive subheadings can be
done as much as you like. A string in the mode line shows how deep you’ve gone.

When zooming in on a heading, to see only the child subheadings specify a numeric
argument: C-u C-c C-z. The number of levels of children can be specified too (compare M-x
show-children), e.g. M-2 C-c C-z exposes two levels of child subheadings. Alternatively,
the body can be specified with a negative argument: M-- C-c C-z. The whole subtree can
be expanded, similarly to C-c C-s (M-x show-subtree), by specifying a zero argument: M-0
C-c C-z.

While you’re zoomed in, you can still use Outline mode’s exposure and hiding functions
without disturbing Foldout. Also, since the buffer is narrowed, “global” editing actions will

Chapter 21: Commands for Human Languages 213

only affect text under the zoomed-in heading. This is useful for restricting changes to a
particular chapter or section of your document.

To unzoom (exit) a fold, use C-c C-x (M-x foldout-exit-fold). This hides all the text
and subheadings under the top-level heading and returns you to the previous view of the
buffer. Specifying a numeric argument exits that many levels of folds. Specifying a zero
argument exits all folds.

To cancel the narrowing of a fold without hiding the text and subheadings, specify a
negative argument. For example, M--2 C-c C-x exits two folds and leaves the text and
subheadings exposed.

Foldout mode also provides mouse commands for entering and exiting folds, and for
showing and hiding text:
M-C-Mouse-1 zooms in on the heading clicked on
single click: expose body.
double click: expose subheadings.
triple click: expose body and subheadings.
quad click: expose entire subtree.
M-C-Mouse-2 exposes text under the heading clicked on
single click: expose body.
double click: expose subheadings.
triple click: expose body and subheadings.
quad click: expose entire subtree.
M-C-Mouse-3 hides text under the heading clicked on or exits fold
single click: hide subtree.
double click: exit fold and hide text.
triple click: exit fold without hiding text.
quad click: exit all folds and hide text.

You can specify different modifier keys (instead of Control-Meta-) by setting foldout-
mouse-modifiers; but if you have already loaded the ‘foldout.el’ library, you must reload
it in order for this to take effect.

To use the Foldout package, you can type M-x load-library foldout (RET); or
you can arrange for to do that automatically by putting this in your ‘.emacs’ file:

(eval-after-load "outline" ’(require ’foldout))

21.9 TgX Mode

TEX is a powerful text formatter written by Donald Knuth; it is also free, like GNU
Emacs. LaTgX is a simplified input format for TEX, implemented by TEX macros; it comes
with TEX. SITEX is a special form of LaTgX.!

Emacs has a special TEX mode for editing TgX input files. It provides facilities for
checking the balance of delimiters and for invoking TEX on all or part of the file.

! SITEX is obsoleted by the ‘slides’ document class in recent LaTEX versions.

214 GNU Emacs Manual

TEX mode has three variants, Plain TEX mode, LaTEX mode, and SITEX mode (these
three distinct major modes differ only slightly). They are designed for editing the three
different formats. The command M-x tex-mode looks at the contents of the buffer to de-
termine whether the contents appear to be either LaTgX input or SHTEX input; if so, it
selects the appropriate mode. If the file contents do not appear to be LaTgX or SIiTEX,
it selects Plain TEX mode. If the contents are insufficient to determine this, the variable
tex-default-mode controls which mode is used.

When M-x tex-mode does not guess right, you can use the commands M-x
plain-tex-mode, M-x latex-mode, and M-x slitex-mode to select explicitly the particular
variants of TEX mode.

21.9.1 TgX Editing Commands

Here are the special commands provided in TEX mode for editing the text of the file.

e

" Insert, according to context, either or ‘"’ or ©’?’ (tex-insert-quote).

C-j Insert a paragraph break (two newlines) and check the previous paragraph for
unbalanced braces or dollar signs (tex-terminate-paragraph).

M-x tex-validate-region
Check each paragraph in the region for unbalanced braces or dollar signs.

C-c Ao Insert ‘{}’ and position point between them (tex-insert-braces).

C-c} Move forward past the next unmatched close brace (up-list).

In TEX, the character ‘"’ is not normally used; we use ‘¢ ¢’ to start a quotation and ¢’ ’
to end one. To make editing easier under this formatting convention, TEX mode overrides
the normal meaning of the key " with a command that inserts a pair of single-quotes or
backquotes (tex-insert-quote). To be precise, this command inserts ‘¢ ¢’ after whitespace
or an open brace, ‘"’ after a backslash, and ‘’’’ after any other character.

‘in?

If you need the character itself in unusual contexts, use C-q to insert it. Also, "
with a numeric argument always inserts that number of ‘"’ characters. You can turn off the
feature of " expansion by eliminating that binding in the local map (see Section 32.4 [Key
Bindings|, page 393).

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX
math mode delimiters match. When you insert a ‘¢’ that is meant to exit math mode,
the position of the matching ‘$’ that entered math mode is displayed for a second. This is
the same feature that displays the open brace that matches a close brace that is inserted.
However, there is no way to tell whether a ‘$’ enters math mode or leaves it; so when you
insert a ‘¢’ that enters math mode, the previous ‘$’ position is shown as if it were a match,
even though they are actually unrelated.

TEX uses braces as delimiters that must match. Some users prefer to keep braces bal-
anced at all times, rather than inserting them singly. Use C-c { (tex-insert-braces) to
insert a pair of braces. It leaves point between the two braces so you can insert the text
that belongs inside. Afterward, use the command C-c } (up-list) to move forward past
the close brace.

There are two commands for checking the matching of braces. C-j (tex-terminate-
paragraph) checks the paragraph before point, and inserts two newlines to start a

Chapter 21: Commands for Human Languages 215

new paragraph. It outputs a message in the echo area if any mismatch is found. M-x
tex-validate-region checks a region, paragraph by paragraph. The errors are listed
in the ‘*0ccur*’ buffer, and you can use C-c C-c or Mouse-2 in that buffer to go to a
particular mismatch.

Note that Emacs commands count square brackets and parentheses in TEX mode, not
just braces. This is not strictly correct for the purpose of checking TEX syntax. However,
parentheses and square brackets are likely to be used in text as matching delimiters and
it is useful for the various motion commands and automatic match display to work with
them.

21.9.2 LaTgX Editing Commands

LaTeX mode, and its variant, SiTEX mode, provide a few extra features not applicable
to plain TEX.

C-c C-o Insert ‘\begin’ and ‘\end’ for LaTEX block and position point on a line between
them (tex-latex-block).

C-c C-e Close the innermost LaTEX block not yet closed (tex-close-latex-block).

In LaTgX input, ‘\begin’ and ‘\end’ commands are used to group blocks of text. To
insert a ‘\begin’ and a matching ‘\end’ (on a new line following the ‘\begin’), use C-c C-o
(tex-latex-block). A blank line is inserted between the two, and point is left there. You
can use completion when you enter the block type; to specify additional block type names
beyond the standard list, set the variable latex-block-names. For example, here’s how to
add ‘theorem’, ‘corollary’, and ‘proof’

(setq latex-block-names ’("theorem" "corollary" "proof"))

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. You can use C-c C-e
(tex-close-latex-block) to insert automatically a matching ‘\end’ to match the last
unmatched ‘\begin’. It indents the ‘\end’ to match the corresponding ‘\begin’. It inserts
a newline after ‘\end’ if point is at the beginning of a line.

21.9.3 TgX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents of the buffer
or just a region at a time. Running TEX in this way on just one chapter is a good way to
see what your changes look like without taking the time to format the entire file.

C-c C-r Invoke TEX on the current region, together with the buffer’s header (tex-
region).

C-c C-b Invoke TEX on the entire current buffer (tex-buffer).
C-c Invoke BibTEX on the current file (tex-bibtex-file).
C-c C-f Invoke TEX on the current file (tex-file).

C-c C-1 Recenter the window showing output from the inferior TEX so that the last line
can be seen (tex-recenter-output-buffer).

C-c C-k Kill the TEX subprocess (tex-kill-job).

216 GNU Emacs Manual

C-c C-p Print the output from the last C-c C-r, C-c C-b, or C-c C-f command (tex-
print).

C-c C-v Preview the output from the last C-c C-r, C-c C-b, or C-c C-f command (tex-
view).

C-c C-q Show the printer queue (tex-show-print-queue).

You can pass the current buffer through an inferior TEX by means of C-c C-b (tex-
buffer). The formatted output appears in a temporary file; to print it, type C-c C-p (tex-
print). Afterward, you can use C-c C-q (tex-show-print-queue) to view the progress of
your output towards being printed. If your terminal has the ability to display TEX output
files, you can preview the output on the terminal with C-c C-v (tex-view).

You can specify the directory to use for running TEX by setting the variable tex-

directory. "." is the default value. If your environment variable TEXINPUTS contains
relative directory names, or if your files contains ‘\input’ commands with relative file
names, then tex-directory must be "." or you will get the wrong results. Otherwise, it

is safe to specify some other directory, such as "/tmp".

If you want to specify which shell commands are used in the inferior TEX, you can do
so by setting the values of the variables tex-run-command, latex-run-command, slitex-
run-command, tex-dvi-print-command, tex-dvi-view-command, and tex-show-queue-
command. You must set the value of tex-dvi-view-command for your particular terminal;
this variable has no default value. The other variables have default values that may (or
may not) be appropriate for your system.

Normally, the file name given to these commands comes at the end of the command
string; for example, ‘latex filename’. In some cases, however, the file name needs to be
embedded in the command; an example is when you need to provide the file name as an
argument to one command whose output is piped to another. You can specify where to put
the file name with ‘*’ in the command string. For example,

(setq tex-dvi-print-command "dvips -f * | lpr")
The terminal output from TEX, including any error messages, appears in a buffer called
‘*tex-shellx’. If TEX gets an error, you can switch to this buffer and feed it input (this

works as in Shell mode; see Section 31.2.2 [Interactive Shell], page 352). Without switching
to this buffer you can scroll it so that its last line is visible by typing C-c C-1.

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its output is no
longer useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can also pass an arbitrary region through an inferior TgX by typing C-c C-r (tex-
region). This is tricky, however, because most files of TEX input contain commands at the
beginning to set parameters and define macros, without which no later part of the file will
format correctly. To solve this problem, C-c C-r allows you to designate a part of the file
as containing essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header.

To indicate the bounds of the header in Plain TEX mode, you insert two special strings
in the file. Insert ‘%**start of header’ before the header, and ‘/**end of header’ after it.
Each string must appear entirely on one line, but there may be other text on the line before
or after. The lines containing the two strings are included in the header. If ‘%**start of

Chapter 21: Commands for Human Languages 217

header’ does not appear within the first 100 lines of the buffer, C-c C-r assumes that there
is no header.

In LaTEX mode, the header begins with ‘\documentclass’ or ‘\documentstyle’ and
ends with ‘\begin{document}’. These are commands that LaTEX requires you to use in
any case, so nothing special needs to be done to identify the header.

The commands (tex-buffer) and (tex-region) do all of their work in a temporary
directory, and do not have available any of the auxiliary files needed by TEX for cross-
references; these commands are generally not suitable for running the final copy in which
all of the cross-references need to be correc