
GNU Emacs Manual

GNU Emacs Manual

Fourteenth Edition, Updated for Emacs Version 21.3.

Richard Stallman

Copyright c© 1985, 1986, 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
Free Software Foundation, Inc.

Fourteenth Edition
Updated for Emacs Version 21.3,
March 2002
ISBN 1-882114-06-X

Published by the Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being “The GNU Manifesto”,
“Distribution” and “GNU GENERAL PUBLIC LICENSE”, with the Front-Cover texts
being “A GNU Manual,” and with the Back-Cover Texts as in (a) below. A copy of the
license is included in the section entitled “GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

Cover art by Etienne Suvasa.

Preface 1

Preface

This manual documents the use and simple customization of the Emacs editor. The
reader is not expected to be a programmer; simple customizations do not require program-
ming skill. But the user who is not interested in customizing can ignore the scattered
customization hints.

This is primarily a reference manual, but can also be used as a primer. For complete
beginners, it is a good idea to start with the on-line, learn-by-doing tutorial, before reading
the manual. To run the tutorial, start Emacs and type C-h t. This way you can learn
Emacs by using Emacs on a specially designed file which describes commands, tells you
when to try them, and then explains the results you see.

On first reading, just skim chapters 1 and 2, which describe the notational conventions of
the manual and the general appearance of the Emacs display screen. Note which questions
are answered in these chapters, so you can refer back later. After reading chapter 4, you
should practice the commands there. The next few chapters describe fundamental tech-
niques and concepts that are used constantly. You need to understand them thoroughly,
experimenting with them if necessary.

Chapters 14 through 19 describe intermediate-level features that are useful for all kinds
of editing. Chapter 20 and following chapters describe features that you may or may not
want to use; read those chapters when you need them.

Read the Trouble chapter if Emacs does not seem to be working properly. It explains
how to cope with some common problems (see Section 33.2 [Lossage], page 410), as well as
when and how to report Emacs bugs (see Section 33.3 [Bugs], page 414).

To find the documentation on a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual is available as a printed book and also as an Info file. The Info file is for on-
line perusal with the Info program, which will be the principal way of viewing documentation
on-line in the GNU system. Both the Info file and the Info program itself are distributed
along with GNU Emacs. The Info file and the printed book contain substantially the same
text and are generated from the same source files, which are also distributed along with
GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many Emacs editors, all
sharing common principles of organization. For information on the underlying philosophy
of Emacs and the lessons learned from its development, write for a copy of AI memo 519a,
“Emacs, the Extensible, Customizable Self-Documenting Display Editor,” to Publications
Department, Artificial Intelligence Lab, 545 Tech Square, Cambridge, MA 02139, USA.
At last report they charge $2.25 per copy. Another useful publication is LCS TM-165,
“A Cookbook for an Emacs,” by Craig Finseth, available from Publications Department,
Laboratory for Computer Science, 545 Tech Square, Cambridge, MA 02139, USA. The
price today is $3.

This edition of the manual is intended for use with GNU Emacs installed on GNU and
Unix systems. GNU Emacs can also be used on VMS, MS-DOS (also called MS-DOG),
Windows NT, and Windows 95 systems. Those systems use different file name syntax; in
addition, VMS and MS-DOS do not support all GNU Emacs features. We don’t try to

2 GNU Emacs Manual

describe VMS usage in this manual. See Appendix E [MS-DOS], page 451, for information
about using Emacs on MS-DOS.

Distribution 3

Distribution

GNU Emacs is free software; this means that everyone is free to use it and free to redis-
tribute it on certain conditions. GNU Emacs is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of GNU Emacs that they might get from
you. The precise conditions are found in the GNU General Public License that comes with
Emacs and also appears following this section.

One way to get a copy of GNU Emacs is from someone else who has it. You need not
ask for our permission to do so, or tell any one else; just copy it. If you have access to the
Internet, you can get the latest distribution version of GNU Emacs by anonymous FTP;
see the file ‘etc/FTP’ in the Emacs distribution for more information.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the GNU Emacs received from them under the usual
terms of the General Public License. In other words, the program must be free for you
when you get it, not just free for the manufacturer.

You can also order copies of GNU Emacs from the Free Software Foundation on CD-
ROM. This is a convenient and reliable way to get a copy; it is also a good way to help
fund our work. (The Foundation has always received most of its funds in this way.) An
order form is included in the file ‘etc/ORDERS’ in the Emacs distribution, and on our web
site in http://www.gnu.org/order/order.html. For further information, write to

Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
USA

The income from distribution fees goes to support the foundation’s purpose: the devel-
opment of new free software, and improvements to our existing programs including GNU
Emacs.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation
to support our work. Donations to the Free Software Foundation are tax deductible in the
US. If you use GNU Emacs at your workplace, please suggest that the company make a
donation. If company policy is unsympathetic to the idea of donating to charity, you might
instead suggest ordering a CD-ROM from the Foundation occasionally, or subscribing to
periodic updates.

Contributors to GNU Emacs include Per Abrahamsen, Jay K. Adams, Joe Arceneaux,
Boaz Ben-Zvi, Jim Blandy, Terrence Brannon, Frank Bresz, Peter Breton, Kevin Broadey,
Vincent Broman, David M. Brown, Bill Carpenter, Hans Chalupsky, Bob Chassell, James
Clark, Mike Clarkson, Glynn Clements, Andrew Csillag, Doug Cutting, Michael DeCorte,
Gary Delp, Matthieu Devin, Eri Ding, Carsten Dominik, Scott Draves, Viktor Dukhovni,
John Eaton, Rolf Ebert, Stephen Eglen, Torbjörn Einarsson, Tsugumoto Enami, Hans
Henrik Eriksen, Michael Ernst, Ata Etemadi, Frederick Farnback, Fred Fish, Karl Fogel,
Gary Foster, Noah Friedman, Keith Gabryelski, Kevin Gallagher, Kevin Gallo, Howard

4 GNU Emacs Manual

Gayle, Stephen Gildea, David Gillespie, Bob Glickstein, Boris Goldowsky, Michelangelo
Grigni, Michael Gschwind, Henry Guillaume, Doug Gwyn, Ken’ichi Handa, Chris Hanson,
K. Shane Hartman, John Heidemann, Markus Heritsch, Karl Heuer, Manabu Higashida,
Anders Holst, Kurt Hornik, Tom Houlder, Lars Ingebrigtsen, Andrew Innes, Michael K.
Johnson, Kyle Jones, Tomoji Kagatani, Brewster Kahle, David Kaufman, Henry Kautz,
Howard Kaye, Michael Kifer, Richard King, Larry K. Kolodney, Robert Krawitz, Sebas-
tian Kremer, Geoff Kuenning, David K̊agedal, Daniel LaLiberte, Aaron Larson, James
R. Larus, Frederic Lepied, Lars Lindberg, Eric Ludlam, Neil M. Mager, Ken Manheimer,
Bill Mann, Brian Marick, Simon Marshall, Bengt Martensson, Charlie Martin, Thomas
May, Roland McGrath, David Megginson, Wayne Mesard, Richard Mlynarik, Keith Moore,
Erik Naggum, Thomas Neumann, Mike Newton, Jurgen Nickelsen, Jeff Norden, Andrew
Norman, Jeff Peck, Damon Anton Permezel, Tom Perrine, Jens Petersen, Daniel Pfeif-
fer, Fred Pierresteguy, Christian Plaunt, Francesco A. Potorti, Michael D. Prange, Ashwin
Ram, Eric S. Raymond, Paul Reilly, Edward M. Reingold, Rob Riepel, Roland B. Roberts,
John Robinson, Danny Roozendaal, William Rosenblatt, Guillermo J. Rozas, Ivar Rummel-
hoff, Wolfgang Rupprecht, James B. Salem, Masahiko Sato, William Schelter, Ralph Schle-
icher, Gregor Schmid, Michael Schmidt, Ronald S. Schnell, Philippe Schnoebelen, Stephen
Schoef, Randal Schwartz, Manuel Serrano, Stanislav Shalunov, Mark Shapiro, Richard Shar-
man, Olin Shivers, Espen Skoglund, Rick Sladkey, Lynn Slater, Chris Smith, David Smith,
Paul D. Smith, William Sommerfeld, Michael Staats, Sam Steingold, Ake Stenhoff, Peter
Stephenson, Jonathan Stigelman, Steve Strassman, Jens T. Berger Thielemann, Spencer
Thomas, Jim Thompson, Masanobu Umeda, Neil W. Van Dyke, Ulrik Vieth, Geoffrey
Voelker, Johan Vromans, Barry Warsaw, Morten Welinder, Joseph Brian Wells, Rodney
Whitby, Ed Wilkinson, Mike Williams, Steven A. Wood, Dale R. Worley, Felix S. T. Wu,
Tom Wurgler, Eli Zaretskii, Jamie Zawinski, Ian T. Zimmermann, Reto Zimmermann, and
Neal Ziring.

GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

6 GNU Emacs Manual

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program,” below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification.”) Each licensee is
addressed as “you.”

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 7

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you

8 GNU Emacs Manual

indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version,” you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

GNU GENERAL PUBLIC LICENSE 9

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

10 GNU Emacs Manual

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 20yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’
(which makes passes at compilers) written
by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 11

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

12 GNU Emacs Manual

Appendix A: GNU Free Documentation License 13

Appendix A GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

14 GNU Emacs Manual

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modifica-
tion. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long

Appendix A: GNU Free Documentation License 15

as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).
C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the

16 GNU Emacs Manual

Title Page. If there is no section entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.
K. In any section entitled “Acknowledgements” or “Dedications”, preserve the section’s
title, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.
M. Delete any section entitled “Endorsements.” Such a section may not be included in
the Modified Version.
N. Do not retitle any existing section as “Endorsements” or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,

Appendix A: GNU Free Documentation License 17

unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgements”, and any sections entitled “Dedications.” You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement

18 GNU Emacs Manual

between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled "GNU
Free Documentation License."

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Introduction 19

Introduction

You are reading about GNU Emacs, the GNU incarnation of the advanced,
self-documenting, customizable, extensible real-time display editor Emacs. (The ‘G’ in
‘GNU’ is not silent.)

We say that Emacs is a display editor because normally the text being edited is visible
on the screen and is updated automatically as you type your commands. See Chapter 1
[Screen], page 21.

We call it a real-time editor because the display is updated very frequently, usually after
each character or pair of characters you type. This minimizes the amount of information
you must keep in your head as you edit. See Chapter 4 [Basic Editing], page 33.

We call Emacs advanced because it provides facilities that go beyond simple insertion
and deletion: controlling subprocesses; automatic indentation of programs; viewing two or
more files at once; editing formatted text; and dealing in terms of characters, words, lines,
sentences, paragraphs, and pages, as well as expressions and comments in several different
programming languages.

Self-documenting means that at any time you can type a special character, Control-h,
to find out what your options are. You can also use it to find out what any command does,
or to find all the commands that pertain to a topic. See Chapter 7 [Help], page 53.

Customizable means that you can change the definitions of Emacs commands in little
ways. For example, if you use a programming language in which comments start with
‘<**’ and end with ‘**>’, you can tell the Emacs comment manipulation commands to use
those strings (see Section 22.5 [Comments], page 235). Another sort of customization is
rearrangement of the command set. For example, if you prefer the four basic cursor motion
commands (up, down, left and right) on keys in a diamond pattern on the keyboard, you
can rebind the keys that way. See Chapter 32 [Customization], page 377.

Extensible means that you can go beyond simple customization and write entirely new
commands, programs in the Lisp language to be run by Emacs’s own Lisp interpreter. Emacs
is an “on-line extensible” system, which means that it is divided into many functions that
call each other, any of which can be redefined in the middle of an editing session. Almost
any part of Emacs can be replaced without making a separate copy of all of Emacs. Most
of the editing commands of Emacs are written in Lisp; the few exceptions could have been
written in Lisp but are written in C for efficiency. Although only a programmer can write
an extension, anybody can use it afterward. If you want to learn Emacs Lisp programming,
we recommend the Introduction to Emacs Lisp by Robert J. Chassell, also published by
the Free Software Foundation.

When run under the X Window System, Emacs provides its own menus and convenient
bindings to mouse buttons. But Emacs can provide many of the benefits of a window system
on a text-only terminal. For instance, you can look at or edit several files at once, move
text between files, and edit files while running shell commands.

20 GNU Emacs Manual

Chapter 1: The Organization of the Screen 21

1 The Organization of the Screen

On a text-only terminal, the Emacs display occupies the whole screen. On the X Window
System, Emacs creates its own X windows to use. We use the term frame to mean an entire
text-only screen or an entire X window used by Emacs. Emacs uses both kinds of frames
in the same way to display your editing. Emacs normally starts out with just one frame,
but you can create additional frames if you wish. See Chapter 17 [Frames], page 163.

When you start Emacs, the entire frame except for the top and bottom is devoted to the
text you are editing. This area is called the window. At the top there is normally a menu
bar where you can access a series of menus; then there may be a tool bar, a row of icons
that perform editing commands if you click on them. Below this, the window begins. The
last line is a special echo area or minibuffer window, where prompts appear and where you
can enter information when Emacs asks for it. See below for more information about these
special lines.

You can subdivide the large text window horizontally or vertically into multiple text
windows, each of which can be used for a different file (see Chapter 16 [Windows], page 157).
In this manual, the word “window” always refers to the subdivisions of a frame within
Emacs.

The window that the cursor is in is the selected window, in which editing takes place.
Most Emacs commands implicitly apply to the text in the selected window (though mouse
commands generally operate on whatever window you click them in, whether selected or
not). The other windows display text for reference only, unless/until you select them. If
you use multiple frames under the X Window System, then giving the input focus to a
particular frame selects a window in that frame.

Each window’s last line is a mode line, which describes what is going on in that window.
It appears in inverse video, if the terminal supports that; its contents normally begin with
‘--:-- *scratch*’ when Emacs starts. The mode line displays status information such as
what buffer is being displayed above it in the window, what major and minor modes are in
use, and whether the buffer contains unsaved changes.

1.1 Point

Within Emacs, the terminal’s cursor shows the location at which editing commands will
take effect. This location is called point. Many Emacs commands move point through the
text, so that you can edit at different places in it. You can also place point by clicking
mouse button 1.

While the cursor appears to point at a character, you should think of point as between
two characters; it points before the character that appears under the cursor. For example,
if your text looks like ‘frob’ with the cursor over the ‘b’, then point is between the ‘o’ and
the ‘b’. If you insert the character ‘!’ at that position, the result is ‘fro!b’, with point
between the ‘!’ and the ‘b’. Thus, the cursor remains over the ‘b’, as before.

Sometimes people speak of “the cursor” when they mean “point,” or speak of commands
that move point as “cursor motion” commands.

Text-only terminals have only one cursor, and when output is in progress it must appear
where the output is being displayed. This does not mean that point is moving. It is only
that Emacs has no way to show you the location of point except when the terminal is idle.

22 GNU Emacs Manual

If you are editing several files in Emacs, each in its own buffer, each buffer has its own
point location. A buffer that is not currently displayed remembers where point is in case
you display it again later.

When Emacs displays multiple windows, each window has its own point location. On
text-only terminals, the cursor shows the location of point in the selected window. On
graphical terminals, Emacs shows a cursor in each window; the selected window’s cursor
is solid, and the other cursors are hollow. Either way, the cursor or cursors tell you which
window is selected. If the same buffer appears in more than one window, each window has
its own position for point in that buffer, and (when possible) its own cursor.

See Section 11.13 [Cursor Display], page 90, for customization options that control dis-
play of the cursor or cursors.

The term “point” comes from the character ‘.’, which was the command in TECO
(the language in which the original Emacs was written) for accessing the value now called
“point.”

1.2 The Echo Area

The line at the bottom of the frame (below the mode line) is the echo area. It is used
to display small amounts of text for several purposes.

Echoing means displaying the characters that you type. Outside Emacs, the operating
system normally echoes all your input. Emacs handles echoing differently.

Single-character commands do not echo in Emacs, and multi-character commands echo
only if you pause while typing them. As soon as you pause for more than a second in
the middle of a command, Emacs echoes all the characters of the command so far. This
is to prompt you for the rest of the command. Once echoing has started, the rest of the
command echoes immediately as you type it. This behavior is designed to give confident
users fast response, while giving hesitant users maximum feedback. You can change this
behavior by setting a variable (see Section 11.12 [Display Custom], page 89).

If a command cannot be executed, it may display an error message in the echo area. Error
messages are accompanied by beeping or by flashing the screen. The error also discards any
input you have typed ahead.

Some commands display informative messages in the echo area. These messages look
much like error messages, but they are not announced with a beep and do not throw away
input. Sometimes the message tells you what the command has done, when this is not
obvious from looking at the text being edited. Sometimes the sole purpose of a command
is to show you a message giving you specific information—for example, C-x = displays a
message describing the character position of point in the text and its current column in
the window. Commands that take a long time often display messages ending in ‘...’ while
they are working, and add ‘done’ at the end when they are finished.

Echo-area informative messages are saved in an editor buffer named ‘*Messages*’. (We
have not explained buffers yet; see Chapter 15 [Buffers], page 149, for more information
about them.) If you miss a message that appears briefly on the screen, you can switch to
the ‘*Messages*’ buffer to see it again. (Successive progress messages are often collapsed
into one in that buffer.)

Chapter 1: The Organization of the Screen 23

The size of ‘*Messages*’ is limited to a certain number of lines. The variable message-
log-max specifies how many lines. Once the buffer has that many lines, each line added at
the end deletes one line from the beginning. See Section 32.2 [Variables], page 379, for how
to set variables such as message-log-max.

The echo area is also used to display the minibuffer, a window that is used for reading
arguments to commands, such as the name of a file to be edited. When the minibuffer is
in use, the echo area begins with a prompt string that usually ends with a colon; also, the
cursor appears in that line because it is the selected window. You can always get out of the
minibuffer by typing C-g. See Chapter 5 [Minibuffer], page 43.

1.3 The Mode Line

Each text window’s last line is a mode line, which describes what is going on in that
window. When there is only one text window, the mode line appears right above the echo
area; it is the next-to-last line in the frame. The mode line starts and ends with dashes.
On a text-mode display, the mode line is in inverse video if the terminal supports that; on
a graphics display, the mode line has a 3D box appearance to help it stand out.

Normally, the mode line looks like this:
-cs:ch buf (major minor)--line--pos------

This gives information about the buffer being displayed in the window: the buffer’s name,
what major and minor modes are in use, whether the buffer’s text has been changed, and
how far down the buffer you are currently looking.

ch contains two stars ‘**’ if the text in the buffer has been edited (the buffer is “modi-
fied”), or ‘--’ if the buffer has not been edited. For a read-only buffer, it is ‘%*’ if the buffer
is modified, and ‘%%’ otherwise.

buf is the name of the window’s buffer. In most cases this is the same as the name of a
file you are editing. See Chapter 15 [Buffers], page 149.

The buffer displayed in the selected window (the window that the cursor is in) is also
Emacs’s current buffer, the one that editing takes place in. When we speak of what some
command does to “the buffer,” we are talking about the current buffer.

line is ‘L’ followed by the current line number of point. This is present when Line
Number mode is enabled (which it normally is). You can optionally display the current
column number too, by turning on Column Number mode (which is not enabled by default
because it is somewhat slower). See Section 11.10 [Optional Mode Line], page 87.

pos tells you whether there is additional text above the top of the window, or below the
bottom. If your buffer is small and it is all visible in the window, pos is ‘All’. Otherwise,
it is ‘Top’ if you are looking at the beginning of the buffer, ‘Bot’ if you are looking at the
end of the buffer, or ‘nn%’, where nn is the percentage of the buffer above the top of the
window.

major is the name of the major mode in effect in the buffer. At any time, each buffer
is in one and only one of the possible major modes. The major modes available include
Fundamental mode (the least specialized), Text mode, Lisp mode, C mode, Texinfo mode,
and many others. See Chapter 19 [Major Modes], page 193, for details of how the modes
differ and how to select one.

24 GNU Emacs Manual

Some major modes display additional information after the major mode name. For ex-
ample, Rmail buffers display the current message number and the total number of messages.
Compilation buffers and Shell buffers display the status of the subprocess.

minor is a list of some of the minor modes that are turned on at the moment in the
window’s chosen buffer. For example, ‘Fill’ means that Auto Fill mode is on. ‘Abbrev’
means that Word Abbrev mode is on. ‘Ovwrt’ means that Overwrite mode is on. See
Section 32.1 [Minor Modes], page 377, for more information. ‘Narrow’ means that the
buffer being displayed has editing restricted to only a portion of its text. This is not really
a minor mode, but is like one. See Section 31.9 [Narrowing], page 366. ‘Def’ means that a
keyboard macro is being defined. See Section 32.3 [Keyboard Macros], page 390.

In addition, if Emacs is currently inside a recursive editing level, square brackets
(‘[...]’) appear around the parentheses that surround the modes. If Emacs is in one
recursive editing level within another, double square brackets appear, and so on. Since
recursive editing levels affect Emacs globally, not just one buffer, the square brackets
appear in every window’s mode line or not in any of them. See Section 31.13 [Recursive
Edit], page 369.

Non-windowing terminals can only show a single Emacs frame at a time (see Chapter 17
[Frames], page 163). On such terminals, the mode line displays the name of the selected
frame, after ch. The initial frame’s name is ‘F1’.

cs states the coding system used for the file you are editing. A dash indicates the default
state of affairs: no code conversion, except for end-of-line translation if the file contents call
for that. ‘=’ means no conversion whatsoever. Nontrivial code conversions are represented
by various letters—for example, ‘1’ refers to ISO Latin-1. See Section 18.7 [Coding Systems],
page 181, for more information. If you are using an input method, a string of the form ‘i>’
is added to the beginning of cs; i identifies the input method. (Some input methods show
‘+’ or ‘@’ instead of ‘>’.) See Section 18.4 [Input Methods], page 178.

When you are using a character-only terminal (not a window system), cs uses three
characters to describe, respectively, the coding system for keyboard input, the coding system
for terminal output, and the coding system used for the file you are editing.

When multibyte characters are not enabled, cs does not appear at all. See Section 18.2
[Enabling Multibyte], page 176.

The colon after cs can change to another string in certain circumstances. Emacs uses
newline characters to separate lines in the buffer. Some files use different conventions for
separating lines: either carriage-return linefeed (the MS-DOS convention) or just carriage-
return (the Macintosh convention). If the buffer’s file uses carriage-return linefeed, the
colon changes to either a backslash (‘\’) or ‘(DOS)’, depending on the operating system. If
the file uses just carriage-return, the colon indicator changes to either a forward slash (‘/’)
or ‘(Mac)’. On some systems, Emacs displays ‘(Unix)’ instead of the colon even for files
that use newline to separate lines.

You can customize the mode line display for each of the end-of-line formats by setting
each of the variables eol-mnemonic-unix, eol-mnemonic-dos, eol-mnemonic-mac, and
eol-mnemonic-undecided to any string you find appropriate. See Section 32.2 [Variables],
page 379, for an explanation of how to set variables.

Chapter 1: The Organization of the Screen 25

See Section 11.10 [Optional Mode Line], page 87, for features that add other handy
information to the mode line, such as the current column number of point, the current
time, and whether new mail for you has arrived.

The mode line is mouse-sensitive; when you move the mouse across various parts of it,
Emacs displays help text to say what a click in that place will do. See Section 17.6 [Mode
Line Mouse], page 167.

1.4 The Menu Bar

Each Emacs frame normally has a menu bar at the top which you can use to perform
certain common operations. There’s no need to list them here, as you can more easily see
for yourself.

When you are using a window system, you can use the mouse to choose a command
from the menu bar. An arrow pointing right, after the menu item, indicates that the item
leads to a subsidiary menu; ‘...’ at the end means that the command will read arguments
from the keyboard before it actually does anything.

To view the full command name and documentation for a menu item, type C-h k, and
then select the menu bar with the mouse in the usual way (see Section 7.1 [Key Help],
page 55).

On text-only terminals with no mouse, you can use the menu bar by typing M-‘ or 〈F10〉
(these run the command tmm-menubar). This command enters a mode in which you can
select a menu item from the keyboard. A provisional choice appears in the echo area. You
can use the left and right arrow keys to move through the menu to different choices. When
you have found the choice you want, type 〈RET〉 to select it.

Each menu item also has an assigned letter or digit which designates that item; it is
usually the initial of some word in the item’s name. This letter or digit is separated from
the item name by ‘=>’. You can type the item’s letter or digit to select the item.

Some of the commands in the menu bar have ordinary key bindings as well; if so, the
menu lists one equivalent key binding in parentheses after the item itself.

26 GNU Emacs Manual

Chapter 2: Characters, Keys and Commands 27

2 Characters, Keys and Commands

This chapter explains the character sets used by Emacs for input commands and for
the contents of files, and also explains the concepts of keys and commands, which are
fundamental for understanding how Emacs interprets your keyboard and mouse input.

2.1 Kinds of User Input

GNU Emacs uses an extension of the ASCII character set for keyboard input; it also
accepts non-character input events including function keys and mouse button actions.

ASCII consists of 128 character codes. Some of these codes are assigned graphic symbols
such as ‘a’ and ‘=’; the rest are control characters, such as Control-a (usually written C-a
for short). C-a gets its name from the fact that you type it by holding down the 〈CTRL〉 key
while pressing a.

Some ASCII control characters have special names, and most terminals have special keys
you can type them with: for example, 〈RET〉, 〈TAB〉, 〈DEL〉 and 〈ESC〉. The space character is
usually referred to below as 〈SPC〉, even though strictly speaking it is a graphic character
whose graphic happens to be blank. Some keyboards have a key labeled “linefeed” which
is an alias for C-j.

Emacs extends the ASCII character set with thousands more printing characters (see
Chapter 18 [International], page 175), additional control characters, and a few more modi-
fiers that can be combined with any character.

On ASCII terminals, there are only 32 possible control characters. These are the control
variants of letters and ‘@[]\^_’. In addition, the shift key is meaningless with control
characters: C-a and C-A are the same character, and Emacs cannot distinguish them.

But the Emacs character set has room for control variants of all printing characters,
and for distinguishing between C-a and C-A. The X Window System makes it possible to
enter all these characters. For example, C-- (that’s Control-Minus) and C-5 are meaningful
Emacs commands under X.

Another Emacs character-set extension is additional modifier bits. Only one modifier bit
is commonly used; it is called Meta. Every character has a Meta variant; examples include
Meta-a (normally written M-a, for short), M-A (not the same character as M-a, but those two
characters normally have the same meaning in Emacs), M-〈RET〉, and M-C-a. For reasons of
tradition, we usually write C-M-a rather than M-C-a; logically speaking, the order in which
the modifier keys 〈CTRL〉 and 〈META〉 are mentioned does not matter.

Some terminals have a 〈META〉 key, and allow you to type Meta characters by holding this
key down. Thus, Meta-a is typed by holding down 〈META〉 and pressing a. The 〈META〉 key
works much like the 〈SHIFT〉 key. Such a key is not always labeled 〈META〉, however, as this
function is often a special option for a key with some other primary purpose. Sometimes it
is labeled 〈ALT〉 or 〈EDIT〉; on a Sun keyboard, it may have a diamond on it.

If there is no 〈META〉 key, you can still type Meta characters using two-character sequences
starting with 〈ESC〉. Thus, you can enter M-a by typing 〈ESC〉 a. You can enter C-M-a by
typing 〈ESC〉 C-a. 〈ESC〉 is allowed on terminals with 〈META〉 keys, too, in case you have
formed a habit of using it.

28 GNU Emacs Manual

The X Window System provides several other modifier keys that can be applied to any in-
put character. These are called 〈SUPER〉, 〈HYPER〉 and 〈ALT〉. We write ‘s-’, ‘H-’ and ‘A-’ to say
that a character uses these modifiers. Thus, s-H-C-x is short for Super-Hyper-Control-x.
Not all X terminals actually provide keys for these modifier flags—in fact, many terminals
have a key labeled 〈ALT〉 which is really a 〈META〉 key. The standard key bindings of Emacs
do not include any characters with these modifiers. But you can assign them meanings of
your own by customizing Emacs.

Keyboard input includes keyboard keys that are not characters at all: for example
function keys and arrow keys. Mouse buttons are also outside the gamut of characters. You
can modify these events with the modifier keys 〈CTRL〉, 〈META〉, 〈SUPER〉, 〈HYPER〉 and 〈ALT〉,
just like keyboard characters.

Input characters and non-character inputs are collectively called input events. See section
“Input Events” in The Emacs Lisp Reference Manual, for more information. If you are not
doing Lisp programming, but simply want to redefine the meaning of some characters or
non-character events, see Chapter 32 [Customization], page 377.

ASCII terminals cannot really send anything to the computer except ASCII characters.
These terminals use a sequence of characters to represent each function key. But that is
invisible to the Emacs user, because the keyboard input routines recognize these special
sequences and convert them to function key events before any other part of Emacs gets to
see them.

2.2 Keys

A key sequence (key, for short) is a sequence of input events that are meaningful as a
unit—as “a single command.” Some Emacs command sequences are just one character or
one event; for example, just C-f is enough to move forward one character in the buffer. But
Emacs also has commands that take two or more events to invoke.

If a sequence of events is enough to invoke a command, it is a complete key. Examples
of complete keys include C-a, X, 〈RET〉, 〈NEXT〉 (a function key), 〈DOWN〉 (an arrow key), C-x
C-f, and C-x 4 C-f. If it isn’t long enough to be complete, we call it a prefix key. The
above examples show that C-x and C-x 4 are prefix keys. Every key sequence is either a
complete key or a prefix key.

Most single characters constitute complete keys in the standard Emacs command bind-
ings. A few of them are prefix keys. A prefix key combines with the following input event
to make a longer key sequence, which may itself be complete or a prefix. For example, C-x
is a prefix key, so C-x and the next input event combine to make a two-event key sequence.
Most of these key sequences are complete keys, including C-x C-f and C-x b. A few, such as
C-x 4 and C-x r, are themselves prefix keys that lead to three-event key sequences. There’s
no limit to the length of a key sequence, but in practice people rarely use sequences longer
than four events.

By contrast, you can’t add more events onto a complete key. For example, the two-event
sequence C-f C-k is not a key, because the C-f is a complete key in itself. It’s impossible
to give C-f C-k an independent meaning as a command. C-f C-k is two key sequences, not
one.

All told, the prefix keys in Emacs are C-c, C-h, C-x, C-x 〈RET〉, C-x @, C-x a, C-x n,
C-x r, C-x v, C-x 4, C-x 5, C-x 6, 〈ESC〉, and M-g. But this list is not cast in concrete; it

Chapter 2: Characters, Keys and Commands 29

is just a matter of Emacs’s standard key bindings. If you customize Emacs, you can make
new prefix keys, or eliminate these. See Section 32.4 [Key Bindings], page 393.

If you do make or eliminate prefix keys, that changes the set of possible key sequences.
For example, if you redefine C-f as a prefix, C-f C-k automatically becomes a key (complete,
unless you define that too as a prefix). Conversely, if you remove the prefix definition of
C-x 4, then C-x 4 f (or C-x 4 anything) is no longer a key.

Typing the help character (C-h or 〈F1〉) after a prefix key displays a list of the commands
starting with that prefix. There are a few prefix keys for which C-h does not work—for
historical reasons, they have other meanings for C-h which are not easy to change. But 〈F1〉
should work for all prefix keys.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not
assign meanings to keys directly. Instead, Emacs assigns meanings to named commands,
and then gives keys their meanings by binding them to commands.

Every command has a name chosen by a programmer. The name is usually made of
a few English words separated by dashes; for example, next-line or forward-word. A
command also has a function definition which is a Lisp program; this is what makes the
command do what it does. In Emacs Lisp, a command is actually a special kind of Lisp
function; one which specifies how to read arguments for it and call it interactively. For more
information on commands and functions, see section “What Is a Function” in The Emacs
Lisp Reference Manual. (The definition we use in this manual is simplified slightly.)

The bindings between keys and commands are recorded in various tables called keymaps.
See Section 32.4.1 [Keymaps], page 393.

When we say that “C-n moves down vertically one line” we are glossing over a distinction
that is irrelevant in ordinary use but is vital in understanding how to customize Emacs. It
is the command next-line that is programmed to move down vertically. C-n has this effect
because it is bound to that command. If you rebind C-n to the command forward-word
then C-n will move forward by words instead. Rebinding keys is a common method of
customization.

In the rest of this manual, we usually ignore this subtlety to keep things simple. To
give the information needed for customization, we state the name of the command which
really does the work in parentheses after mentioning the key that runs it. For example, we
will say that “The command C-n (next-line) moves point vertically down,” meaning that
next-line is a command that moves vertically down, and C-n is a key that is normally
bound to it.

While we are on the subject of information for customization only, it’s a good time to
tell you about variables. Often the description of a command will say, “To change this, set
the variable mumble-foo.” A variable is a name used to remember a value. Most of the
variables documented in this manual exist just to facilitate customization: some command
or other part of Emacs examines the variable and behaves differently according to the value
that you set. Until you are interested in customizing, you can ignore the information about
variables. When you are ready to be interested, read the basic information on variables, and
then the information on individual variables will make sense. See Section 32.2 [Variables],
page 379.

30 GNU Emacs Manual

2.4 Character Set for Text

Text in Emacs buffers is a sequence of 8-bit bytes. Each byte can hold a single ASCII
character. Both ASCII control characters (octal codes 000 through 037, and 0177) and
ASCII printing characters (codes 040 through 0176) are allowed; however, non-ASCII con-
trol characters cannot appear in a buffer. The other modifier flags used in keyboard input,
such as Meta, are not allowed in buffers either.

Some ASCII control characters serve special purposes in text, and have special names.
For example, the newline character (octal code 012) is used in the buffer to end a line,
and the tab character (octal code 011) is used for indenting to the next tab stop column
(normally every 8 columns). See Section 11.11 [Text Display], page 88.

Non-ASCII printing characters can also appear in buffers. When multibyte characters
are enabled, you can use any of the non-ASCII printing characters that Emacs supports.
They have character codes starting at 256, octal 0400, and each one is represented as a
sequence of two or more bytes. See Chapter 18 [International], page 175. Single-byte
characters with codes 128 through 255 can also appear in multibyte buffers.

If you disable multibyte characters, then you can use only one alphabet of non-ASCII
characters, but they all fit in one byte. They use codes 0200 through 0377. See Section 18.13
[Single-Byte Character Support], page 190.

Chapter 3: Entering and Exiting Emacs 31

3 Entering and Exiting Emacs

The usual way to invoke Emacs is with the shell command emacs. Emacs clears the
screen and then displays an initial help message and copyright notice. Some operating
systems discard all type-ahead when Emacs starts up; they give Emacs no way to prevent
this. Therefore, it is advisable to wait until Emacs clears the screen before typing your first
editing command.

If you run Emacs from a shell window under the X Window System, run it in the
background with emacs&. This way, Emacs does not tie up the shell window, so you can use
that to run other shell commands while Emacs operates its own X windows. You can begin
typing Emacs commands as soon as you direct your keyboard input to the Emacs frame.

When Emacs starts up, it creates a buffer named ‘*scratch*’. That’s the buffer you
start out in. The ‘*scratch*’ buffer uses Lisp Interaction mode; you can use it to type Lisp
expressions and evaluate them, or you can ignore that capability and simply doodle. (You
can specify a different major mode for this buffer by setting the variable initial-major-
mode in your init file. See Section 32.7 [Init File], page 403.)

It is possible to specify files to be visited, Lisp files to be loaded, and functions to be
called, by giving Emacs arguments in the shell command line. See Appendix B [Command
Arguments], page 423. But we don’t recommend doing this. The feature exists mainly for
compatibility with other editors.

Many other editors are designed to be started afresh each time you want to edit. You
edit one file and then exit the editor. The next time you want to edit either another file or
the same one, you must run the editor again. With these editors, it makes sense to use a
command-line argument to say which file to edit.

But starting a new Emacs each time you want to edit a different file does not make
sense. For one thing, this would be annoyingly slow. For another, this would fail to take
advantage of Emacs’s ability to visit more than one file in a single editing session. And it
would lose the other accumulated context, such as the kill ring, registers, undo history, and
mark ring.

The recommended way to use GNU Emacs is to start it only once, just after you log in,
and do all your editing in the same Emacs session. Each time you want to edit a different
file, you visit it with the existing Emacs, which eventually comes to have many files in it
ready for editing. Usually you do not kill the Emacs until you are about to log out. See
Chapter 14 [Files], page 109, for more information on visiting more than one file.

3.1 Exiting Emacs

There are two commands for exiting Emacs because there are two kinds of exiting:
suspending Emacs and killing Emacs.

Suspending means stopping Emacs temporarily and returning control to its parent pro-
cess (usually a shell), allowing you to resume editing later in the same Emacs job, with the
same buffers, same kill ring, same undo history, and so on. This is the usual way to exit.

Killing Emacs means destroying the Emacs job. You can run Emacs again later, but
you will get a fresh Emacs; there is no way to resume the same editing session after it has
been killed.

32 GNU Emacs Manual

C-z Suspend Emacs (suspend-emacs) or iconify a frame (iconify-or-deiconify-
frame).

C-x C-c Kill Emacs (save-buffers-kill-emacs).

To suspend Emacs, type C-z (suspend-emacs). This takes you back to the shell from
which you invoked Emacs. You can resume Emacs with the shell command %emacs in most
common shells.

On systems that do not support suspending programs, C-z starts an inferior shell that
communicates directly with the terminal. Emacs waits until you exit the subshell. (The
way to do that is probably with C-d or exit, but it depends on which shell you use.) The
only way on these systems to get back to the shell from which Emacs was run (to log out,
for example) is to kill Emacs.

Suspending also fails if you run Emacs under a shell that doesn’t support suspending
programs, even if the system itself does support it. In such a case, you can set the variable
cannot-suspend to a non-nil value to force C-z to start an inferior shell. (One might also
describe Emacs’s parent shell as “inferior” for failing to support job control properly, but
that is a matter of taste.)

When Emacs communicates directly with an X server and creates its own dedicated
X windows, C-z has a different meaning. Suspending an application that uses its own
X windows is not meaningful or useful. Instead, C-z runs the command iconify-or-
deiconify-frame, which temporarily iconifies (or “minimizes”) the selected Emacs frame
(see Chapter 17 [Frames], page 163). Then you can use the window manager to get back to
a shell window.

To exit and kill Emacs, type C-x C-c (save-buffers-kill-emacs). A two-character
key is used for this to make it harder to type by accident. This command first offers to save
any modified file-visiting buffers. If you do not save them all, it asks for reconfirmation
with yes before killing Emacs, since any changes not saved will be lost forever. Also, if
any subprocesses are still running, C-x C-c asks for confirmation about them, since killing
Emacs will also kill the subprocesses.

If the value of the variable confirm-kill-emacs is non-nil, C-x C-c assumes that its
value is a predicate function, and calls that function. If the result is non-nil, the session
is killed, otherwise Emacs continues to run. One convenient function to use as the value of
confirm-kill-emacs is the function yes-or-no-p. The default value of confirm-kill-
emacs is nil.

There is no way to resume an Emacs session once you have killed it. You can, however,
arrange for Emacs to record certain session information when you kill it, such as which files
are visited, so that the next time you start Emacs it will try to visit the same files and so
on. See Section 31.12 [Saving Emacs Sessions], page 368.

The operating system usually listens for certain special characters whose meaning is to
kill or suspend the program you are running. This operating system feature is turned off
while you are in Emacs. The meanings of C-z and C-x C-c as keys in Emacs were inspired
by the use of C-z and C-c on several operating systems as the characters for stopping or
killing a program, but that is their only relationship with the operating system. You can
customize these keys to run any commands of your choice (see Section 32.4.1 [Keymaps],
page 393).

Chapter 4: Basic Editing Commands 33

4 Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in a
file. If this material is new to you, you might learn it more easily by running the Emacs
learn-by-doing tutorial. To use the tutorial, run Emacs and type Control-h t (help-with-
tutorial).

To clear the screen and redisplay, type C-l (recenter).

4.1 Inserting Text

To insert printing characters into the text you are editing, just type them. This inserts
the characters you type into the buffer at the cursor (that is, at point; see Section 1.1
[Point], page 21). The cursor moves forward, and any text after the cursor moves forward
too. If the text in the buffer is ‘FOOBAR’, with the cursor before the ‘B’, then if you type XX,
you get ‘FOOXXBAR’, with the cursor still before the ‘B’.

To delete text you have just inserted, use the large key labeled 〈DEL〉, 〈BACKSPACE〉 or
〈DELETE〉 which is a short distance above the 〈RET〉 or 〈ENTER〉 key. This is the key you
normally use, outside Emacs, for erasing the last character that you typed. Regardless of
the label on that key, Emacs thinks of it as 〈DEL〉, and that’s what we call it in this manual.

The 〈DEL〉 key deletes the character before the cursor. As a consequence, the cursor and
all the characters after it move backwards. If you type a printing character and then type
〈DEL〉, they cancel out.

On most computers, Emacs recognizes automatically which key ought to be 〈DEL〉, and
sets it up that way. But in some cases, especially with text-only terminals, you will need
to tell Emacs which key to use for that purpose. If the large key not far above the 〈RET〉 or
〈ENTER〉 key doesn’t delete backwards, you need to do this. See Section 33.2.1 [DEL Does
Not Delete], page 410, for an explanation of how.

Most PC keyboards have both a 〈BACKSPACE〉 key a short ways above 〈RET〉 or 〈ENTER〉,
and a 〈DELETE〉 key elsewhere. On these keyboards, Emacs supports when possible the usual
convention that the 〈BACKSPACE〉 key deletes backwards (it is 〈DEL〉), while the 〈DELETE〉 key
deletes “forwards,” deleting the character after point, the one underneath the cursor, like
C-d (see below).

To end a line and start typing a new one, type 〈RET〉. This inserts a newline character
in the buffer. If point is in the middle of a line, 〈RET〉 splits the line. Typing 〈DEL〉 when the
cursor is at the beginning of a line deletes the preceding newline, thus joining the line with
the preceding line.

Emacs can split lines automatically when they become too long, if you turn on a special
minor mode called Auto Fill mode. See Section 21.5 [Filling], page 203, for how to use Auto
Fill mode.

If you prefer to have text characters replace (overwrite) existing text rather than shove
it to the right, you can enable Overwrite mode, a minor mode. See Section 32.1 [Minor
Modes], page 377.

Direct insertion works for printing characters and 〈SPC〉, but other characters act as
editing commands and do not insert themselves. If you need to insert a control character
or a character whose code is above 200 octal, you must quote it by typing the character

34 GNU Emacs Manual

Control-q (quoted-insert) first. (This character’s name is normally written C-q for
short.) There are two ways to use C-q:

• C-q followed by any non-graphic character (even C-g) inserts that character.
• C-q followed by a sequence of octal digits inserts the character with the specified octal

character code. You can use any number of octal digits; any non-digit terminates the
sequence. If the terminating character is 〈RET〉, it serves only to terminate the sequence.
Any other non-digit terminates the sequence and then acts as normal input—thus, C-q
1 0 1 B inserts ‘AB’.
The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give
you a convenient way to insert a digit instead of overwriting with it.

When multibyte characters are enabled, if you specify a code in the range 0200 through
0377 octal, C-q assumes that you intend to use some ISO 8859-n character set, and converts
the specified code to the corresponding Emacs character code. See Section 18.2 [Enabling
Multibyte], page 176. You select which of the ISO 8859 character sets to use through your
choice of language environment (see Section 18.3 [Language Environments], page 177).

To use decimal or hexadecimal instead of octal, set the variable read-quoted-char-
radix to 10 or 16. If the radix is greater than 10, some letters starting with a serve as part
of a character code, just like digits.

A numeric argument to C-q specifies how many copies of the quoted character should
be inserted (see Section 4.10 [Arguments], page 41).

Customization information: 〈DEL〉 in most modes runs the command delete-backward-
char; 〈RET〉 runs the command newline, and self-inserting printing characters run the
command self-insert, which inserts whatever character was typed to invoke it. Some
major modes rebind 〈DEL〉 to other commands.

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 21). The simplest way to do this is with arrow keys, or by clicking the left
mouse button where you want to move to.

There are also control and meta characters for cursor motion. Some are equivalent to
the arrow keys (these date back to the days before terminals had arrow keys, and are usable
on terminals which don’t have them). Others do more sophisticated things.

C-a Move to the beginning of the line (beginning-of-line).

C-e Move to the end of the line (end-of-line).

C-f Move forward one character (forward-char). The right-arrow key does the
same thing.

C-b Move backward one character (backward-char). The left-arrow key has the
same effect.

M-f Move forward one word (forward-word).

M-b Move backward one word (backward-word).

Chapter 4: Basic Editing Commands 35

C-n Move down one line, vertically (next-line). This command attempts to keep
the horizontal position unchanged, so if you start in the middle of one line, you
end in the middle of the next. The down-arrow key does the same thing.

C-p Move up one line, vertically (previous-line). The up-arrow key has the same
effect.

M-r Move point to left margin, vertically centered in the window (move-to-window-
line). Text does not move on the screen.
A numeric argument says which screen line to place point on. It counts screen
lines down from the top of the window (zero for the top line). A negative
argument counts lines from the bottom (−1 for the bottom line).

M-< Move to the top of the buffer (beginning-of-buffer). With numeric argument
n, move to n/10 of the way from the top. See Section 4.10 [Arguments], page 41,
for more information on numeric arguments.

M-> Move to the end of the buffer (end-of-buffer).

C-v Scroll the display one screen forward, and move point if necessary to put it on
the screen (scroll-up). This doesn’t always move point, but it is commonly
used to do so. If your keyboard has a 〈PAGEDOWN〉 key, it does the same thing.
Scrolling commands are further described in Section 11.6 [Scrolling], page 84.

M-v Scroll one screen backward, and move point if necessary to put it on the screen
(scroll-down). This doesn’t always move point, but it is commonly used to
do so. The 〈PAGEUP〉 key has the same effect.

M-x goto-char
Read a number n and move point to buffer position n. Position 1 is the begin-
ning of the buffer.

M-x goto-line
Read a number n and move point to line number n. Line 1 is the beginning of
the buffer.

C-x C-n Use the current column of point as the semipermanent goal column for C-n and
C-p (set-goal-column). Henceforth, those commands always move to this
column in each line moved into, or as close as possible given the contents of the
line. This goal column remains in effect until canceled.

C-u C-x C-n
Cancel the goal column. Henceforth, C-n and C-p once again try to stick to a
fixed horizontal position, as usual.

If you set the variable track-eol to a non-nil value, then C-n and C-p, when starting
at the end of the line, move to the end of another line. Normally, track-eol is nil. See
Section 32.2 [Variables], page 379, for how to set variables such as track-eol.

C-n normally gets an error when you use it on the last line of the buffer (just as C-p
gets an error on the first line). But if you set the variable next-line-add-newlines to
a non-nil value, C-n on the last line of a buffer creates an additional line at the end and
moves down onto it.

36 GNU Emacs Manual

4.3 Erasing Text

〈DEL〉 Delete the character before point (delete-backward-char).

C-d Delete the character after point (delete-char).

〈DELETE〉
〈BACKSPACE〉

One of these keys, whichever is the large key above the 〈RET〉 or 〈ENTER〉 key,
deletes the character before point, like 〈DEL〉. If that is 〈BACKSPACE〉, and your
keyboard also has 〈DELETE〉, then 〈DELETE〉 deletes forwards, like C-d.

C-k Kill to the end of the line (kill-line).

M-d Kill forward to the end of the next word (kill-word).

M-〈DEL〉 Kill back to the beginning of the previous word (backward-kill-word).

You already know about the 〈DEL〉 key which deletes the character before point (that
is, before the cursor). Another key, Control-d (C-d for short), deletes the character after
point (that is, the character that the cursor is on). This shifts the rest of the text on the
line to the left. If you type C-d at the end of a line, it joins together that line and the next
line.

To erase a larger amount of text, use the C-k key, which kills a line at a time. If you
type C-k at the beginning or middle of a line, it kills all the text up to the end of the line.
If you type C-k at the end of a line, it joins that line and the next line.

See Section 9.1 [Killing], page 67, for more flexible ways of killing text.

4.4 Undoing Changes

You can undo all the recent changes in the buffer text, up to a certain point. Each
buffer records changes individually, and the undo command always applies to the current
buffer. Usually each editing command makes a separate entry in the undo records, but
some commands such as query-replace make many entries, and very simple commands
such as self-inserting characters are often grouped to make undoing less tedious.

C-x u Undo one batch of changes—usually, one command worth (undo).

C-_ The same.

C-u C-x u Undo one batch of changes in the region.

The command C-x u or C-_ is how you undo. The first time you give this command, it
undoes the last change. Point moves back to where it was before the command that made
the change.

Consecutive repetitions of C-_ or C-x u undo earlier and earlier changes, back to the
limit of the undo information available. If all recorded changes have already been undone,
the undo command displays an error message and does nothing.

Any command other than an undo command breaks the sequence of undo commands.
Starting from that moment, the previous undo commands become ordinary changes that

Chapter 4: Basic Editing Commands 37

you can undo. Thus, to redo changes you have undone, type C-f or any other command
that will harmlessly break the sequence of undoing, then type more undo commands.

Ordinary undo applies to all changes made in the current buffer. You can also perform
selective undo, limited to the current region. To do this, specify the region you want, then
run the undo command with a prefix argument (the value does not matter): C-u C-x u or
C-u C-_. This undoes the most recent change in the region. To undo further changes in the
same region, repeat the undo command (no prefix argument is needed). In Transient Mark
mode, any use of undo when there is an active region performs selective undo; you do not
need a prefix argument.

If you notice that a buffer has been modified accidentally, the easiest way to recover is to
type C-_ repeatedly until the stars disappear from the front of the mode line. At this time,
all the modifications you made have been canceled. Whenever an undo command makes
the stars disappear from the mode line, it means that the buffer contents are the same as
they were when the file was last read in or saved.

If you do not remember whether you changed the buffer deliberately, type C-_ once.
When you see the last change you made undone, you will see whether it was an intentional
change. If it was an accident, leave it undone. If it was deliberate, redo the change as
described above.

Not all buffers record undo information. Buffers whose names start with spaces don’t;
these buffers are used internally by Emacs and its extensions to hold text that users don’t
normally look at or edit.

You cannot undo mere cursor motion; only changes in the buffer contents save undo
information. However, some cursor motion commands set the mark, so if you use these
commands from time to time, you can move back to the neighborhoods you have moved
through by popping the mark ring (see Section 8.5 [Mark Ring], page 64).

When the undo information for a buffer becomes too large, Emacs discards the oldest
undo information from time to time (during garbage collection). You can specify how much
undo information to keep by setting two variables: undo-limit and undo-strong-limit.
Their values are expressed in units of bytes of space.

The variable undo-limit sets a soft limit: Emacs keeps undo data for enough commands
to reach this size, and perhaps exceed it, but does not keep data for any earlier commands
beyond that. Its default value is 20000. The variable undo-strong-limit sets a stricter
limit: the command which pushes the size past this amount is itself forgotten. Its default
value is 30000.

Regardless of the values of those variables, the most recent change is never discarded,
so there is no danger that garbage collection occurring right after an unintentional large
change might prevent you from undoing it.

The reason the undo command has two keys, C-x u and C-_, set up to run it is that it is
worthy of a single-character key, but on some keyboards it is not obvious how to type C-_.
C-x u is an alternative you can type straightforwardly on any terminal.

4.5 Files

The commands described above are sufficient for creating and altering text in an Emacs
buffer; the more advanced Emacs commands just make things easier. But to keep any text

38 GNU Emacs Manual

permanently you must put it in a file. Files are named units of text which are stored by
the operating system for you to retrieve later by name. To look at or use the contents of a
file in any way, including editing the file with Emacs, you must specify the file name.

Consider a file named ‘/usr/rms/foo.c’. In Emacs, to begin editing this file, type
C-x C-f /usr/rms/foo.c 〈RET〉

Here the file name is given as an argument to the command C-x C-f (find-file). That
command uses the minibuffer to read the argument, and you type 〈RET〉 to terminate the
argument (see Chapter 5 [Minibuffer], page 43).

Emacs obeys the command by visiting the file: creating a buffer, copying the contents
of the file into the buffer, and then displaying the buffer for you to edit. If you alter
the text, you can save the new text in the file by typing C-x C-s (save-buffer). This
makes the changes permanent by copying the altered buffer contents back into the file
‘/usr/rms/foo.c’. Until you save, the changes exist only inside Emacs, and the file ‘foo.c’
is unaltered.

To create a file, just visit the file with C-x C-f as if it already existed. This creates an
empty buffer in which you can insert the text you want to put in the file. The file is actually
created when you save this buffer with C-x C-s.

Of course, there is a lot more to learn about using files. See Chapter 14 [Files], page 109.

4.6 Help

If you forget what a key does, you can find out with the Help character, which is C-h (or
〈F1〉, which is an alias for C-h). Type C-h k followed by the key you want to know about;
for example, C-h k C-n tells you all about what C-n does. C-h is a prefix key; C-h k is just
one of its subcommands (the command describe-key). The other subcommands of C-h
provide different kinds of help. Type C-h twice to get a description of all the help facilities.
See Chapter 7 [Help], page 53.

4.7 Blank Lines

Here are special commands and techniques for putting in and taking out blank lines.

C-o Insert one or more blank lines after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

When you want to insert a new line of text before an existing line, you can do it by
typing the new line of text, followed by 〈RET〉. However, it may be easier to see what you
are doing if you first make a blank line and then insert the desired text into it. This is easy
to do using the key C-o (open-line), which inserts a newline after point but leaves point
in front of the newline. After C-o, type the text for the new line. C-o F O O has the same
effect as F O O 〈RET〉, except for the final location of point.

You can make several blank lines by typing C-o several times, or by giving it a numeric
argument to tell it how many blank lines to make. See Section 4.10 [Arguments], page 41,
for how. If you have a fill prefix, then C-o command inserts the fill prefix on the new line,
when you use it at the beginning of a line. See Section 21.5.4 [Fill Prefix], page 205.

Chapter 4: Basic Editing Commands 39

The easy way to get rid of extra blank lines is with the command C-x C-o (delete-
blank-lines). C-x C-o in a run of several blank lines deletes all but one of them. C-x C-o
on a solitary blank line deletes that blank line. When point is on a nonblank line, C-x C-o
deletes any blank lines following that nonblank line.

4.8 Continuation Lines

If you add too many characters to one line without breaking it with 〈RET〉, the line grows
to occupy two (or more) lines on the screen. On graphical displays, Emacs indicates line
wrapping with small bent arrows in the fringes to the left and right of the window. On
text-only terminals, Emacs displays a ‘\’ character at the right margin of a screen line if
it is not the last in its text line. This ‘\’ character says that the following screen line is
not really a distinct line in the text, just a continuation of a line too long to fit the screen.
Continuation is also called line wrapping.

When line wrapping occurs before a character that is wider than one column, some
columns at the end of the previous screen line may be “empty.” In this case, Emacs
displays additional ‘\’ characters in the “empty” columns, just before the ‘\’ character that
indicates continuation.

Sometimes it is nice to have Emacs insert newlines automatically when a line gets too
long. Continuation on the screen does not do that. Use Auto Fill mode (see Section 21.5
[Filling], page 203) if that’s what you want.

As an alternative to continuation, Emacs can display long lines by truncation. This
means that all the characters that do not fit in the width of the screen or window do not
appear at all. They remain in the buffer, temporarily invisible. On terminals, ‘$’ in the last
column informs you that the line has been truncated on the display. On window systems,
a small straight arrow in the fringe to the right of the window indicates a truncated line.

Truncation instead of continuation happens whenever horizontal scrolling is in
use, and optionally in all side-by-side windows (see Chapter 16 [Windows], page 157).
You can enable or disable truncation for a particular buffer with the command M-x
toggle-truncate-lines.

See Section 11.12 [Display Custom], page 89, for additional variables that affect how
text is displayed.

4.9 Cursor Position Information

Here are commands to get information about the size and position of parts of the buffer,
and to count lines.

M-x what-page
Display the page number of point, and the line number within the page.

M-x what-line
Display the line number of point in the buffer.

M-x line-number-mode
M-x column-number-mode

Toggle automatic display of current line number or column number. See Sec-
tion 11.10 [Optional Mode Line], page 87.

40 GNU Emacs Manual

M-= Display the number of lines in the current region (count-lines-region). See
Chapter 8 [Mark], page 61, for information about the region.

C-x = Display the character code of character after point, character position of point,
and column of point (what-cursor-position).

M-x hl-line-mode
Enable or disable highlighting of the current line. See Section 11.13 [Cursor
Display], page 90.

There are two commands for working with line numbers. M-x what-line computes the
current line number and displays it in the echo area. To go to a given line by number, use
M-x goto-line; it prompts you for the number. These line numbers count from one at the
beginning of the buffer.

You can also see the current line number in the mode line; see Section 1.3 [Mode Line],
page 23. If you narrow the buffer, then the line number in the mode line is relative to the
accessible portion (see Section 31.9 [Narrowing], page 366). By contrast, what-line shows
both the line number relative to the narrowed region and the line number relative to the
whole buffer.

M-x what-page counts pages from the beginning of the file, and counts lines within the
page, showing both numbers in the echo area. See Section 21.4 [Pages], page 202.

While on this subject, we might as well mention M-= (count-lines-region), which
displays the number of lines in the region (see Chapter 8 [Mark], page 61). See Section 21.4
[Pages], page 202, for the command C-x l which counts the lines in the current page.

The command C-x = (what-cursor-position) can be used to find out the column that
the cursor is in, and other miscellaneous information about point. It displays a line in the
echo area that looks like this:

Char: c (0143, 99, 0x63) point=21044 of 26883(78%) column 53

(In fact, this is the output produced when point is before the ‘column’ in the example.)

The four values after ‘Char:’ describe the character that follows point, first by showing it
and then by giving its character code in octal, decimal and hex. For a non-ASCII multibyte
character, these are followed by ‘ext’ and the character’s representation, in hex, in the
buffer’s coding system, if that coding system encodes the character safely and with a single
byte (see Section 18.7 [Coding Systems], page 181). If the character’s encoding is longer
than one byte, Emacs shows ‘ext ...’.

‘point=’ is followed by the position of point expressed as a character count. The front
of the buffer counts as position 1, one character later as 2, and so on. The next, larger,
number is the total number of characters in the buffer. Afterward in parentheses comes the
position expressed as a percentage of the total size.

‘column’ is followed by the horizontal position of point, in columns from the left edge of
the window.

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily inaccessible, C-x = displays additional text describing the currently accessible
range. For example, it might display this:

Char: C (0103, 67, 0x43) point=252 of 889(28%) <231 - 599> column 0

Chapter 4: Basic Editing Commands 41

where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the accessible ones. See
Section 31.9 [Narrowing], page 366.

If point is at the end of the buffer (or the end of the accessible part), the C-x = output
does not describe a character after point. The output might look like this:

point=26957 of 26956(100%) column 0

C-u C-x = displays additional information about a character, in place of the buffer coor-
dinates and column: the character set name and the codes that identify the character within
that character set; ASCII characters are identified as belonging to the ASCII character set.
In addition, the full character encoding, even if it takes more than a single byte, is shown
after ‘ext’. Here’s an example for a Latin-1 character A with a grave accent in a buffer
whose coding system is iso-2022-7bit1:

Char: À (04300, 2240, 0x8c0, ext ESC , A @) (latin-iso8859-1 64)

In addition, C-u C-x = shows the font used to display the character (if the terminal supports
more than one font).

4.10 Numeric Arguments

In mathematics and computer usage, the word argument means “data provided to a
function or operation.” You can give any Emacs command a numeric argument (also called
a prefix argument). Some commands interpret the argument as a repetition count. For
example, C-f with an argument of ten moves forward ten characters instead of one. With
these commands, no argument is equivalent to an argument of one. Negative arguments
tell most such commands to move or act in the opposite direction.

If your terminal keyboard has a 〈META〉 key, the easiest way to specify a numeric argument
is to type digits and/or a minus sign while holding down the 〈META〉 key. For example,

M-5 C-n

would move down five lines. The characters Meta-1, Meta-2, and so on, as well as Meta--, do
this because they are keys bound to commands (digit-argument and negative-argument)
that are defined to contribute to an argument for the next command. Meta-- without digits
normally means −1. Digits and - modified with Control, or Control and Meta, also specify
numeric arguments.

Another way of specifying an argument is to use the C-u (universal-argument) com-
mand followed by the digits of the argument. With C-u, you can type the argument digits
without holding down modifier keys; C-u works on all terminals. To type a negative ar-
gument, type a minus sign after C-u. Just a minus sign without digits normally means
−1.

C-u followed by a character which is neither a digit nor a minus sign has the special
meaning of “multiply by four.” It multiplies the argument for the next command by four.
C-u twice multiplies it by sixteen. Thus, C-u C-u C-f moves forward sixteen characters.
This is a good way to move forward “fast,” since it moves about 1/5 of a line in the

1 On terminals that support Latin-1 characters, the character shown after ‘Char:’ is displayed as the actual
glyph of A with grave accent.

42 GNU Emacs Manual

usual size screen. Other useful combinations are C-u C-n, C-u C-u C-n (move down a good
fraction of a screen), C-u C-u C-o (make “a lot” of blank lines), and C-u C-k (kill four lines).

Some commands care only about whether there is an argument, and not about its value.
For example, the command M-q (fill-paragraph) with no argument fills text; with an
argument, it justifies the text as well. (See Section 21.5 [Filling], page 203, for more infor-
mation on M-q.) Plain C-u is a handy way of providing an argument for such commands.

Some commands use the value of the argument as a repeat count, but do something
peculiar when there is no argument. For example, the command C-k (kill-line) with
argument n kills n lines, including their terminating newlines. But C-k with no argument
is special: it kills the text up to the next newline, or, if point is right at the end of the line,
it kills the newline itself. Thus, two C-k commands with no arguments can kill a nonblank
line, just like C-k with an argument of one. (See Section 9.1 [Killing], page 67, for more
information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of −1. These
unusual cases are described when they come up; they are always for reasons of convenience
of use of the individual command.

You can use a numeric argument to insert multiple copies of a character. This is straight-
forward unless the character is a digit; for example, C-u 6 4 a inserts 64 copies of the char-
acter ‘a’. But this does not work for inserting digits; C-u 6 4 1 specifies an argument of
641, rather than inserting anything. To separate the digit to insert from the argument, type
another C-u; for example, C-u 6 4 C-u 1 does insert 64 copies of the character ‘1’.

We use the term “prefix argument” as well as “numeric argument” to emphasize that you
type the argument before the command, and to distinguish these arguments from minibuffer
arguments that come after the command.

4.11 Repeating a Command

Many simple commands, such as those invoked with a single key or with M-x command-
name 〈RET〉, can be repeated by invoking them with a numeric argument that serves as a
repeat count (see Section 4.10 [Arguments], page 41). However, if the command you want
to repeat prompts for some input, or uses a numeric argument in another way, repetition
using a numeric argument might be problematical.

The command C-x z (repeat) provides another way to repeat an Emacs command many
times. This command repeats the previous Emacs command, whatever that was. Repeating
a command uses the same arguments that were used before; it does not read new arguments
each time.

To repeat the command more than once, type additional z’s: each z repeats the command
one more time. Repetition ends when you type a character other than z, or press a mouse
button.

For example, suppose you type C-u 2 0 C-d to delete 20 characters. You can repeat that
command (including its argument) three additional times, to delete a total of 80 characters,
by typing C-x z z z. The first C-x z repeats the command once, and each subsequent z
repeats it once again.

Chapter 5: The Minibuffer 43

5 The Minibuffer

The minibuffer is the facility used by Emacs commands to read arguments more com-
plicated than a single number. Minibuffer arguments can be file names, buffer names, Lisp
function names, Emacs command names, Lisp expressions, and many other things, depend-
ing on the command reading the argument. You can use the usual Emacs editing commands
in the minibuffer to edit the argument text.

When the minibuffer is in use, it appears in the echo area, and the terminal’s cursor
moves there. The beginning of the minibuffer line displays a prompt which says what kind
of input you should supply and how it will be used. Often this prompt is derived from the
name of the command that the argument is for. The prompt normally ends with a colon.

Sometimes a default argument appears in parentheses after the colon; it too is part of
the prompt. The default will be used as the argument value if you enter an empty argument
(that is, just type 〈RET〉). For example, commands that read buffer names always show a
default, which is the name of the buffer that will be used if you type just 〈RET〉.

The simplest way to enter a minibuffer argument is to type the text you want, terminated
by 〈RET〉 which exits the minibuffer. You can cancel the command that wants the argument,
and get out of the minibuffer, by typing C-g.

Since the minibuffer uses the screen space of the echo area, it can conflict with other
ways Emacs customarily uses the echo area. Here is how Emacs handles such conflicts:
• If a command gets an error while you are in the minibuffer, this does not cancel the

minibuffer. However, the echo area is needed for the error message and therefore the
minibuffer itself is hidden for a while. It comes back after a few seconds, or as soon as
you type anything.

• If in the minibuffer you use a command whose purpose is to display a message in the
echo area, such as C-x =, the message hides the minibuffer for a while. The minibuffer
contents come back after a few seconds, or as soon as you type anything.

• Echoing of keystrokes does not take place while the minibuffer is in use.

5.1 Minibuffers for File Names

Sometimes the minibuffer starts out with text in it. For example, when you are supposed
to give a file name, the minibuffer starts out containing the default directory, which ends
with a slash. This is to inform you which directory the file will be found in if you do not
specify a directory.

For example, the minibuffer might start out with these contents:
Find File: /u2/emacs/src/

where ‘Find File: ’ is the prompt. Typing buffer.c specifies the file
‘/u2/emacs/src/buffer.c’. To find files in nearby directories, use ..; thus, if
you type ../lisp/simple.el, you will get the file named ‘/u2/emacs/lisp/simple.el’.
Alternatively, you can kill with M-〈DEL〉 the directory names you don’t want (see
Section 21.1 [Words], page 199).

If you don’t want any of the default, you can kill it with C-a C-k. But you don’t need to
kill the default; you can simply ignore it. Insert an absolute file name, one starting with a

44 GNU Emacs Manual

slash or a tilde, after the default directory. For example, to specify the file ‘/etc/termcap’,
just insert that name, giving these minibuffer contents:

Find File: /u2/emacs/src//etc/termcap

GNU Emacs gives a special meaning to a double slash (which is not normally a useful
thing to write): it means, “ignore everything before the second slash in the pair.” Thus,
‘/u2/emacs/src/’ is ignored in the example above, and you get the file ‘/etc/termcap’.

If you set insert-default-directory to nil, the default directory is not inserted in the
minibuffer. This way, the minibuffer starts out empty. But the name you type, if relative,
is still interpreted with respect to the same default directory.

5.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer (albeit a peculiar one), and the usual Emacs commands
are available for editing the text of an argument you are entering.

Since 〈RET〉 in the minibuffer is defined to exit the minibuffer, you can’t use it to insert a
newline in the minibuffer. To do that, type C-o or C-q C-j. (Recall that a newline is really
the character control-J.)

The minibuffer has its own window which always has space on the screen but acts as if it
were not there when the minibuffer is not in use. When the minibuffer is in use, its window
is just like the others; you can switch to another window with C-x o, edit text in other
windows and perhaps even visit more files, before returning to the minibuffer to submit the
argument. You can kill text in another window, return to the minibuffer window, and then
yank the text to use it in the argument. See Chapter 16 [Windows], page 157.

There are some restrictions on the use of the minibuffer window, however. You cannot
switch buffers in it—the minibuffer and its window are permanently attached. Also, you
cannot split or kill the minibuffer window. But you can make it taller in the normal fashion
with C-x ^.

The minibuffer window expands vertically as necessary to hold the text that you put
in the minibuffer, if resize-mini-windows is non-nil. If resize-mini-windows is t, the
window is always resized to fit the size of the text it displays. If resize-mini-windows
is the symbol grow-only, the window grows when the size of displayed text increases, but
shrinks (back to the normal size) only when the minibuffer becomes inactive.

The variable max-mini-window-height controls the maximum height for resizing the
minibuffer window: a floating-point number specifies a fraction of the frame’s height; an
integer specifies the maximum number of lines; nil means do not resize the minibuffer
window automatically. The default value is 0.25.

If while in the minibuffer you issue a command that displays help text of any sort in
another window, you can use the C-M-v command while in the minibuffer to scroll the help
text. This lasts until you exit the minibuffer. This feature is especially useful when you
display a buffer listing possible completions. See Section 16.3 [Other Window], page 158.

Emacs normally disallows most commands that use the minibuffer while the minibuffer is
active. This rule is to prevent recursive minibuffers from confusing novice users. If you want
to be able to use such commands in the minibuffer, set the variable enable-recursive-
minibuffers to a non-nil value.

Chapter 5: The Minibuffer 45

5.3 Completion

For certain kinds of arguments, you can use completion to enter the argument value.
Completion means that you type part of the argument, then Emacs visibly fills in the rest,
or as much as can be determined from the part you have typed.

When completion is available, certain keys—〈TAB〉, 〈RET〉, and 〈SPC〉—are rebound to
complete the text present in the minibuffer into a longer string that it stands for, by
matching it against a set of completion alternatives provided by the command reading the
argument. ? is defined to display a list of possible completions of what you have inserted.

For example, when M-x uses the minibuffer to read the name of a command, it provides
a list of all available Emacs command names to complete against. The completion keys
match the text in the minibuffer against all the command names, find any additional name
characters implied by the ones already present in the minibuffer, and add those characters
to the ones you have given. This is what makes it possible to type M-x ins 〈SPC〉 b 〈RET〉
instead of M-x insert-buffer 〈RET〉 (for example).

Case is normally significant in completion, because it is significant in most of the names
that you can complete (buffer names, file names and command names). Thus, ‘fo’ does not
complete to ‘Foo’. Completion does ignore case distinctions for certain arguments in which
case does not matter.

5.3.1 Completion Example

A concrete example may help here. If you type M-x au 〈TAB〉, the 〈TAB〉 looks for alter-
natives (in this case, command names) that start with ‘au’. There are several, including
auto-fill-mode and auto-save-mode—but they are all the same as far as auto-, so the
‘au’ in the minibuffer changes to ‘auto-’.

If you type 〈TAB〉 again immediately, there are multiple possibilities for the very next
character—it could be any of ‘cfilrs’—so no more characters are added; instead, 〈TAB〉
displays a list of all possible completions in another window.

If you go on to type f 〈TAB〉, this 〈TAB〉 sees ‘auto-f’. The only command name start-
ing this way is auto-fill-mode, so completion fills in the rest of that. You now have
‘auto-fill-mode’ in the minibuffer after typing just au 〈TAB〉 f 〈TAB〉. Note that 〈TAB〉 has
this effect because in the minibuffer it is bound to the command minibuffer-complete
when completion is available.

5.3.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when completion is
available.

〈TAB〉 Complete the text in the minibuffer as much as possible (minibuffer-
complete).

〈SPC〉 Complete the minibuffer text, but don’t go beyond one word (minibuffer-
complete-word).

〈RET〉 Submit the text in the minibuffer as the argument, possibly completing first as
described below (minibuffer-complete-and-exit).

46 GNU Emacs Manual

? Display a list of all possible completions of the text in the minibuffer
(minibuffer-list-completions).

〈SPC〉 completes much like 〈TAB〉, but never goes beyond the next hyphen or space.
If you have ‘auto-f’ in the minibuffer and type 〈SPC〉, it finds that the completion is
‘auto-fill-mode’, but it stops completing after ‘fill-’. This gives ‘auto-fill-’. An-
other 〈SPC〉 at this point completes all the way to ‘auto-fill-mode’. The command that
implements this behavior is called minibuffer-complete-word.

Here are some commands you can use to choose a completion from a window that displays
a list of completions:

Mouse-2 Clicking mouse button 2 on a completion in the list of possible completions
chooses that completion (mouse-choose-completion). You normally use this
command while point is in the minibuffer, but you must click in the list of
completions, not in the minibuffer itself.

〈PRIOR〉
M-v Typing 〈PRIOR〉 or 〈PAGE-UP〉, or M-v, while in the minibuffer, selects the window

showing the completion list buffer (switch-to-completions). This paves the
way for using the commands below. (Selecting that window in the usual ways
has the same effect, but this way is more convenient.)

〈RET〉 Typing 〈RET〉 in the completion list buffer chooses the completion that point
is in or next to (choose-completion). To use this command, you must first
switch windows to the window that shows the list of completions.

〈RIGHT〉 Typing the right-arrow key 〈RIGHT〉 in the completion list buffer moves point to
the following completion (next-completion).

〈LEFT〉 Typing the left-arrow key 〈LEFT〉 in the completion list buffer moves point
toward the beginning of the buffer, to the previous completion (previous-
completion).

5.3.3 Strict Completion

There are three different ways that 〈RET〉 can work in completing minibuffers, depending
on how the argument will be used.
• Strict completion is used when it is meaningless to give any argument except one of the

known alternatives. For example, when C-x k reads the name of a buffer to kill, it is
meaningless to give anything but the name of an existing buffer. In strict completion,
〈RET〉 refuses to exit if the text in the minibuffer does not complete to an exact match.

• Cautious completion is similar to strict completion, except that 〈RET〉 exits only if the
text was an exact match already, not needing completion. If the text is not an exact
match, 〈RET〉 does not exit, but it does complete the text. If it completes to an exact
match, a second 〈RET〉 will exit.
Cautious completion is used for reading file names for files that must already exist.

• Permissive completion is used when any string whatever is meaningful, and the list of
completion alternatives is just a guide. For example, when C-x C-f reads the name of
a file to visit, any file name is allowed, in case you want to create a file. In permissive

Chapter 5: The Minibuffer 47

completion, 〈RET〉 takes the text in the minibuffer exactly as given, without completing
it.

The completion commands display a list of all possible completions in a window whenever
there is more than one possibility for the very next character. Also, typing ? explicitly
requests such a list. If the list of completions is long, you can scroll it with C-M-v (see
Section 16.3 [Other Window], page 158).

5.3.4 Completion Options

When completion is done on file names, certain file names are usually ignored. The
variable completion-ignored-extensions contains a list of strings; a file whose name
ends in any of those strings is ignored as a possible completion. The standard value of
this variable has several elements including ".o", ".elc", ".dvi" and "~". The effect
is that, for example, ‘foo’ can complete to ‘foo.c’ even though ‘foo.o’ exists as well.
However, if all the possible completions end in “ignored” strings, then they are not ignored.
Ignored extensions do not apply to lists of completions—those always mention all possible
completions.

Normally, a completion command that cannot determine even one additional character
automatically displays a list of all possible completions. If the variable completion-auto-
help is set to nil, this automatic display is disabled, so you must type ? to display the list
of completions.

Partial Completion mode implements a more powerful kind of completion that can com-
plete multiple words in parallel. For example, it can complete the command name abbre-
viation p-b into print-buffer, because no other command starts with two words whose
initials are ‘p’ and ‘b’.

Partial completion of directories in file names uses ‘*’ to indicate the places for comple-
tion; thus, ‘/u*/b*/f*’ might complete to ‘/usr/bin/foo’.

To enable this mode, use the command M-x partial-completion-mode, or customize
the option partial-completion-mode. This binds the partial completion commands to
〈TAB〉, 〈SPC〉, 〈RET〉, and ?. The usual completion commands are available on M-〈TAB〉, M-〈SPC〉,
M-〈RET〉 and M-?.

Another feature of Partial Completion mode is to extend find-file so that the ‘<in-
clude>’ stands for the file named include in some directory in the path PC-include-file-
path. If you set PC-disable-includes to non-nil, this feature is disabled.

Icomplete mode presents a constantly-updated display that tells you what completions
are available for the text you’ve entered so far. The command to enable or disable this
minor mode is M-x icomplete-mode.

5.4 Minibuffer History

Every argument that you enter with the minibuffer is saved on a minibuffer history list
so that you can use it again later in another argument. Special commands load the text of
an earlier argument in the minibuffer. They discard the old minibuffer contents, so you can
think of them as moving through the history of previous arguments.

48 GNU Emacs Manual

〈UP〉
M-p Move to the next earlier argument string saved in the minibuffer history

(previous-history-element).

〈DOWN〉
M-n Move to the next later argument string saved in the minibuffer history (next-

history-element).

M-r regexp 〈RET〉
Move to an earlier saved argument in the minibuffer history that has a match
for regexp (previous-matching-history-element).

M-s regexp 〈RET〉
Move to a later saved argument in the minibuffer history that has a match for
regexp (next-matching-history-element).

The simplest way to reuse the saved arguments in the history list is to move through the
history list one element at a time. While in the minibuffer, use M-p or up-arrow (previous-
history-element) to “move to” the next earlier minibuffer input, and use M-n or down-
arrow (next-history-element) to “move to” the next later input.

The previous input that you fetch from the history entirely replaces the contents of the
minibuffer. To use it as the argument, exit the minibuffer as usual with 〈RET〉. You can
also edit the text before you reuse it; this does not change the history element that you
“moved” to, but your new argument does go at the end of the history list in its own right.

For many minibuffer arguments there is a “default” value. In some cases, the minibuffer
history commands know the default value. Then you can insert the default value into the
minibuffer as text by using M-n to move “into the future” in the history. Eventually we
hope to make this feature available whenever the minibuffer has a default value.

There are also commands to search forward or backward through the history; they search
for history elements that match a regular expression that you specify with the minibuffer.
M-r (previous-matching-history-element) searches older elements in the history, while
M-s (next-matching-history-element) searches newer elements. By special dispensation,
these commands can use the minibuffer to read their arguments even though you are already
in the minibuffer when you issue them. As with incremental searching, an upper-case letter
in the regular expression makes the search case-sensitive (see Section 12.6 [Search Case],
page 100).

All uses of the minibuffer record your input on a history list, but there are separate
history lists for different kinds of arguments. For example, there is a list for file names,
used by all the commands that read file names. (As a special feature, this history list
records the absolute file name, no more and no less, even if that is not how you entered the
file name.)

There are several other very specific history lists, including one for command names read
by M-x, one for buffer names, one for arguments of commands like query-replace, and one
for compilation commands read by compile. Finally, there is one “miscellaneous” history
list that most minibuffer arguments use.

The variable history-length specifies the maximum length of a minibuffer history list;
once a list gets that long, the oldest element is deleted each time an element is added. If

Chapter 5: The Minibuffer 49

the value of history-length is t, though, there is no maximum length and elements are
never deleted.

5.5 Repeating Minibuffer Commands

Every command that uses the minibuffer at least once is recorded on a special history
list, together with the values of its arguments, so that you can repeat the entire command.
In particular, every use of M-x is recorded there, since M-x uses the minibuffer to read the
command name.

C-x 〈ESC〉 〈ESC〉
Re-execute a recent minibuffer command (repeat-complex-command).

M-x list-command-history
Display the entire command history, showing all the commands C-x 〈ESC〉 〈ESC〉
can repeat, most recent first.

C-x 〈ESC〉 〈ESC〉 is used to re-execute a recent minibuffer-using command. With no argu-
ment, it repeats the last such command. A numeric argument specifies which command to
repeat; one means the last one, and larger numbers specify earlier ones.

C-x 〈ESC〉 〈ESC〉 works by turning the previous command into a Lisp expression and then
entering a minibuffer initialized with the text for that expression. If you type just 〈RET〉,
the command is repeated as before. You can also change the command by editing the Lisp
expression. Whatever expression you finally submit is what will be executed. The repeated
command is added to the front of the command history unless it is identical to the most
recently executed command already there.

Even if you don’t understand Lisp syntax, it will probably be obvious which command
is displayed for repetition. If you do not change the text, it will repeat exactly as before.

Once inside the minibuffer for C-x 〈ESC〉 〈ESC〉, you can use the minibuffer history com-
mands (M-p, M-n, M-r, M-s; see Section 5.4 [Minibuffer History], page 47) to move through
the history list of saved entire commands. After finding the desired previous command, you
can edit its expression as usual and then resubmit it by typing 〈RET〉 as usual.

The list of previous minibuffer-using commands is stored as a Lisp list in the variable
command-history. Each element is a Lisp expression which describes one command and its
arguments. Lisp programs can re-execute a command by calling eval with the command-
history element.

50 GNU Emacs Manual

Chapter 6: Running Commands by Name 51

6 Running Commands by Name

Every Emacs command has a name that you can use to run it. Commands that are
used often, or that must be quick to type, are also bound to keys—short sequences of
characters—for convenient use. You can run them by name if you don’t remember the keys.
Other Emacs commands that do not need to be quick are not bound to keys; the only way
to run them is by name. See Section 32.4 [Key Bindings], page 393, for the description of
how to bind commands to keys.

By convention, a command name consists of one or more words, separated by hyphens;
for example, auto-fill-mode or manual-entry. The use of English words makes the
command name easier to remember than a key made up of obscure characters, even though
it is more characters to type.

The way to run a command by name is to start with M-x, type the command name,
and finish it with 〈RET〉. M-x uses the minibuffer to read the command name. 〈RET〉 exits
the minibuffer and runs the command. The string ‘M-x’ appears at the beginning of the
minibuffer as a prompt to remind you to enter the name of a command to be run. See
Chapter 5 [Minibuffer], page 43, for full information on the features of the minibuffer.

You can use completion to enter the command name. For example, you can invoke the
command forward-char by name by typing either

M-x forward-char 〈RET〉
or

M-x forw 〈TAB〉 c 〈RET〉
Note that forward-char is the same command that you invoke with the key C-f. You can
run any Emacs command by name using M-x, whether or not any keys are bound to it.

If you type C-g while the command name is being read, you cancel the M-x command
and get out of the minibuffer, ending up at top level.

To pass a numeric argument to the command you are invoking with M-x, specify the
numeric argument before the M-x. M-x passes the argument along to the command it runs.
The argument value appears in the prompt while the command name is being read.

If the command you type has a key binding of its own, Emacs mentions this in the
echo area, two seconds after the command finishes (if you don’t type anything else first).
For example, if you type M-x forward-word, the message says that you can run the same
command more easily by typing M-f. You can turn off these messages by setting suggest-
key-bindings to nil.

Normally, when describing in this manual a command that is run by name, we omit the
〈RET〉 that is needed to terminate the name. Thus we might speak of M-x auto-fill-mode
rather than M-x auto-fill-mode 〈RET〉. We mention the 〈RET〉 only when there is a need
to emphasize its presence, such as when we show the command together with following
arguments.

M-x works by running the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

52 GNU Emacs Manual

Chapter 7: Help 53

7 Help

Emacs provides extensive help features accessible through a single character, C-h. C-h
is a prefix key that is used for commands that display documentation. The characters that
you can type after C-h are called help options. One help option is C-h; that is how you ask
for help about using C-h. To cancel, type C-g. The function key 〈F1〉 is equivalent to C-h.

C-h C-h (help-for-help) displays a list of the possible help options, each with a brief
description. Before you type a help option, you can use 〈SPC〉 or 〈DEL〉 to scroll through the
list.

C-h or 〈F1〉 means “help” in various other contexts as well. For example, in the middle of
query-replace, it describes the options available for how to operate on the current match.
After a prefix key, it displays a list of the alternatives that can follow the prefix key. (A
few prefix keys don’t support C-h, because they define other meanings for it, but they all
support 〈F1〉.)

Most help buffers use a special major mode, Help mode, which lets you scroll conveniently
with 〈SPC〉 and 〈DEL〉. It also offers hyperlinks to further help regarding cross-referenced
names, Info nodes, customization buffers and the like. See Section 7.6 [Help Mode], page 58.

If you are looking for a certain feature, but don’t know where exactly it is documented,
and aren’t sure of the name of a related command or option, we recommend trying these
methods. Usually it is best to start with an apropos command, then try searching the
manual index, then finally look in the FAQ and the package keywords.

C-h a topic 〈RET〉
This searches for commands whose names match topic, which should be a regu-
lar expression (see Section 12.5 [Regexps], page 95). Browse the buffer that this
command displays to find what you are looking for. See Section 7.3 [Apropos],
page 56.

M-x apropos 〈RET〉 topic 〈RET〉
This works like C-h a, but it also searches for user options and other variables, in
case the feature you are looking for is controlled by an option, not a command.
See Section 7.3 [Apropos], page 56.

M-x apropos-documentation 〈RET〉 topic 〈RET〉
This searches the documentation strings (the built-in short descriptions) of
all variables and functions (not their names) for a match for topic, a regular
expression. See Section 7.3 [Apropos], page 56.

C-h i d m emacs 〈RET〉 i topic 〈RET〉
This looks up topic in the indices of the Emacs on-line manual. If there are
several matches, Emacs displays the first one. You can then press 〈,〉 to move
to other matches, until you find what you are looking for.

C-h i d m emacs 〈RET〉 s topic 〈RET〉
Similar, but searches for topic (which can be a regular expression) in the text
of the manual rather than in its indices.

C-h F This brings up the Emacs FAQ, where you can use the usual search commands
(see Chapter 12 [Search], page 91) to find the information.

54 GNU Emacs Manual

C-h p Finally, you can try looking up a suitable package using keywords pertinent to
the feature you need. See Section 7.4 [Library Keywords], page 57.

To find the documentation of a key sequence or a menu item, type C-h C-k and then type
that key sequence or select the menu item. This looks up the description of the command
invoked by the key or the menu in the appropriate manual (not necessarily the Emacs
manual). Likewise, use C-h C-f for reading documentation of a command.

Here is a summary of the defined help commands.

C-h a regexp 〈RET〉
Display a list of commands whose names match regexp (apropos-command).

C-h b Display a table of all key bindings in effect now, in this order: minor mode
bindings, major mode bindings, and global bindings (describe-bindings).

C-h c key Show the name of the command that key runs (describe-key-briefly). Here
c stands for “character.” For more extensive information on key, use C-h k.

C-h f function 〈RET〉
Display documentation on the Lisp function named function (describe-
function). Since commands are Lisp functions, a command name may be
used.

C-h h Display the ‘HELLO’ file, which shows examples of various character sets.

C-h i Run Info, the program for browsing documentation files (info). The complete
Emacs manual is available on-line in Info.

C-h k key Display the name and documentation of the command that key runs
(describe-key).

C-h l Display a description of the last 100 characters you typed (view-lossage).

C-h m Display documentation of the current major mode (describe-mode).

C-h n Display documentation of Emacs changes, most recent first (view-emacs-news).

C-h P Display info on known problems with Emacs and possible workarounds (view-
emacs-problems).

C-h p Find packages by topic keyword (finder-by-keyword).

C-h s Display the current contents of the syntax table, plus an explanation of what
they mean (describe-syntax). See Section 32.6 [Syntax], page 403.

C-h t Enter the Emacs interactive tutorial (help-with-tutorial).

C-h v var 〈RET〉
Display the documentation of the Lisp variable var (describe-variable).

C-h w command 〈RET〉
Show which keys run the command named command (where-is).

C-h C coding 〈RET〉
Describe coding system coding (describe-coding-system).

C-h C 〈RET〉
Describe the coding systems currently in use.

Chapter 7: Help 55

C-h I method 〈RET〉
Describe an input method (describe-input-method).

C-h L language-env 〈RET〉
Display information on the character sets, coding systems, and input
methods used for language environment language-env (describe-language-
environment).

C-h C-c Display the copying conditions for GNU Emacs.

C-h C-d Display information about getting new versions of GNU Emacs.

C-h C-f function 〈RET〉
Enter Info and go to the node documenting the Emacs function function (Info-
goto-emacs-command-node).

C-h C-k key
Enter Info and go to the node where the key sequence key is documented
(Info-goto-emacs-key-command-node).

C-h C-p Display information about the GNU Project.

C-h 〈TAB〉 symbol 〈RET〉
Display the Info documentation on symbol symbol according to the program-
ming language you are editing (info-lookup-symbol).

7.1 Documentation for a Key

The most basic C-h options are C-h c (describe-key-briefly) and C-h k (describe-
key). C-h c key displays in the echo area the name of the command that key is bound
to. For example, C-h c C-f displays ‘forward-char’. Since command names are chosen to
describe what the commands do, this is a good way to get a very brief description of what
key does.

C-h k key is similar but gives more information: it displays the documentation string of
the command as well as its name. This is too big for the echo area, so a window is used for
the display.

C-h c and C-h k work for any sort of key sequences, including function keys and mouse
events.

7.2 Help by Command or Variable Name

C-h f (describe-function) reads the name of a Lisp function using the minibuffer,
then displays that function’s documentation string in a window. Since commands are Lisp
functions, you can use this to get the documentation of a command that you know by name.
For example,

C-h f auto-fill-mode 〈RET〉
displays the documentation of auto-fill-mode. This is the only way to get the documen-
tation of a command that is not bound to any key (one which you would normally run using
M-x).

56 GNU Emacs Manual

C-h f is also useful for Lisp functions that you are planning to use in a Lisp program.
For example, if you have just written the expression (make-vector len) and want to check
that you are using make-vector properly, type C-h f make-vector 〈RET〉. Because C-h f
allows all function names, not just command names, you may find that some of your favorite
abbreviations that work in M-x don’t work in C-h f. An abbreviation may be unique among
command names yet fail to be unique when other function names are allowed.

The default function name for C-h f to describe, if you type just 〈RET〉, is the name of
the function called by the innermost Lisp expression in the buffer around point, provided
that is a valid, defined Lisp function name. For example, if point is located following the
text ‘(make-vector (car x)’, the innermost list containing point is the one that starts with
‘(make-vector’, so the default is to describe the function make-vector.

C-h f is often useful just to verify that you have the right spelling for the function name.
If C-h f mentions a name from the buffer as the default, that name must be defined as a
Lisp function. If that is all you want to know, just type C-g to cancel the C-h f command,
then go on editing.

C-h w command 〈RET〉 tells you what keys are bound to command. It displays a list of
the keys in the echo area. If it says the command is not on any key, you must use M-x to
run it. C-h w runs the command where-is.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, but only if that is the
name of a known Lisp variable. See Section 32.2 [Variables], page 379.

Help buffers describing variables or functions defined in Lisp normally have hyperlinks
to the Lisp definition, if you have the Lisp source files installed. If you know Lisp, this
provides the ultimate documentation. If you don’t know Lisp, you should learn it. If you
are treating Emacs as an object file, then you are just using Emacs. For real intimacy with
Emacs, you must read the source code.

7.3 Apropos

A more sophisticated sort of question to ask is, “What are the commands for working
with files?” To ask this question, type C-h a file 〈RET〉, which displays a list of all com-
mand names that contain ‘file’, including copy-file, find-file, and so on. With each
command name appears a brief description of how to use the command, and what keys you
can currently invoke it with. For example, it would say that you can invoke find-file by
typing C-x C-f. The a in C-h a stands for “Apropos”; C-h a runs the command apropos-
command. This command normally checks only commands (interactive functions); if you
specify a prefix argument, it checks noninteractive functions as well.

Because C-h a looks only for functions whose names contain the string you specify, you
must use ingenuity in choosing the string. If you are looking for commands for killing
backwards and C-h a kill-backwards 〈RET〉 doesn’t reveal any, don’t give up. Try just
kill, or just backwards, or just back. Be persistent. Also note that you can use a regular
expression as the argument, for more flexibility (see Section 12.5 [Regexps], page 95).

Here is a set of arguments to give to C-h a that covers many classes of Emacs commands,
since there are strong conventions for naming the standard Emacs commands. By giving

Chapter 7: Help 57

you a feel for the naming conventions, this set should also serve to aid you in developing a
technique for picking apropos strings.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer,
frame, window, face, file, dir, register, mode, beginning, end, forward, back-
ward, next, previous, up, down, search, goto, kill, delete, mark, insert, yank,
fill, indent, case, change, set, what, list, find, view, describe, default.

To list all user variables that match a regexp, use the command M-x apropos-variable.
This command shows only user variables and customization options by default; if you specify
a prefix argument, it checks all variables.

To list all Lisp symbols that contain a match for a regexp, not just the ones that are
defined as commands, use the command M-x apropos instead of C-h a. This command does
not check key bindings by default; specify a numeric argument if you want it to check them.

The apropos-documentation command is like apropos except that it searches docu-
mentation strings as well as symbol names for matches for the specified regular expression.

The apropos-value command is like apropos except that it searches symbols’ values
for matches for the specified regular expression. This command does not check function
definitions or property lists by default; specify a numeric argument if you want it to check
them.

If the variable apropos-do-all is non-nil, the commands above all behave as if they
had been given a prefix argument.

If you want more information about a function definition, variable or symbol property
listed in the Apropos buffer, you can click on it with Mouse-2 or move there and type 〈RET〉.

7.4 Keyword Search for Lisp Libraries

The C-h p command lets you search the standard Emacs Lisp libraries by topic keywords.
Here is a partial list of keywords you can use:

abbrev — abbreviation handling, typing shortcuts, macros.
bib — support for the bibliography processor bib.
c — C and C++ language support.
calendar — calendar and time management support.
comm — communications, networking, remote access to files.
data — support for editing files of data.
docs — support for Emacs documentation.
emulations — emulations of other editors.
extensions — Emacs Lisp language extensions.
faces — support for using faces (fonts and colors; see Section 11.1 [Faces], page 79).
frames — support for Emacs frames and window systems.
games — games, jokes and amusements.
hardware — support for interfacing with exotic hardware.
help — support for on-line help systems.
hypermedia — support for links within text, or other media types.
i18n — internationalization and alternate character-set support.
internal — code for Emacs internals, build process, defaults.
languages — specialized modes for editing programming languages.
lisp — support for using Lisp (including Emacs Lisp).

58 GNU Emacs Manual

local — libraries local to your site.
maint — maintenance aids for the Emacs development group.
mail — modes for electronic-mail handling.
matching — searching and matching.
news — support for netnews reading and posting.
non-text — support for editing files that are not ordinary text.
oop — support for object-oriented programming.
outlines — hierarchical outlining.
processes — process, subshell, compilation, and job control support.
terminals — support for terminal types.
tex — support for the TEX formatter.
tools — programming tools.
unix — front-ends/assistants for, or emulators of, system features.
vms — support code for VMS.
wp — word processing.

7.5 Help for International Language Support

You can use the command C-h L (describe-language-environment) to find out infor-
mation about the support for a specific language environment. See Section 18.3 [Language
Environments], page 177. This tells you which languages this language environment is use-
ful for, and lists the character sets, coding systems, and input methods that go with it. It
also shows some sample text to illustrate scripts.

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which shows how
to say “hello” in many languages.

The command C-h I (describe-input-method) describes information about input
methods—either a specified input method, or by default the input method in use. See
Section 18.4 [Input Methods], page 178.

The command C-h C (describe-coding-system) describes information about coding
systems—either a specified coding system, or the ones currently in use. See Section 18.7
[Coding Systems], page 181.

7.6 Help Mode Commands

Help buffers provide the same commands as View mode (see Section 14.10 [Misc File
Ops], page 143), plus a few special commands of their own.

〈SPC〉 Scroll forward.

〈DEL〉
〈BS〉 Scroll backward. On some keyboards, this key is known as 〈BS〉 or 〈backspace〉.

〈RET〉 Follow a cross reference at point.

〈TAB〉 Move point forward to the next cross reference.

S-〈TAB〉 Move point back to the previous cross reference.

Mouse-2 Follow a cross reference that you click on.

Chapter 7: Help 59

When a command name (see Chapter 6 [Running Commands by Name], page 51) or
variable name (see Section 32.2 [Variables], page 379) appears in the documentation, it
normally appears inside paired single-quotes. You can click on the name with Mouse-2, or
move point there and type 〈RET〉, to view the documentation of that command or variable.
Use C-c C-b to retrace your steps.

There are convenient commands for moving point to cross references in the help text.
〈TAB〉 (help-next-ref) moves point down to the next cross reference. Use S-〈TAB〉 to move
point up to the previous cross reference (help-previous-ref).

7.7 Other Help Commands

C-h i (info) runs the Info program, which is used for browsing through structured
documentation files. The entire Emacs manual is available within Info. Eventually all the
documentation of the GNU system will be available. Type h after entering Info to run a
tutorial on using Info.

If you specify a numeric argument, C-h i prompts for the name of a documentation file.
This way, you can browse a file which doesn’t have an entry in the top-level Info menu. It
is also handy when you need to get to the documentation quickly, and you know the exact
name of the file.

There are two special help commands for accessing Emacs documentation through Info.
C-h C-f function 〈RET〉 enters Info and goes straight to the documentation of the Emacs
function function. C-h C-k key enters Info and goes straight to the documentation of the
key key. These two keys run the commands Info-goto-emacs-command-node and Info-
goto-emacs-key-command-node. You can use C-h C-k to find the documentation of a menu
item: just select that menu item when C-h C-k prompts for a key.

C-h C-f and C-h C-k know about commands and keys described in manuals other than
the Emacs manual. Thus, they make it easier to find the documentation of commands and
keys when you are not sure which manual describes them, like when using some specialized
mode.

When editing a program, if you have an Info version of the manual for the programming
language, you can use the command C-h C-i to refer to the manual documentation for a
symbol (keyword, function or variable). The details of how this command works depend on
the major mode.

If something surprising happens, and you are not sure what commands you typed, use
C-h l (view-lossage). C-h l displays the last 100 command characters you typed in. If
you see commands that you don’t know, you can use C-h c to find out what they do.

Emacs has numerous major modes, each of which redefines a few keys and makes a few
other changes in how editing works. C-h m (describe-mode) displays documentation on
the current major mode, which normally describes all the commands that are changed in
this mode.

C-h b (describe-bindings) and C-h s (describe-syntax) present other information
about the current Emacs mode. C-h b displays a list of all the key bindings now in effect,
showing the local bindings defined by the current minor modes first, then the local bindings
defined by the current major mode, and finally the global bindings (see Section 32.4 [Key

60 GNU Emacs Manual

Bindings], page 393). C-h s displays the contents of the syntax table, with explanations of
each character’s syntax (see Section 32.6 [Syntax], page 403).

You can get a similar list for a particular prefix key by typing C-h after the prefix key.
(There are a few prefix keys for which this does not work—those that provide their own
bindings for C-h. One of these is 〈ESC〉, because 〈ESC〉 C-h is actually C-M-h, which marks a
defun.)

The other C-h options display various files containing useful information. C-h C-w dis-
plays the full details on the complete absence of warranty for GNU Emacs. C-h n (view-
emacs-news) displays the file ‘emacs/etc/NEWS’, which contains documentation on Emacs
changes arranged chronologically. C-h F (view-emacs-FAQ) displays the Emacs frequently-
answered-questions list. C-h t (help-with-tutorial) displays the learn-by-doing Emacs
tutorial. C-h C-c (describe-copying) displays the file ‘emacs/etc/COPYING’, which tells
you the conditions you must obey in distributing copies of Emacs. C-h C-d (describe-
distribution) displays the file ‘emacs/etc/DISTRIB’, which tells you how you can or-
der a copy of the latest version of Emacs. C-h C-p (describe-project) displays gen-
eral information about the GNU Project. C-h P (view-emacs-problems) displays the file
‘emacs/etc/PROBLEMS’, which lists known problems with Emacs in various situations with
solutions or workarounds in many cases.

7.8 Help on Active Text and Tooltips

When a region of text is “active,” so that you can select it with the mouse or a key like
RET, it often has associated help text. Areas of the mode line are examples. This help will
normally be shown in the echo area when you move point into the active text. In a window
system you can display the help text as a “tooltip” (sometimes known as “balloon help”).
See Section 17.18 [Tooltips], page 173.

Chapter 8: The Mark and the Region 61

8 The Mark and the Region

Many Emacs commands operate on an arbitrary contiguous part of the current buffer.
To specify the text for such a command to operate on, you set the mark at one end of it,
and move point to the other end. The text between point and the mark is called the region.
Emacs highlights the region whenever there is one, if you enable Transient Mark mode (see
Section 8.2 [Transient Mark], page 62).

Certain Emacs commands set the mark; other editing commands do not affect it, so the
mark remains where you set it last. Each Emacs buffer has its own mark, and setting the
mark in one buffer has no effect on other buffers’ marks. When you return to a buffer that
was current earlier, its mark is at the same place as before.

The ends of the region are always point and the mark. It doesn’t matter which of them
was put in its current place first, or which one comes earlier in the text—the region starts
from point or the mark (whichever comes first), and ends at point or the mark (whichever
comes last). Every time you move point, or set the mark in a new place, the region changes.

Many commands that insert text, such as C-y (yank) and M-x insert-buffer, position
point and the mark at opposite ends of the inserted text, so that the region consists of the
text just inserted.

Aside from delimiting the region, the mark is also useful for remembering a spot that
you may want to go back to. To make this feature more useful, each buffer remembers 16
previous locations of the mark in the mark ring.

8.1 Setting the Mark

Here are some commands for setting the mark:

C-〈SPC〉 Set the mark where point is (set-mark-command).

C-@ The same.

C-x C-x Interchange mark and point (exchange-point-and-mark).

Drag-Mouse-1
Set point and the mark around the text you drag across.

Mouse-3 Set the mark where point is, then move point to where you click (mouse-save-
then-kill).

For example, suppose you wish to convert part of the buffer to upper case, using the C-x
C-u (upcase-region) command, which operates on the text in the region. You can first go
to the beginning of the text to be capitalized, type C-〈SPC〉 to put the mark there, move to
the end, and then type C-x C-u. Or, you can set the mark at the end of the text, move to
the beginning, and then type C-x C-u.

The most common way to set the mark is with the C-〈SPC〉 command (set-mark-
command). This sets the mark where point is. Then you can move point away, leaving
the mark behind.

There are two ways to set the mark with the mouse. You can drag mouse button one
across a range of text; that puts point where you release the mouse button, and sets the mark
at the other end of that range. Or you can click mouse button three, which sets the mark at

62 GNU Emacs Manual

point (like C-〈SPC〉) and then moves point (like Mouse-1). Both of these methods copy the
region into the kill ring in addition to setting the mark; that gives behavior consistent with
other window-driven applications, but if you don’t want to modify the kill ring, you must
use keyboard commands to set the mark. See Section 17.1 [Mouse Commands], page 163.

Ordinary terminals have only one cursor, so there is no way for Emacs to show you where
the mark is located. You have to remember. The usual solution to this problem is to set the
mark and then use it soon, before you forget where it is. Alternatively, you can see where
the mark is with the command C-x C-x (exchange-point-and-mark) which puts the mark
where point was and point where the mark was. The extent of the region is unchanged,
but the cursor and point are now at the previous position of the mark. In Transient Mark
mode, this command reactivates the mark.

C-x C-x is also useful when you are satisfied with the position of point but want to move
the other end of the region (where the mark is); do C-x C-x to put point at that end of the
region, and then move it. Using C-x C-x a second time, if necessary, puts the mark at the
new position with point back at its original position.

For more facilities that allow you to go to previously set marks, see Section 8.5 [Mark
Ring], page 64.

There is no such character as C-〈SPC〉 in ASCII; when you type 〈SPC〉 while holding down
〈CTRL〉, what you get on most ordinary terminals is the character C-@. This key is actually
bound to set-mark-command. But unless you are unlucky enough to have a terminal where
typing C-〈SPC〉 does not produce C-@, you might as well think of this character as C-〈SPC〉.
Under X, C-〈SPC〉 is actually a distinct character, but its binding is still set-mark-command.

8.2 Transient Mark Mode

On a terminal that supports colors, Emacs can highlight the current region. But normally
it does not. Why not?

Highlighting the region whenever it exists would not be desirable in Emacs, because once
you have set a mark, there is always a region (in that buffer). And highlighting the region
all the time would be a nuisance. So normally Emacs highlights the region only immediately
after you have selected one with the mouse.

You can turn on region highlighting by enabling Transient Mark mode. This is a more
rigid mode of operation in which the region “lasts” only temporarily, so you must set up a
region for each command that uses one. In Transient Mark mode, most of the time there is
no region; therefore, highlighting the region when it exists is useful and not annoying.

To enable Transient Mark mode, type M-x transient-mark-mode. This command tog-
gles the mode, so you can repeat the command to turn off the mode.

Here are the details of Transient Mark mode:

• To set the mark, type C-〈SPC〉 (set-mark-command). This makes the mark active and
thus begins highlighting of the region. As you move point, you will see the highlighted
region grow and shrink.

• The mouse commands for specifying the mark also make it active. So do keyboard
commands whose purpose is to specify a region, including M-@, C-M-@, M-h, C-M-h, C-x
C-p, and C-x h.

Chapter 8: The Mark and the Region 63

• When the mark is active, you can execute commands that operate on the region, such
as killing, indenting, or writing to a file.

• Any change to the buffer, such as inserting or deleting a character, deactivates the
mark. This means any subsequent command that operates on a region will get an error
and refuse to operate. You can make the region active again by typing C-x C-x.

• Commands like M-> and C-s, that “leave the mark behind” in addition to some other
primary purpose, do not activate the new mark. You can activate the new region by
executing C-x C-x (exchange-point-and-mark).

• C-s when the mark is active does not alter the mark.
• Quitting with C-g deactivates the mark.
• Some commands operate on the region whenever it is active. For instance, C-x u in

Transient Mark mode operates on the region when there is a region. Outside Transient
Mark mode, you must type C-u C-x u if you want it to operate on the region. See
Section 4.4 [Undo], page 36. Other commands that act this way are identified in their
own documentation.

The highlighting of the region uses the region face; you can customize the appearance
of the highlighted region by changing this face. See Section 32.2.2.3 [Face Customization],
page 384.

When multiple windows show the same buffer, they can have different regions, because
they can have different values of point (though they all share one common mark posi-
tion). Ordinarily, only the selected window highlights its region (see Chapter 16 [Win-
dows], page 157). However, if the variable highlight-nonselected-windows is non-nil,
then each window highlights its own region (provided that Transient Mark mode is enabled
and the mark in the window’s buffer is active).

When Transient Mark mode is not enabled, every command that sets the mark also
activates it, and nothing ever deactivates it.

If the variable mark-even-if-inactive is non-nil in Transient Mark mode, then com-
mands can use the mark and the region even when it is inactive. Region highlighting
appears and disappears just as it normally does in Transient Mark mode, but the mark
doesn’t really go away when the highlighting disappears.

Transient Mark mode is also sometimes known as “Zmacs mode” because the Zmacs
editor on the MIT Lisp Machine handled the mark in a similar way.

8.3 Operating on the Region

Once you have a region and the mark is active, here are some of the ways you can operate
on the region:
• Kill it with C-w (see Section 9.1 [Killing], page 67).
• Save it in a register with C-x r s (see Chapter 10 [Registers], page 75).
• Save it in a buffer or a file (see Section 9.3 [Accumulating Text], page 72).
• Convert case with C-x C-l or C-x C-u (see Section 21.6 [Case], page 207).
• Indent it with C-x 〈TAB〉 or C-M-\ (see Chapter 20 [Indentation], page 195).
• Fill it as text with M-x fill-region (see Section 21.5 [Filling], page 203).

64 GNU Emacs Manual

• Print hardcopy with M-x print-region (see Section 31.5 [Hardcopy], page 361).
• Evaluate it as Lisp code with M-x eval-region (see Section 23.8 [Lisp Eval], page 263).

Most commands that operate on the text in the region have the word region in their
names.

8.4 Commands to Mark Textual Objects

Here are the commands for placing point and the mark around a textual object such as
a word, list, paragraph or page.

M-@ Set mark after end of next word (mark-word). This command and the following
one do not move point.

C-M-@ Set mark after end of following balanced expression (mark-sexp).

M-h Put region around current paragraph (mark-paragraph).

C-M-h Put region around current defun (mark-defun).

C-x h Put region around the entire buffer (mark-whole-buffer).

C-x C-p Put region around current page (mark-page).

M-@ (mark-word) puts the mark at the end of the next word, while C-M-@ (mark-
sexp) puts it at the end of the next balanced expression (see Section 22.4.1 [Expressions],
page 232). These commands handle arguments just like M-f and C-M-f.

Other commands set both point and mark, to delimit an object in the buffer. For exam-
ple, M-h (mark-paragraph) moves point to the beginning of the paragraph that surrounds
or follows point, and puts the mark at the end of that paragraph (see Section 21.3 [Para-
graphs], page 201). It prepares the region so you can indent, case-convert, or kill a whole
paragraph.

C-M-h (mark-defun) similarly puts point before, and the mark after, the current (or
following) major top-level definition, or defun (see Section 22.2.2 [Moving by Defuns],
page 226). C-x C-p (mark-page) puts point before the current page, and mark at the
end (see Section 21.4 [Pages], page 202). The mark goes after the terminating page delim-
iter (to include it in the region), while point goes after the preceding page delimiter (to
exclude it). A numeric argument specifies a later page (if positive) or an earlier page (if
negative) instead of the current page.

Finally, C-x h (mark-whole-buffer) sets up the entire buffer as the region, by putting
point at the beginning and the mark at the end.

In Transient Mark mode, all of these commands activate the mark.

8.5 The Mark Ring

Aside from delimiting the region, the mark is also useful for remembering a spot that
you may want to go back to. To make this feature more useful, each buffer remembers
16 previous locations of the mark, in the mark ring. Commands that set the mark also
push the old mark onto this ring. To return to a marked location, use C-u C-〈SPC〉 (or C-u
C-@); this is the command set-mark-command given a numeric argument. It moves point to

Chapter 8: The Mark and the Region 65

where the mark was, and restores the mark from the ring of former marks. Thus, repeated
use of this command moves point to all of the old marks on the ring, one by one. The mark
positions you move through in this way are not lost; they go to the end of the ring.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-〈SPC〉 always stays in the same buffer.

Many commands that can move long distances, such as M-< (beginning-of-buffer),
start by setting the mark and saving the old mark on the mark ring. This is to make it
easier for you to move back later. Searches set the mark if they move point. You can tell
when a command sets the mark because it displays ‘Mark set’ in the echo area.

If you want to move back to the same place over and over, the mark ring may not be
convenient enough. If so, you can record the position in a register for later retrieval (see
Section 10.1 [Saving Positions in Registers], page 75).

The variable mark-ring-max specifies the maximum number of entries to keep in the
mark ring. If that many entries exist and another one is pushed, the earliest one in the list
is discarded. Repeating C-u C-〈SPC〉 cycles through the positions currently in the ring.

The variable mark-ring holds the mark ring itself, as a list of marker objects, with the
most recent first. This variable is local in every buffer.

8.6 The Global Mark Ring

In addition to the ordinary mark ring that belongs to each buffer, Emacs has a single
global mark ring. It records a sequence of buffers in which you have recently set the mark,
so you can go back to those buffers.

Setting the mark always makes an entry on the current buffer’s mark ring. If you have
switched buffers since the previous mark setting, the new mark position makes an entry on
the global mark ring also. The result is that the global mark ring records a sequence of
buffers that you have been in, and, for each buffer, a place where you set the mark.

The command C-x C-〈SPC〉 (pop-global-mark) jumps to the buffer and position of the
latest entry in the global ring. It also rotates the ring, so that successive uses of C-x C-〈SPC〉
take you to earlier and earlier buffers.

66 GNU Emacs Manual

Chapter 9: Killing and Moving Text 67

9 Killing and Moving Text

Killing means erasing text and copying it into the kill ring, from which it can be retrieved
by yanking it. Some systems use the terms “cutting” and “pasting” for these operations.

The most common way of moving or copying text within Emacs is to kill it and later
yank it elsewhere in one or more places. This is very safe because Emacs remembers several
recent kills, not just the last one. It is versatile, because the many commands for killing
syntactic units can also be used for moving those units. But there are other ways of copying
text for special purposes.

Emacs has only one kill ring for all buffers, so you can kill text in one buffer and yank
it in another buffer.

9.1 Deletion and Killing

Most commands which erase text from the buffer save it in the kill ring so that you can
move or copy it to other parts of the buffer. These commands are known as kill commands.
The rest of the commands that erase text do not save it in the kill ring; they are known as
delete commands. (This distinction is made only for erasure of text in the buffer.) If you
do a kill or delete command by mistake, you can use the C-x u (undo) command to undo it
(see Section 4.4 [Undo], page 36).

You cannot kill read-only text, since such text does not allow any kind of modification.
But some users like to use the kill commands to copy read-only text into the kill ring,
without actually changing it. If you set the variable kill-read-only-ok to a non-nil
value, the kill commands work specially in a read-only buffer: they move over text, and
copy it to the kill ring, without actually deleting it from the buffer. When this happens, a
message in the echo area tells you what is happening.

The delete commands include C-d (delete-char) and 〈DEL〉 (delete-backward-char),
which delete only one character at a time, and those commands that delete only spaces or
newlines. Commands that can destroy significant amounts of nontrivial data generally do
a kill operation instead. The commands’ names and individual descriptions use the words
‘kill’ and ‘delete’ to say which kind of operation they perform.

Many window systems follow the convention that insertion while text is selected deletes
the selected text. You can make Emacs behave this way by enabling Delete Selection mode,
with M-x delete-selection-mode, or using Custom. Another effect of this mode is that
〈DEL〉, C-d and some other keys, when a selection exists, will kill the whole selection. It also
enables Transient Mark mode (see Section 8.2 [Transient Mark], page 62).

9.1.1 Deletion

Deletion means erasing text and not saving it in the kill ring. For the most part, the
Emacs commands that delete text are those that erase just one character or only whitespace.

C-d
〈Delete〉 Delete next character (delete-char). If your keyboard has a 〈Delete〉 function

key (usually located in the edit keypad), Emacs binds it to delete-char as
well.

68 GNU Emacs Manual

〈DEL〉
〈BS〉 Delete previous character (delete-backward-char). Some keyboards refer to

this key as a “backspace key” and label it with a left arrow.

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-〈SPC〉 Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

M-^ Join two lines by deleting the intervening newline, along with any indentation
following it (delete-indentation).

The most basic delete commands are C-d (delete-char) and 〈DEL〉 (delete-backward-
char). C-d deletes the character after point, the one the cursor is “on top of.” This doesn’t
move point. 〈DEL〉 deletes the character before the cursor, and moves point back. You can
delete newlines like any other characters in the buffer; deleting a newline joins two lines.
Actually, C-d and 〈DEL〉 aren’t always delete commands; when given arguments, they kill
instead, since they can erase more than one character this way.

Every keyboard has a large key, labeled 〈DEL〉, 〈BACKSPACE〉, 〈BS〉 or 〈DELETE〉, which is
a short distance above the 〈RET〉 or 〈ENTER〉 key and is normally used for erasing what you
have typed. Regardless of the actual name on the key, in Emacs it is equivalent to 〈DEL〉—or
it should be.

Many keyboards (including standard PC keyboards) have a 〈BACKSPACE〉 key a short
ways above 〈RET〉 or 〈ENTER〉, and a 〈DELETE〉 key elsewhere. In that case, the 〈BACKSPACE〉
key is 〈DEL〉, and the 〈DELETE〉 key is equivalent to C-d—or it should be.

Why do we say “or it should be”? When Emacs starts up using a window system, it
determines automatically which key or keys should be equivalent to 〈DEL〉. As a result,
〈BACKSPACE〉 and/or 〈DELETE〉 keys normally do the right things. But in some unusual cases
Emacs gets the wrong information from the system. If these keys don’t do what they ought
to do, you need to tell Emacs which key to use for 〈DEL〉. See Section 33.2.1 [DEL Does Not
Delete], page 410, for how to do this.

On most text-only terminals, Emacs cannot tell which keys the keyboard really has, so
it follows a uniform plan which may or may not fit your keyboard. The uniform plan is
that the ASCII 〈DEL〉 character deletes, and the ASCII 〈BS〉 (backspace) character asks for
help (it is the same as C-h). If this is not right for your keyboard, such as if you find that
the key which ought to delete backwards enters Help instead, see Section 33.2.1 [DEL Does
Not Delete], page 410.

The other delete commands are those which delete only whitespace characters: spaces,
tabs and newlines. M-\ (delete-horizontal-space) deletes all the spaces and tab char-
acters before and after point. M-〈SPC〉 (just-one-space) does likewise but leaves a single
space after point, regardless of the number of spaces that existed previously (even if there
were none before).

C-x C-o (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well (leaving one
blank line, the current line).

M-^ (delete-indentation) joins the current line and the previous line, by deleting a
newline and all surrounding spaces, usually leaving a single space. See Chapter 20 [Inden-
tation], page 195.

Chapter 9: Killing and Moving Text 69

9.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

The simplest kill command is C-k. If given at the beginning of a line, it kills all the text
on the line, leaving it blank. When used on a blank line, it kills the whole line including its
newline. To kill an entire non-blank line, go to the beginning and type C-k twice.

More generally, C-k kills from point up to the end of the line, unless it is at the end of
a line. In that case it kills the newline following point, thus merging the next line into the
current one. Spaces and tabs that you can’t see at the end of the line are ignored when
deciding which case applies, so if point appears to be at the end of the line, you can be sure
C-k will kill the newline.

When C-k is given a positive argument, it kills that many lines and the newlines that
follow them (however, text on the current line before point is not killed). With a negative
argument −n, it kills n lines preceding the current line (together with the text on the current
line before point). Thus, C-u - 2 C-k at the front of a line kills the two previous lines.

C-k with an argument of zero kills the text before point on the current line.
If the variable kill-whole-line is non-nil, C-k at the very beginning of a line kills the

entire line including the following newline. This variable is normally nil.

9.1.3 Other Kill Commands

C-w Kill region (from point to the mark) (kill-region).

M-d Kill word (kill-word). See Section 21.1 [Words], page 199.

M-〈DEL〉 Kill word backwards (backward-kill-word).

C-x 〈DEL〉 Kill back to beginning of sentence (backward-kill-sentence). See
Section 21.2 [Sentences], page 200.

M-k Kill to end of sentence (kill-sentence).

C-M-k Kill the following balanced expression (kill-sexp). See Section 22.4.1 [Expres-
sions], page 232.

M-z char Kill through the next occurrence of char (zap-to-char).

A kill command which is very general is C-w (kill-region), which kills everything
between point and the mark. With this command, you can kill any contiguous sequence of
characters, if you first set the region around them.

A convenient way of killing is combined with searching: M-z (zap-to-char) reads a
character and kills from point up to (and including) the next occurrence of that character
in the buffer. A numeric argument acts as a repeat count. A negative argument means to
search backward and kill text before point.

Other syntactic units can be killed: words, with M-〈DEL〉 and M-d (see Section 21.1
[Words], page 199); balanced expressions, with C-M-k (see Section 22.4.1 [Expressions],
page 232); and sentences, with C-x 〈DEL〉 and M-k (see Section 21.2 [Sentences], page 200).

You can use kill commands in read-only buffers. They don’t actually change the buffer,
and they beep to warn you of that, but they do copy the text you tried to kill into the kill

70 GNU Emacs Manual

ring, so you can yank it into other buffers. Most of the kill commands move point across
the text they copy in this way, so that successive kill commands build up a single kill ring
entry as usual.

9.2 Yanking

Yanking means reinserting text previously killed. This is what some systems call “past-
ing.” The usual way to move or copy text is to kill it and then yank it elsewhere one or
more times.

C-y Yank last killed text (yank).

M-y Replace text just yanked with an earlier batch of killed text (yank-pop).

M-w Save region as last killed text without actually killing it (kill-ring-save).

C-M-w Append next kill to last batch of killed text (append-next-kill).

9.2.1 The Kill Ring

All killed text is recorded in the kill ring, a list of blocks of text that have been killed.
There is only one kill ring, shared by all buffers, so you can kill text in one buffer and yank
it in another buffer. This is the usual way to move text from one file to another. (See
Section 9.3 [Accumulating Text], page 72, for some other ways.)

The command C-y (yank) reinserts the text of the most recent kill. It leaves the cursor
at the end of the text. It sets the mark at the beginning of the text. See Chapter 8 [Mark],
page 61.

C-u C-y leaves the cursor in front of the text, and sets the mark after it. This happens
only if the argument is specified with just a C-u, precisely. Any other sort of argument,
including C-u and digits, specifies an earlier kill to yank (see Section 9.2.3 [Earlier Kills],
page 71).

To copy a block of text, you can use M-w (kill-ring-save), which copies the region into
the kill ring without removing it from the buffer. This is approximately equivalent to C-w
followed by C-x u, except that M-w does not alter the undo history and does not temporarily
change the screen.

9.2.2 Appending Kills

Normally, each kill command pushes a new entry onto the kill ring. However, two or
more kill commands in a row combine their text into a single entry, so that a single C-y
yanks all the text as a unit, just as it was before it was killed.

Thus, if you want to yank text as a unit, you need not kill all of it with one command;
you can keep killing line after line, or word after word, until you have killed it all, and you
can still get it all back at once.

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add text onto the beginning. This way, any
sequence of mixed forward and backward kill commands puts all the killed text into one
entry without rearrangement. Numeric arguments do not break the sequence of appending
kills. For example, suppose the buffer contains this text:

Chapter 9: Killing and Moving Text 71

This is a line ?of sample text.

with point shown by ?. If you type M-d M-〈DEL〉 M-d M-〈DEL〉, killing alternately forward and
backward, you end up with ‘a line of sample’ as one entry in the kill ring, and ‘This is
text.’ in the buffer. (Note the double space between ‘is’ and ‘text’, which you can clean
up with M-〈SPC〉 or M-q.)

Another way to kill the same text is to move back two words with M-b M-b, then kill all
four words forward with C-u M-d. This produces exactly the same results in the buffer and
in the kill ring. M-f M-f C-u M-〈DEL〉 kills the same text, all going backward; once again,
the result is the same. The text in the kill ring entry always has the same order that it had
in the buffer before you killed it.

If a kill command is separated from the last kill command by other commands (not just
numeric arguments), it starts a new entry on the kill ring. But you can force it to append
by first typing the command C-M-w (append-next-kill) right before it. The C-M-w tells
the following command, if it is a kill command, to append the text it kills to the last killed
text, instead of starting a new entry. With C-M-w, you can kill several separated pieces of
text and accumulate them to be yanked back in one place.

A kill command following M-w does not append to the text that M-w copied into the kill
ring.

9.2.3 Yanking Earlier Kills

To recover killed text that is no longer the most recent kill, use the M-y command (yank-
pop). It takes the text previously yanked and replaces it with the text from an earlier kill.
So, to recover the text of the next-to-the-last kill, first use C-y to yank the last kill, and
then use M-y to replace it with the previous kill. M-y is allowed only after a C-y or another
M-y.

You can understand M-y in terms of a “last yank” pointer which points at an entry in
the kill ring. Each time you kill, the “last yank” pointer moves to the newly made entry
at the front of the ring. C-y yanks the entry which the “last yank” pointer points to. M-y
moves the “last yank” pointer to a different entry, and the text in the buffer changes to
match. Enough M-y commands can move the pointer to any entry in the ring, so you can
get any entry into the buffer. Eventually the pointer reaches the end of the ring; the next
M-y loops back around to the first entry again.

M-y moves the “last yank” pointer around the ring, but it does not change the order of
the entries in the ring, which always runs from the most recent kill at the front to the oldest
one still remembered.

M-y can take a numeric argument, which tells it how many entries to advance the “last
yank” pointer by. A negative argument moves the pointer toward the front of the ring; from
the front of the ring, it moves “around” to the last entry and continues forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y
commands and it will stay there. It’s just a copy of the kill ring entry, so editing it in the
buffer does not change what’s in the ring. As long as no new killing is done, the “last yank”
pointer remains at the same place in the kill ring, so repeating C-y will yank another copy
of the same previous kill.

72 GNU Emacs Manual

If you know how many M-y commands it would take to find the text you want, you can
yank that text in one step using C-y with a numeric argument. C-y with an argument
restores the text from the specified kill ring entry, counting back from the most recent as 1.
Thus, C-u 2 C-y gets the next-to-the-last block of killed text—it is equivalent to C-y M-y.
C-y with a numeric argument starts counting from the “last yank” pointer, and sets the
“last yank” pointer to the entry that it yanks.

The length of the kill ring is controlled by the variable kill-ring-max; no more than
that many blocks of killed text are saved.

The actual contents of the kill ring are stored in a variable named kill-ring; you can
view the entire contents of the kill ring with the command C-h v kill-ring.

9.3 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are other methods
convenient for copying one block of text in many places, or for copying many scattered
blocks of text into one place. To copy one block to many places, store it in a register (see
Chapter 10 [Registers], page 75). Here we describe the commands to accumulate scattered
pieces of text into a buffer or into a file.

M-x append-to-buffer
Append region to the contents of a specified buffer.

M-x prepend-to-buffer
Prepend region to the contents of a specified buffer.

M-x copy-to-buffer
Copy region into a specified buffer, deleting that buffer’s old contents.

M-x insert-buffer
Insert the contents of a specified buffer into current buffer at point.

M-x append-to-file
Append region to the contents of a specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer. This reads a buffer name,
then inserts a copy of the region into the buffer specified. If you specify a nonexistent buffer,
append-to-buffer creates the buffer. The text is inserted wherever point is in that buffer.
If you have been using the buffer for editing, the copied text goes into the middle of the
text of the buffer, starting from wherever point happens to be at that moment.

Point in that buffer is left at the end of the copied text, so successive uses of append-to-
buffer accumulate the text in the specified buffer in the same order as they were copied.
Strictly speaking, append-to-buffer does not always append to the text already in the
buffer—it appends only if point in that buffer is at the end. However, if append-to-buffer
is the only command you use to alter a buffer, then point is always at the end.

M-x prepend-to-buffer is just like append-to-buffer except that point in the other
buffer is left before the copied text, so successive prependings add text in reverse order. M-x
copy-to-buffer is similar, except that any existing text in the other buffer is deleted, so
the buffer is left containing just the text newly copied into it.

Chapter 9: Killing and Moving Text 73

To retrieve the accumulated text from another buffer, use the command M-x
insert-buffer; this too takes buffername as an argument. It inserts a copy of the whole
text in buffer buffername into the current buffer at point, and sets the mark after the
inserted text. Alternatively, you can select the other buffer for editing, then copy text from
it by killing. See Chapter 15 [Buffers], page 149, for background information on buffers.

Instead of accumulating text within Emacs, in a buffer, you can append text directly
into a file with M-x append-to-file, which takes filename as an argument. It adds the
text of the region to the end of the specified file. The file is changed immediately on disk.

You should use append-to-file only with files that are not being visited in Emacs.
Using it on a file that you are editing in Emacs would change the file behind Emacs’s back,
which can lead to losing some of your editing.

9.4 Rectangles

The rectangle commands operate on rectangular areas of the text: all the characters
between a certain pair of columns, in a certain range of lines. Commands are provided to
kill rectangles, yank killed rectangles, clear them out, fill them with blanks or text, or delete
them. Rectangle commands are useful with text in multicolumn formats, and for changing
text into or out of such formats.

When you must specify a rectangle for a command to work on, you do it by putting the
mark at one corner and point at the opposite corner. The rectangle thus specified is called
the region-rectangle because you control it in much the same way as the region is controlled.
But remember that a given combination of point and mark values can be interpreted either
as a region or as a rectangle, depending on the command that uses them.

If point and the mark are in the same column, the rectangle they delimit is empty. If
they are in the same line, the rectangle is one line high. This asymmetry between lines and
columns comes about because point (and likewise the mark) is between two columns, but
within a line.

C-x r k Kill the text of the region-rectangle, saving its contents as the “last killed
rectangle” (kill-rectangle).

C-x r d Delete the text of the region-rectangle (delete-rectangle).

C-x r y Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

C-x r o Insert blank space to fill the space of the region-rectangle (open-rectangle).
This pushes the previous contents of the region-rectangle rightward.

M-x clear-rectangle
Clear the region-rectangle by replacing its contents with spaces.

M-x delete-whitespace-rectangle
Delete whitespace in each of the lines on the specified rectangle, starting from
the left edge column of the rectangle.

C-x r t string 〈RET〉
Replace rectangle contents with string on each line. (string-rectangle).

74 GNU Emacs Manual

M-x string-insert-rectangle 〈RET〉 string 〈RET〉
Insert string on each line of the rectangle.

The rectangle operations fall into two classes: commands for deleting and inserting
rectangles, and commands for blank rectangles.

There are two ways to get rid of the text in a rectangle: you can discard the text (delete
it) or save it as the “last killed” rectangle. The commands for these two ways are C-x r
d (delete-rectangle) and C-x r k (kill-rectangle). In either case, the portion of each
line that falls inside the rectangle’s boundaries is deleted, causing any following text on the
line to move left into the gap.

Note that “killing” a rectangle is not killing in the usual sense; the rectangle is not stored
in the kill ring, but in a special place that can only record the most recent rectangle killed.
This is because yanking a rectangle is so different from yanking linear text that different
yank commands have to be used and yank-popping is hard to make sense of.

To yank the last killed rectangle, type C-x r y (yank-rectangle). Yanking a rectangle
is the opposite of killing one. Point specifies where to put the rectangle’s upper left corner.
The rectangle’s first line is inserted there, the rectangle’s second line is inserted at the same
horizontal position, but one line vertically down, and so on. The number of lines affected
is determined by the height of the saved rectangle.

You can convert single-column lists into double-column lists using rectangle killing and
yanking; kill the second half of the list as a rectangle and then yank it beside the first line of
the list. See Section 31.10 [Two-Column], page 367, for another way to edit multi-column
text.

You can also copy rectangles into and out of registers with C-x r r r and C-x r i r. See
Section 10.3 [Rectangle Registers], page 76.

There are two commands you can use for making blank rectangles: M-x
clear-rectangle which blanks out existing text, and C-x r o (open-rectangle) which
inserts a blank rectangle. Clearing a rectangle is equivalent to deleting it and then
inserting a blank rectangle of the same size.

The command M-x delete-whitespace-rectangle deletes horizontal whitespace start-
ing from a particular column. This applies to each of the lines in the rectangle, and the
column is specified by the left edge of the rectangle. The right edge of the rectangle does
not make any difference to this command.

The command C-x r t (string-rectangle) replaces the contents of a region-rectangle
with a string on each line. The string’s width need not be the same as the width of the
rectangle. If the string’s width is less, the text after the rectangle shifts left; if the string is
wider than the rectangle, the text after the rectangle shifts right.

The command M-x string-insert-rectangle is similar to string-rectangle, but in-
serts the string on each line, shifting the original text to the right.

Chapter 10: Registers 75

10 Registers

Emacs registers are compartments where you can save text, rectangles, positions, and
other things for later use. Once you save text or a rectangle in a register, you can copy it
into the buffer once, or many times; you can move point to a position saved in a register
once, or many times.

Each register has a name, which consists of a single character. A register can store a
piece of text, a rectangle, a position, a window configuration, or a file name, but only one
thing at any given time. Whatever you store in a register remains there until you store
something else in that register. To see what a register r contains, use M-x view-register.

M-x view-register 〈RET〉 r
Display a description of what register r contains.

10.1 Saving Positions in Registers

Saving a position records a place in a buffer so that you can move back there later.
Moving to a saved position switches to that buffer and moves point to that place in it.

C-x r 〈SPC〉 r
Save position of point in register r (point-to-register).

C-x r j r Jump to the position saved in register r (jump-to-register).

To save the current position of point in a register, choose a name r and type C-x r 〈SPC〉
r. The register r retains the position thus saved until you store something else in that
register.

The command C-x r j r moves point to the position recorded in register r. The register
is not affected; it continues to hold the same position. You can jump to the saved position
any number of times.

If you use C-x r j to go to a saved position, but the buffer it was saved from has been
killed, C-x r j tries to create the buffer again by visiting the same file. Of course, this works
only for buffers that were visiting files.

10.2 Saving Text in Registers

When you want to insert a copy of the same piece of text several times, it may be
inconvenient to yank it from the kill ring, since each subsequent kill moves that entry
further down the ring. An alternative is to store the text in a register and later retrieve it.

C-x r s r Copy region into register r (copy-to-register).

C-x r i r Insert text from register r (insert-register).

M-x append-to-register 〈RET〉 r
Append region to text in register r.

M-x prepend-to-register 〈RET〉 r
Prepend region to text in register r.

76 GNU Emacs Manual

C-x r s r stores a copy of the text of the region into the register named r. C-u C-x r s
r, the same command with a numeric argument, deletes the text from the buffer as well;
you can think of this as “moving” the region text into the register.

M-x append-to-register 〈RET〉 r appends the copy of the text in the region to the text
already stored in the register named r. If invoked with a numeric argument, it deletes the
region after appending it to the register. A similar command prepend-to-register works
the same, except that it prepends the region text to the text in the register, rather than
appending it.

C-x r i r inserts in the buffer the text from register r. Normally it leaves point before
the text and places the mark after, but with a numeric argument (C-u) it puts point after
the text and the mark before.

10.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. The rectangle is represented
as a list of strings. See Section 9.4 [Rectangles], page 73, for basic information on how to
specify a rectangle in the buffer.

C-x r r r Copy the region-rectangle into register r (copy-rectangle-to-register).
With numeric argument, delete it as well.

C-x r i r Insert the rectangle stored in register r (if it contains a rectangle) (insert-
register).

The C-x r i r command inserts a text string if the register contains one, and inserts a
rectangle if the register contains one.

See also the command sort-columns, which you can think of as sorting a rectangle. See
Section 31.8 [Sorting], page 364.

10.4 Saving Window Configurations in Registers

You can save the window configuration of the selected frame in a register, or even the
configuration of all windows in all frames, and restore the configuration later.

C-x r w r Save the state of the selected frame’s windows in register r (window-
configuration-to-register).

C-x r f r Save the state of all frames, including all their windows, in register r (frame-
configuration-to-register).

Use C-x r j r to restore a window or frame configuration. This is the same command
used to restore a cursor position. When you restore a frame configuration, any existing
frames not included in the configuration become invisible. If you wish to delete these
frames instead, use C-u C-x r j r.

Chapter 10: Registers 77

10.5 Keeping Numbers in Registers

There are commands to store a number in a register, to insert the number in the buffer
in decimal, and to increment it. These commands can be useful in keyboard macros (see
Section 32.3 [Keyboard Macros], page 390).

C-u number C-x r n r
Store number into register r (number-to-register).

C-u number C-x r + r
Increment the number in register r by number (increment-register).

C-x r g r Insert the number from register r into the buffer.

C-x r g is the same command used to insert any other sort of register contents into the
buffer. C-x r + with no numeric argument increments the register value by 1; C-x r n with
no numeric argument stores zero in the register.

10.6 Keeping File Names in Registers

If you visit certain file names frequently, you can visit them more conveniently if you
put their names in registers. Here’s the Lisp code used to put a file name in a register:

(set-register ?r ’(file . name))

For example,
(set-register ?z ’(file . "/gd/gnu/emacs/19.0/src/ChangeLog"))

puts the file name shown in register ‘z’.

To visit the file whose name is in register r, type C-x r j r. (This is the same command
used to jump to a position or restore a frame configuration.)

10.7 Bookmarks

Bookmarks are somewhat like registers in that they record positions you can jump to.
Unlike registers, they have long names, and they persist automatically from one Emacs
session to the next. The prototypical use of bookmarks is to record “where you were
reading” in various files.

C-x r m 〈RET〉
Set the bookmark for the visited file, at point.

C-x r m bookmark 〈RET〉
Set the bookmark named bookmark at point (bookmark-set).

C-x r b bookmark 〈RET〉
Jump to the bookmark named bookmark (bookmark-jump).

C-x r l List all bookmarks (list-bookmarks).

M-x bookmark-save
Save all the current bookmark values in the default bookmark file.

78 GNU Emacs Manual

The prototypical use for bookmarks is to record one current position in each of several
files. So the command C-x r m, which sets a bookmark, uses the visited file name as the
default for the bookmark name. If you name each bookmark after the file it points to, then
you can conveniently revisit any of those files with C-x r b, and move to the position of the
bookmark at the same time.

To display a list of all your bookmarks in a separate buffer, type C-x r l (list-
bookmarks). If you switch to that buffer, you can use it to edit your bookmark definitions
or annotate the bookmarks. Type C-h m in the bookmark buffer for more information about
its special editing commands.

When you kill Emacs, Emacs offers to save your bookmark values in your default book-
mark file, ‘~/.emacs.bmk’, if you have changed any bookmark values. You can also save the
bookmarks at any time with the M-x bookmark-save command. The bookmark commands
load your default bookmark file automatically. This saving and loading is how bookmarks
persist from one Emacs session to the next.

If you set the variable bookmark-save-flag to 1, then each command that sets a book-
mark will also save your bookmarks; this way, you don’t lose any bookmark values even if
Emacs crashes. (The value, if a number, says how many bookmark modifications should go
by between saving.)

Bookmark position values are saved with surrounding context, so that bookmark-jump
can find the proper position even if the file is modified slightly. The variable bookmark-
search-size says how many characters of context to record on each side of the bookmark’s
position.

Here are some additional commands for working with bookmarks:

M-x bookmark-load 〈RET〉 filename 〈RET〉
Load a file named filename that contains a list of bookmark values. You can use
this command, as well as bookmark-write, to work with other files of bookmark
values in addition to your default bookmark file.

M-x bookmark-write 〈RET〉 filename 〈RET〉
Save all the current bookmark values in the file filename.

M-x bookmark-delete 〈RET〉 bookmark 〈RET〉
Delete the bookmark named bookmark.

M-x bookmark-insert-location 〈RET〉 bookmark 〈RET〉
Insert in the buffer the name of the file that bookmark bookmark points to.

M-x bookmark-insert 〈RET〉 bookmark 〈RET〉
Insert in the buffer the contents of the file that bookmark bookmark points to.

Chapter 11: Controlling the Display 79

11 Controlling the Display

Since only part of a large buffer fits in the window, Emacs tries to show a part that is
likely to be interesting. Display-control commands allow you to specify which part of the
text you want to see, and how to display it.

11.1 Using Multiple Typefaces

When using Emacs with a window system, you can set up multiple styles of displaying
characters. Each style is called a face. Each face can specify various attributes, such as
the height, weight and slant of the characters, the foreground and background color, and
underlining. But it does not have to specify all of them.

Emacs on a character terminal supports only part of face attributes. Which attributes
are supported depends on your display type, but many displays support inverse video, bold,
and underline attributes, and some support colors.

Features which rely on text in multiple faces (such as Font Lock mode) will also work
on non-windowed terminals that can display more than one face, whether by colors or
underlining and emboldening. This includes the console on GNU/Linux, an xterm which
supports colors, the MS-DOS display (see Appendix E [MS-DOS], page 451), and the MS-
Windows version invoked with the ‘-nw’ option. Emacs determines automatically whether
the terminal has this capability.

You control the appearance of a part of the text in the buffer by specifying the face
or faces to use for it. The style of display used for any given character is determined
by combining the attributes of all the applicable faces specified for that character. Any
attribute that isn’t specified by these faces is taken from the default face, whose attributes
reflect the default settings of the frame itself.

Enriched mode, the mode for editing formatted text, includes several commands and
menus for specifying faces for text in the buffer. See Section 21.11.4 [Format Faces],
page 220, for how to specify the font for text in the buffer. See Section 21.11.5 [Format
Colors], page 221, for how to specify the foreground and background color.

To alter the appearance of a face, use the customization buffer. See Section 32.2.2.3
[Face Customization], page 384. You can also use X resources to specify attributes of
particular faces (see Section B.13 [Resources X], page 435). Alternatively, you can change
the foreground and background colors of a specific face with M-x set-face-foreground and
M-x set-face-background. These commands prompt in the minibuffer for a face name and
a color name, with completion, and then set that face to use the specified color. Changing
the colors of the default face also changes the foreground and background colors on all
frames, both existing and those to be created in the future. (You can also set foreground
and background colors for the current frame only; see Section 17.12 [Frame Parameters],
page 170.)

Emacs 21 can correctly display variable-width fonts, but Emacs commands that calculate
width and indentation do not know how to calculate variable widths. This can sometimes
lead to incorrect results when you use variable-width fonts. In particular, indentation
commands can give inconsistent results, so we recommend you avoid variable-width fonts
for editing program source code. Filling will sometimes make lines too long or too short.
We plan to address these issues in future Emacs versions.

80 GNU Emacs Manual

To see what faces are currently defined, and what they look like, type M-x
list-faces-display. It’s possible for a given face to look different in different frames;
this command shows the appearance in the frame in which you type it. Here’s a list of the
standard defined faces:

default This face is used for ordinary text that doesn’t specify any other face.

mode-line
This face is used for mode lines. By default, it’s drawn with shadows for a
“raised” effect on window systems, and drawn as the inverse of the default face
on non-windowed terminals. See Section 11.12 [Display Custom], page 89.

header-line
Similar to mode-line for a window’s header line. Most modes don’t use the
header line, but the Info mode does.

highlight
This face is used for highlighting portions of text, in various modes. For exam-
ple, mouse-sensitive text is highlighted using this face.

isearch This face is used for highlighting Isearch matches.

isearch-lazy-highlight-face
This face is used for lazy highlighting of Isearch matches other than the current
one.

region This face is used for displaying a selected region (when Transient Mark mode
is enabled—see below).

secondary-selection
This face is used for displaying a secondary X selection (see Section 17.2 [Sec-
ondary Selection], page 165).

bold This face uses a bold variant of the default font, if it has one.

italic This face uses an italic variant of the default font, if it has one.

bold-italic
This face uses a bold italic variant of the default font, if it has one.

underline
This face underlines text.

fixed-pitch
The basic fixed-pitch face.

fringe The face for the fringes to the left and right of windows on graphic displays.
(The fringes are the narrow portions of the Emacs frame between the text area
and the window’s right and left borders.)

scroll-bar
This face determines the visual appearance of the scroll bar.

border This face determines the color of the frame border.

cursor This face determines the color of the cursor.

Chapter 11: Controlling the Display 81

mouse This face determines the color of the mouse pointer.

tool-bar This is the basic tool-bar face. No text appears in the tool bar, but the colors
of this face affect the appearance of tool bar icons.

tooltip This face is used for tooltips.

menu This face determines the colors and font of Emacs’s menus. Setting the font of
LessTif/Motif menus is currently not supported; attempts to set the font are
ignored in this case.

trailing-whitespace
The face for highlighting trailing whitespace when show-trailing-whitespace
is non-nil; see Section 11.5 [Trailing Whitespace], page 84.

variable-pitch
The basic variable-pitch face.

When Transient Mark mode is enabled, the text of the region is highlighted when the
mark is active. This uses the face named region; you can control the style of highlighting
by changing the style of this face (see Section 32.2.2.3 [Face Customization], page 384). See
Section 8.2 [Transient Mark], page 62, for more information about Transient Mark mode
and activation and deactivation of the mark.

One easy way to use faces is to turn on Font Lock mode. This minor mode, which is
always local to a particular buffer, arranges to choose faces according to the syntax of the
text you are editing. It can recognize comments and strings in most languages; in several
languages, it can also recognize and properly highlight various other important constructs.
See Section 11.2 [Font Lock], page 81, for more information about Font Lock mode and
syntactic highlighting.

You can print out the buffer with the highlighting that appears on your screen using the
command ps-print-buffer-with-faces. See Section 31.6 [PostScript], page 362.

11.2 Font Lock mode

Font Lock mode is a minor mode, always local to a particular buffer, which highlights
(or “fontifies”) using various faces according to the syntax of the text you are editing. It
can recognize comments and strings in most languages; in several languages, it can also
recognize and properly highlight various other important constructs—for example, names
of functions being defined or reserved keywords.

The command M-x font-lock-mode turns Font Lock mode on or off according to the
argument, and toggles the mode when it has no argument. The function turn-on-font-
lock unconditionally enables Font Lock mode. This is useful in mode-hook functions. For
example, to enable Font Lock mode whenever you edit a C file, you can do this:

(add-hook ’c-mode-hook ’turn-on-font-lock)

To turn on Font Lock mode automatically in all modes which support it, customize the
user option global-font-lock-mode or use the function global-font-lock-mode in your
‘.emacs’ file, like this:

82 GNU Emacs Manual

(global-font-lock-mode 1)

Font Lock mode uses several specifically named faces to do its job, including font-lock-
string-face, font-lock-comment-face, and others. The easiest way to find them all is
to use completion on the face name in set-face-foreground.

To change the colors or the fonts used by Font Lock mode to fontify different parts of
text, just change these faces. There are two ways to do it:
• Invoke M-x set-face-foreground or M-x set-face-background to change the colors

of a particular face used by Font Lock. See Section 11.1 [Faces], page 79. The command
M-x list-faces-display displays all the faces currently known to Emacs, including
those used by Font Lock.

• Customize the faces interactively with M-x customize-face, as described in
Section 32.2.2.3 [Face Customization], page 384.

To get the full benefit of Font Lock mode, you need to choose a default font which has
bold, italic, and bold-italic variants; or else you need to have a color or gray-scale screen.

The variable font-lock-maximum-decoration specifies the preferred level of fontifica-
tion, for modes that provide multiple levels. Level 1 is the least amount of fontification;
some modes support levels as high as 3. The normal default is “as high as possible.” You
can specify an integer, which applies to all modes, or you can specify different numbers for
particular major modes; for example, to use level 1 for C/C++ modes, and the default level
otherwise, use this:

(setq font-lock-maximum-decoration
’((c-mode . 1) (c++-mode . 1)))

Fontification can be too slow for large buffers, so you can suppress it. The variable font-
lock-maximum-size specifies a buffer size, beyond which buffer fontification is suppressed.

Comment and string fontification (or “syntactic” fontification) relies on analysis of the
syntactic structure of the buffer text. For the sake of speed, some modes, including C mode
and Lisp mode, rely on a special convention: an open-parenthesis or open-brace in the
leftmost column always defines the beginning of a defun, and is thus always outside any
string or comment. (See Section 22.2.1 [Left Margin Paren], page 226.) If you don’t follow
this convention, Font Lock mode can misfontify the text that follows an open-parenthesis
or open-brace in the leftmost column that is inside a string or comment.

The variable font-lock-beginning-of-syntax-function (always buffer-local) speci-
fies how Font Lock mode can find a position guaranteed to be outside any comment or
string. In modes which use the leftmost column parenthesis convention, the default value of
the variable is beginning-of-defun—that tells Font Lock mode to use the convention. If
you set this variable to nil, Font Lock no longer relies on the convention. This avoids incor-
rect results, but the price is that, in some cases, fontification for a changed text must rescan
buffer text from the beginning of the buffer. This can considerably slow down redisplay
while scrolling, particularly if you are close to the end of a large buffer.

Font Lock highlighting patterns already exist for many modes, but you may want to
fontify additional patterns. You can use the function font-lock-add-keywords, to add
your own highlighting patterns for a particular mode. For example, to highlight ‘FIXME:’
words in C comments, use this:

(font-lock-add-keywords

Chapter 11: Controlling the Display 83

’c-mode
’(("\\<\\(FIXME\\):" 1 font-lock-warning-face t)))

To remove keywords from the font-lock highlighting patterns, use the function font-
lock-remove-keywords.

11.3 Highlight Changes Mode

Use M-x highlight-changes-mode to enable a minor mode that uses faces (colors, typ-
ically) to indicate which parts of the buffer were changed most recently.

11.4 Interactive Highlighting by Matching

It is sometimes useful to highlight the strings that match a certain regular expression.
For example, you might wish to see all the references to a certain variable in a program
source file, or highlight certain parts in a voluminous output of some program, or make
certain cliches stand out in an article.

Use the M-x hi-lock-mode command to turn on a minor mode that allows you to specify
regular expressions of the text to be highlighted. Hi-lock mode works like Font Lock (see
Section 11.2 [Font Lock], page 81), except that it lets you specify explicitly what parts of
text to highlight. You control Hi-lock mode with these commands:

C-x w h regexp 〈RET〉 face 〈RET〉
Highlight text that matches regexp using face face (highlight-regexp). By
using this command more than once, you can highlight various parts of the text
in different ways.

C-x w r regexp 〈RET〉
Unhighlight regexp (unhighlight-regexp). You must enter one of the regular
expressions currently specified for highlighting. (You can use completion, or
choose from a menu, to enter one of them conveniently.)

C-x w l regexp 〈RET〉 face 〈RET〉
Highlight entire lines containing a match for regexp, using face face
(highlight-lines-matching-regexp).

C-x w b Insert all the current highlighting regexp/face pairs into the buffer at point,
with comment delimiters to prevent them from changing your program. This
key binding runs the hi-lock-write-interactive-patterns command.

These patterns will be read the next time you visit the file while Hi-lock mode
is enabled, or whenever you use the M-x hi-lock-find-patterns command.

C-x w i Re-read regexp/face pairs in the current buffer (hi-lock-write-interactive-
patterns). The list of pairs is found no matter where in the buffer it may be.

This command does nothing if the major mode is a member of the list hi-
lock-exclude-modes.

84 GNU Emacs Manual

11.5 Trailing Whitespace

It is easy to leave unnecessary spaces at the end of a line without realizing it. In most
cases, this trailing whitespace has no effect, but there are special circumstances where it
matters.

You can make trailing whitespace visible on the screen by setting the buffer-local variable
show-trailing-whitespace to t. Then Emacs displays trailing whitespace in the face
trailing-whitespace.

Trailing whitespace is defined as spaces or tabs at the end of a line. But trailing white-
space is not displayed specially if point is at the end of the line containing the whitespace.
(Doing that looks ugly while you are typing in new text, and the location of point is enough
in that case to show you that the spaces are present.)

To delete all trailing whitespace within the current buffer’s restriction (see Section 31.9
[Narrowing], page 366), type M-x delete-trailing-whitespace 〈RET〉. (This command
does not remove the form-feed characters.)

Emacs can indicate empty lines at the end of the buffer with a special bitmap on the left
fringe of the window. To enable this feature, set the buffer-local variable indicate-empty-
lines to a non-nil value. The default value of this variable is controlled by the variable
default-indicate-empty-lines; by setting that variable, you can enable or disable this
feature for all new buffers.

11.6 Scrolling

If a buffer contains text that is too large to fit entirely within a window that is displaying
the buffer, Emacs shows a contiguous portion of the text. The portion shown always contains
point.

Scrolling means moving text up or down in the window so that different parts of the
text are visible. Scrolling forward means that text moves up, and new text appears at the
bottom. Scrolling backward moves text down and new text appears at the top.

Scrolling happens automatically if you move point past the bottom or top of the window.
You can also explicitly request scrolling with the commands in this section.

C-l Clear screen and redisplay, scrolling the selected window to center point verti-
cally within it (recenter).

C-v Scroll forward (a windowful or a specified number of lines) (scroll-up).

〈NEXT〉
〈PAGEDOWN〉

Likewise, scroll forward.

M-v Scroll backward (scroll-down).

〈PRIOR〉
〈PAGEUP〉 Likewise, scroll backward.

arg C-l Scroll so point is on line arg (recenter).

C-M-l Scroll heuristically to bring useful information onto the screen (reposition-
window).

Chapter 11: Controlling the Display 85

The most basic scrolling command is C-l (recenter) with no argument. It clears the
entire screen and redisplays all windows. In addition, it scrolls the selected window so that
point is halfway down from the top of the window.

To read the buffer a windowful at a time, use C-v (scroll-up) with no argument. This
scrolls forward by nearly the whole window height. The effect is to take the two lines at
the bottom of the window and put them at the top, followed by nearly a whole windowful
of lines that were not previously visible. If point was in the text that scrolled off the top,
it ends up at the new top of the window.

M-v (scroll-down) with no argument scrolls backward in a similar way, also with overlap.
The number of lines of overlap across a C-v or M-v is controlled by the variable next-screen-
context-lines; by default, it is 2. The function keys 〈NEXT〉 and 〈PRIOR〉, or 〈PAGEDOWN〉
and 〈PAGEUP〉, are equivalent to C-v and M-v.

The commands C-v and M-v with a numeric argument scroll the text in the selected
window up or down a few lines. C-v with an argument moves the text and point up,
together, that many lines; it brings the same number of new lines into view at the bottom
of the window. M-v with numeric argument scrolls the text downward, bringing that many
new lines into view at the top of the window. C-v with a negative argument is like M-v and
vice versa.

The names of scroll commands are based on the direction that the text moves in the
window. Thus, the command to scroll forward is called scroll-up because it moves the text
upward on the screen. The keys 〈PAGEDOWN〉 and 〈PAGEUP〉 derive their names and customary
meanings from a different convention that developed elsewhere; hence the strange result that
〈PAGEDOWN〉 runs scroll-up.

Some users like the full-screen scroll commands to keep point at the same screen line.
To enable this behavior, set the variable scroll-preserve-screen-position to a non-nil
value. This mode is convenient for browsing through a file by scrolling by screenfuls; if you
come back to the screen where you started, point goes back to the line where it started.
However, this mode is inconvenient when you move to the next screen in order to move
point to the text there.

Another way to do scrolling is with C-l with a numeric argument. C-l does not clear
the screen when given an argument; it only scrolls the selected window. With a positive
argument n, it repositions text to put point n lines down from the top. An argument of
zero puts point on the very top line. Point does not move with respect to the text; rather,
the text and point move rigidly on the screen. C-l with a negative argument puts point
that many lines from the bottom of the window. For example, C-u - 1 C-l puts point on
the bottom line, and C-u - 5 C-l puts it five lines from the bottom. C-u C-l scrolls to put
point at the center (vertically) of the selected window.

The C-M-l command (reposition-window) scrolls the current window heuristically in
a way designed to get useful information onto the screen. For example, in a Lisp file, this
command tries to get the entire current defun onto the screen if possible.

Scrolling happens automatically when point moves out of the visible portion of the text.
Normally, automatic scrolling centers point vertically within the window. However, if you
set scroll-conservatively to a small number n, then if you move point just a little off
the screen—less than n lines—then Emacs scrolls the text just far enough to bring point
back on screen. By default, scroll-conservatively is 0.

86 GNU Emacs Manual

When the window does scroll by a longer distance, you can control how aggressively
it scrolls, by setting the variables scroll-up-aggressively and scroll-down-
aggressively. The value of scroll-up-aggressively should be either nil, or a fraction
f between 0 and 1. A fraction specifies where on the screen to put point when scrolling
upward. More precisely, when a window scrolls up because point is above the window
start, the new start position is chosen to put point f part of the window height from the
top. The larger f, the more aggressive the scrolling.

nil, which is the default, scrolls to put point at the center. So it is equivalent to .5.
Likewise, scroll-down-aggressively is used for scrolling down. The value, f, specifies

how far point should be placed from the bottom of the window; thus, as with scroll-up-
aggressively, a larger value is more aggressive.

The variable scroll-margin restricts how close point can come to the top or bottom of
a window. Its value is a number of screen lines; if point comes within that many lines of the
top or bottom of the window, Emacs recenters the window. By default, scroll-margin is
0.

11.7 Horizontal Scrolling

Horizontal scrolling means shifting all the lines sideways within a window—so that some
of the text near the left margin is not displayed at all. Emacs does this automatically in any
window that uses line truncation rather than continuation: whenever point moves off the
left or right edge of the screen, Emacs scrolls the buffer horizontally to make point visible.

When a window has been scrolled horizontally, text lines are truncated rather than
continued (see Section 4.8 [Continuation Lines], page 39), with a ‘$’ appearing in the first
column when there is text truncated to the left, and in the last column when there is text
truncated to the right.

You can use these commands to do explicit horizontal scrolling.

C-x < Scroll text in current window to the left (scroll-left).

C-x > Scroll to the right (scroll-right).

The command C-x < (scroll-left) scrolls the selected window to the left by n columns
with argument n. This moves part of the beginning of each line off the left edge of the
window. With no argument, it scrolls by almost the full width of the window (two columns
less, to be precise).

C-x > (scroll-right) scrolls similarly to the right. The window cannot be scrolled any
farther to the right once it is displayed normally (with each line starting at the window’s
left margin); attempting to do so has no effect. This means that you don’t have to calculate
the argument precisely for C-x >; any sufficiently large argument will restore the normal
display.

If you scroll a window horizontally by hand, that sets a lower bound for automatic
horizontal scrolling. Automatic scrolling will continue to scroll the window, but never
farther to the right than the amount you previously set by scroll-left.

To disable automatic horizontal scrolling, set the variable automatic-hscrolling to
nil.

Chapter 11: Controlling the Display 87

11.8 Follow Mode

Follow mode is a minor mode that makes two windows showing the same buffer scroll
as one tall “virtual window.” To use Follow mode, go to a frame with just one window,
split it into two side-by-side windows using C-x 3, and then type M-x follow-mode. From
then on, you can edit the buffer in either of the two windows, or scroll either one; the other
window follows it.

In Follow mode, if you move point outside the portion visible in one window and into
the portion visible in the other window, that selects the other window—again, treating the
two as if they were parts of one large window.

To turn off Follow mode, type M-x follow-mode a second time.

11.9 Selective Display

Emacs has the ability to hide lines indented more than a certain number of columns (you
specify how many columns). You can use this to get an overview of a part of a program.

To hide lines, type C-x $ (set-selective-display) with a numeric argument n. Then
lines with at least n columns of indentation disappear from the screen. The only indication
of their presence is that three dots (‘...’) appear at the end of each visible line that is
followed by one or more hidden ones.

The commands C-n and C-p move across the hidden lines as if they were not there.

The hidden lines are still present in the buffer, and most editing commands see them
as usual, so you may find point in the middle of the hidden text. When this happens, the
cursor appears at the end of the previous line, after the three dots. If point is at the end of
the visible line, before the newline that ends it, the cursor appears before the three dots.

To make all lines visible again, type C-x $ with no argument.

If you set the variable selective-display-ellipses to nil, the three dots do not
appear at the end of a line that precedes hidden lines. Then there is no visible indication
of the hidden lines. This variable becomes local automatically when set.

11.10 Optional Mode Line Features

The current line number of point appears in the mode line when Line Number mode is
enabled. Use the command M-x line-number-mode to turn this mode on and off; normally
it is on. The line number appears before the buffer percentage pos, with the letter ‘L’ to
indicate what it is. See Section 32.1 [Minor Modes], page 377, for more information about
minor modes and about how to use this command.

If you have narrowed the buffer (see Section 31.9 [Narrowing], page 366), the displayed
line number is relative to the accessible portion of the buffer.

If the buffer is very large (larger than the value of line-number-display-limit), then
the line number doesn’t appear. Emacs doesn’t compute the line number when the buffer
is large, because that would be too slow. Set it to nil to remove the limit.

Line-number computation can also be slow if the lines in the buffer are too long. For this
reason, Emacs normally doesn’t display line numbers if the average width, in characters,

88 GNU Emacs Manual

of lines near point is larger than the value of the variable line-number-display-limit-
width. The default value is 200 characters.

You can also display the current column number by turning on Column Number
mode. It displays the current column number preceded by the letter ‘C’. Type M-x
column-number-mode to toggle this mode.

Emacs can optionally display the time and system load in all mode lines. To enable
this feature, type M-x display-time or customize the option display-time-mode. The
information added to the mode line usually appears after the buffer name, before the mode
names and their parentheses. It looks like this:

hh:mmpm l.ll

Here hh and mm are the hour and minute, followed always by ‘am’ or ‘pm’. l.ll is the average
number of running processes in the whole system recently. (Some fields may be missing if
your operating system cannot support them.) If you prefer time display in 24-hour format,
set the variable display-time-24hr-format to t.

The word ‘Mail’ appears after the load level if there is mail for you that you have not read
yet. On a graphical display you can use an icon instead of ‘Mail’ by customizing display-
time-use-mail-icon; this may save some space on the mode line. You can customize
display-time-mail-face to make the mail indicator prominent.

By default, the mode line is drawn on graphics displays with 3D-style highlighting, like
that of a button when it is not being pressed. If you don’t like this effect, you can disable
the 3D highlighting of the mode line, by customizing the attributes of the mode-line face
in your ‘.emacs’ init file, like this:

(set-face-attribute ’mode-line nil :box nil)

Alternatively, you can turn off the box attribute in your ‘.Xdefaults’ file:
Emacs.mode-line.AttributeBox: off

11.11 How Text Is Displayed

ASCII printing characters (octal codes 040 through 0176) in Emacs buffers are displayed
with their graphics, as are non-ASCII multibyte printing characters (octal codes above
0400).

Some ASCII control characters are displayed in special ways. The newline character
(octal code 012) is displayed by starting a new line. The tab character (octal code 011) is
displayed by moving to the next tab stop column (normally every 8 columns).

Other ASCII control characters are normally displayed as a caret (‘^’) followed by the
non-control version of the character; thus, control-A is displayed as ‘^A’.

Non-ASCII characters 0200 through 0237 (octal) are displayed with octal escape se-
quences; thus, character code 0230 (octal) is displayed as ‘\230’. The display of character
codes 0240 through 0377 (octal) may be either as escape sequences or as graphics. They do
not normally occur in multibyte buffers, but if they do, they are displayed as Latin-1 graph-
ics. In unibyte mode, if you enable European display they are displayed using their graphics
(assuming your terminal supports them), otherwise as escape sequences. See Section 18.13
[Single-Byte Character Support], page 190.

Chapter 11: Controlling the Display 89

11.12 Customization of Display

This section contains information for customization only. Beginning users should skip
it.

The variable mode-line-inverse-video is an obsolete way of controlling whether the
mode line is displayed in inverse video; the preferred way of doing this is to change the
mode-line face. See Section 1.3 [Mode Line], page 23. However, if mode-line-inverse-
video has a value of nil, then the mode-line face will be ignored, and mode-lines will be
drawn using the default text face. See Section 11.1 [Faces], page 79.

If the variable inverse-video is non-nil, Emacs attempts to invert all the lines of the
display from what they normally are.

If the variable visible-bell is non-nil, Emacs attempts to make the whole screen
blink when it would normally make an audible bell sound. This variable has no effect if
your terminal does not have a way to make the screen blink.

When you reenter Emacs after suspending, Emacs normally clears the screen and redraws
the entire display. On some terminals with more than one page of memory, it is possible to
arrange the termcap entry so that the ‘ti’ and ‘te’ strings (output to the terminal when
Emacs is entered and exited, respectively) switch between pages of memory so as to use
one page for Emacs and another page for other output. Then you might want to set the
variable no-redraw-on-reenter non-nil; this tells Emacs to assume, when resumed, that
the screen page it is using still contains what Emacs last wrote there.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero meaning don’t
echo at all. See Section 1.2 [Echo Area], page 22.

If the variable ctl-arrow is nil, all control characters in the buffer are displayed with
octal escape sequences, except for newline and tab. Altering the value of ctl-arrow makes
it local to the current buffer; until that time, the default value is in effect. The default is
initially t. See section “Display Tables” in The Emacs Lisp Reference Manual.

Normally, a tab character in the buffer is displayed as whitespace which extends to
the next display tab stop position, and display tab stops come at intervals equal to eight
spaces. The number of spaces per tab is controlled by the variable tab-width, which is
made local by changing it, just like ctl-arrow. Note that how the tab character in the
buffer is displayed has nothing to do with the definition of 〈TAB〉 as a command. The variable
tab-width must have an integer value between 1 and 1000, inclusive.

If the variable truncate-lines is non-nil, then each line of text gets just one screen line
for display; if the text line is too long, display shows only the part that fits. If truncate-
lines is nil, then long text lines display as more than one screen line, enough to show the
whole text of the line. See Section 4.8 [Continuation Lines], page 39. Altering the value of
truncate-lines makes it local to the current buffer; until that time, the default value is
in effect. The default is initially nil.

If the variable truncate-partial-width-windows is non-nil, it forces truncation rather
than continuation in any window less than the full width of the screen or frame, regardless of
the value of truncate-lines. For information about side-by-side windows, see Section 16.2
[Split Window], page 158. See also section “Display” in The Emacs Lisp Reference Manual.

90 GNU Emacs Manual

The variable baud-rate holds the output speed of the terminal, as far as Emacs knows.
Setting this variable does not change the speed of actual data transmission, but the value
is used for calculations. On terminals, it affects padding, and decisions about whether to
scroll part of the screen or redraw it instead. It also affects the behavior of incremental
search.

On window-systems, baud-rate is only used to determine how frequently to look for
pending input during display updating. A higher value of baud-rate means that check for
pending input will be done less frequently.

You can customize the way any particular character code is displayed by means of a
display table. See section “Display Tables” in The Emacs Lisp Reference Manual.

On a window system, Emacs can optionally display the mouse pointer in a special shape
to say that Emacs is busy. To turn this feature on or off, customize the group cursor. You
can also control the amount of time Emacs must remain busy before the busy indicator is
displayed, by setting the variable hourglass-delay.

On some text-only terminals, bold face and inverse video together result in text that
is hard to read. Call the function tty-suppress-bold-inverse-default-colors with a
non-nil argument to suppress the effect of bold-face in this case.

11.13 Displaying the Cursor

There are a number of ways to customize the display of the cursor. M-x hl-line-mode
enables or disables a minor mode which highlights the line containing point. On window
systems, the command M-x blink-cursor-mode turns on or off the blinking of the cursor.
(On terminals, the terminal itself blinks the cursor, and Emacs has no control over it.)

You can customize the cursor’s color, and whether it blinks, using the cursor Custom
group (see Section 32.2.2 [Easy Customization], page 380).

When displaying on a window system, Emacs can optionally draw the block cursor as
wide as the character under the cursor—for example, if the cursor is on a tab character, it
would cover the full width occupied by that tab character. To enable this feature, set the
variable x-stretch-cursor to a non-nil value.

Normally, the cursor in non-selected windows is shown as a hollow box. To turn off cursor
display in non-selected windows, customize the option cursor-in-non-selected-windows
to assign it a nil value.

Chapter 12: Searching and Replacement 91

12 Searching and Replacement

Like other editors, Emacs has commands for searching for occurrences of a string. The
principal search command is unusual in that it is incremental; it begins to search before
you have finished typing the search string. There are also nonincremental search commands
more like those of other editors.

Besides the usual replace-string command that finds all occurrences of one string
and replaces them with another, Emacs has a more flexible replacement command called
query-replace, which asks interactively which occurrences to replace.

12.1 Incremental Search

An incremental search begins searching as soon as you type the first character of the
search string. As you type in the search string, Emacs shows you where the string (as you
have typed it so far) would be found. When you have typed enough characters to identify
the place you want, you can stop. Depending on what you plan to do next, you may or
may not need to terminate the search explicitly with 〈RET〉.

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

C-s starts a forward incremental search. It reads characters from the keyboard, and
moves point past the next occurrence of those characters. If you type C-s and then F,
that puts the cursor after the first ‘F’ (the first following the starting point, since this is a
forward search). Then if you type an O, you will see the cursor move just after the first ‘FO’
(the ‘F’ in that ‘FO’ may or may not be the first ‘F’). After another O, the cursor moves
after the first ‘FOO’ after the place where you started the search. At each step, the buffer
text that matches the search string is highlighted, if the terminal can do that; the current
search string is always displayed in the echo area.

If you make a mistake in typing the search string, you can cancel characters with 〈DEL〉.
Each 〈DEL〉 cancels the last character of search string. This does not happen until Emacs is
ready to read another input character; first it must either find, or fail to find, the character
you want to erase. If you do not want to wait for this to happen, use C-g as described
below.

When you are satisfied with the place you have reached, you can type 〈RET〉, which stops
searching, leaving the cursor where the search brought it. Also, any command not specially
meaningful in searches stops the searching and is then executed. Thus, typing C-a would
exit the search and then move to the beginning of the line. 〈RET〉 is necessary only if the
next command you want to type is a printing character, 〈DEL〉, 〈RET〉, or another character
that is special within searches (C-q, C-w, C-r, C-s, C-y, M-y, M-r, M-s, and some other
meta-characters).

Sometimes you search for ‘FOO’ and find one, but not the one you expected to find. There
was a second ‘FOO’ that you forgot about, before the one you were aiming for. In this event,
type another C-s to move to the next occurrence of the search string. You can repeat this
any number of times. If you overshoot, you can cancel some C-s characters with 〈DEL〉.

92 GNU Emacs Manual

After you exit a search, you can search for the same string again by typing just C-s C-s:
the first C-s is the key that invokes incremental search, and the second C-s means “search
again.”

To reuse earlier search strings, use the search ring. The commands M-p and M-n move
through the ring to pick a search string to reuse. These commands leave the selected search
ring element in the minibuffer, where you can edit it. Type C-s or C-r to terminate editing
the string and search for it.

If your string is not found at all, the echo area says ‘Failing I-Search’. The cursor is
after the place where Emacs found as much of your string as it could. Thus, if you search
for ‘FOOT’, and there is no ‘FOOT’, you might see the cursor after the ‘FOO’ in ‘FOOL’. At
this point there are several things you can do. If your string was mistyped, you can rub
some of it out and correct it. If you like the place you have found, you can type 〈RET〉 or
some other Emacs command to remain there. Or you can type C-g, which removes from the
search string the characters that could not be found (the ‘T’ in ‘FOOT’), leaving those that
were found (the ‘FOO’ in ‘FOOT’). A second C-g at that point cancels the search entirely,
returning point to where it was when the search started.

An upper-case letter in the search string makes the search case-sensitive. If you delete
the upper-case character from the search string, it ceases to have this effect. See Section 12.6
[Search Case], page 100.

To search for a newline, type C-j. To search for another control character, such as
control-S or carriage return, you must quote it by typing C-q first. This function of C-q
is analogous to its use for insertion (see Section 4.1 [Inserting Text], page 33): it causes
the following character to be treated the way any “ordinary” character is treated in the
same context. You can also specify a character by its octal code: enter C-q followed by a
sequence of octal digits.

To search for non-ASCII characters, you must use an input method (see Section 18.4
[Input Methods], page 178). If an input method is enabled in the current buffer when you
start the search, you can use it while you type the search string also. Emacs indicates that
by including the input method mnemonic in its prompt, like this:

I-search [im]:

where im is the mnemonic of the active input method. You can toggle (enable or disable)
the input method while you type the search string with C-\ (isearch-toggle-input-
method). You can turn on a certain (non-default) input method with C-^ (isearch-toggle-
specified-input-method), which prompts for the name of the input method. The input
method you enable during incremental search remains enabled in the current buffer after-
wards.

If a search is failing and you ask to repeat it by typing another C-s, it starts again
from the beginning of the buffer. Repeating a failing reverse search with C-r starts again
from the end. This is called wrapping around, and ‘Wrapped’ appears in the search prompt
once this has happened. If you keep on going past the original starting point of the search,
it changes to ‘Overwrapped’, which means that you are revisiting matches that you have
already seen.

The C-g “quit” character does special things during searches; just what it does depends
on the status of the search. If the search has found what you specified and is waiting for
input, C-g cancels the entire search. The cursor moves back to where you started the search.

Chapter 12: Searching and Replacement 93

If C-g is typed when there are characters in the search string that have not been found—
because Emacs is still searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from the search string.
With them gone, the search is now successful and waiting for more input, so a second C-g
will cancel the entire search.

You can change to searching backwards with C-r. If a search fails because the place you
started was too late in the file, you should do this. Repeated C-r keeps looking for more
occurrences backwards. A C-s starts going forwards again. C-r in a search can be canceled
with 〈DEL〉.

If you know initially that you want to search backwards, you can use C-r instead of C-s
to start the search, because C-r as a key runs a command (isearch-backward) to search
backward. A backward search finds matches that are entirely before the starting point, just
as a forward search finds matches that begin after it.

The characters C-y and C-w can be used in incremental search to grab text from the
buffer into the search string. This makes it convenient to search for another occurrence of
text at point. C-w copies the word after point as part of the search string, advancing point
over that word. Another C-s to repeat the search will then search for a string including
that word. C-y is similar to C-w but copies all the rest of the current line into the search
string. Both C-y and C-w convert the text they copy to lower case if the search is currently
not case-sensitive; this is so the search remains case-insensitive.

The character M-y copies text from the kill ring into the search string. It uses the same
text that C-y as a command would yank. Mouse-2 in the echo area does the same. See
Section 9.2 [Yanking], page 70.

When you exit the incremental search, it sets the mark to where point was, before the
search. That is convenient for moving back there. In Transient Mark mode, incremental
search sets the mark without activating it, and does so only if the mark is not already
active.

When you pause for a little while during incremental search, it highlights all other
possible matches for the search string. This makes it easier to anticipate where you can
get to by typing C-s or C-r to repeat the search. The short delay before highlighting other
matches helps indicate which match is the current one. If you don’t like this feature, you
can turn it off by setting isearch-lazy-highlight to nil.

You can control how this highlighting looks by customizing the faces isearch (used for
the current match) and isearch-lazy-highlight-face (for all the other matches).

To customize the special characters that incremental search understands, alter their bind-
ings in the keymap isearch-mode-map. For a list of bindings, look at the documentation
of isearch-mode with C-h f isearch-mode 〈RET〉.

12.1.1 Slow Terminal Incremental Search

Incremental search on a slow terminal uses a modified style of display that is designed to
take less time. Instead of redisplaying the buffer at each place the search gets to, it creates
a new single-line window and uses that to display the line that the search has found. The
single-line window comes into play as soon as point moves outside of the text that is already
on the screen.

94 GNU Emacs Manual

When you terminate the search, the single-line window is removed. Emacs then redis-
plays the window in which the search was done, to show its new position of point.

The slow terminal style of display is used when the terminal baud rate is less than or
equal to the value of the variable search-slow-speed, initially 1200. See baud-rate in
Section 11.12 [Display Custom], page 89.

The number of lines to use in slow terminal search display is controlled by the variable
search-slow-window-lines. Its normal value is 1.

12.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which require you to
type the entire search string before searching begins.

C-s 〈RET〉 string 〈RET〉
Search for string.

C-r 〈RET〉 string 〈RET〉
Search backward for string.

To do a nonincremental search, first type C-s 〈RET〉. This enters the minibuffer to read
the search string; terminate the string with 〈RET〉, and then the search takes place. If the
string is not found, the search command signals an error.

When you type C-s 〈RET〉, the C-s invokes incremental search as usual. That command
is specially programmed to invoke nonincremental search, search-forward, if the string
you specify is empty. (Such an empty argument would otherwise be useless.) But it does
not call search-forward right away. First it checks the next input character to see if is C-w,
which specifies a word search. C-r 〈RET〉 does likewise, for a reverse incremental search.

Forward and backward nonincremental searches are implemented by the commands
search-forward and search-backward. These commands may be bound to keys in the
usual manner. The feature that you can get to them via the incremental search commands
exists for historical reasons, and to avoid the need to find key sequences for them.

12.3 Word Search

Word search searches for a sequence of words without regard to how the words are
separated. More precisely, you type a string of many words, using single spaces to separate
them, and the string can be found even if there are multiple spaces, newlines, or other
punctuation characters between these words.

Word search is useful for editing a printed document made with a text formatter. If you
edit while looking at the printed, formatted version, you can’t tell where the line breaks are
in the source file. With word search, you can search without having to know them.

C-s 〈RET〉 C-w words 〈RET〉
Search for words, ignoring details of punctuation.

C-r 〈RET〉 C-w words 〈RET〉
Search backward for words, ignoring details of punctuation.

Chapter 12: Searching and Replacement 95

Word search is a special case of nonincremental search and is invoked with C-s 〈RET〉 C-w.
This is followed by the search string, which must always be terminated with 〈RET〉. Being
nonincremental, this search does not start until the argument is terminated. It works by
constructing a regular expression and searching for that; see Section 12.4 [Regexp Search],
page 95.

Use C-r 〈RET〉 C-w to do backward word search.
Forward and backward word searches are implemented by the commands word-search-

forward and word-search-backward. These commands may be bound to keys in the usual
manner. They are available via the incremental search commands both for historical reasons
and to avoid the need to find suitable key sequences for them.

12.4 Regular Expression Search

A regular expression (regexp, for short) is a pattern that denotes a class of alternative
strings to match, possibly infinitely many. GNU Emacs provides both incremental and
nonincremental ways to search for a match for a regexp.

Incremental search for a regexp is done by typing C-M-s (isearch-forward-regexp),
or by invoking C-s with a prefix argument (whose value does not matter). This command
reads a search string incrementally just like C-s, but it treats the search string as a regexp
rather than looking for an exact match against the text in the buffer. Each time you add
text to the search string, you make the regexp longer, and the new regexp is searched for.
To search backward for a regexp, use C-M-r (isearch-backward-regexp), or C-r with a
prefix argument.

All of the control characters that do special things within an ordinary incremental search
have the same function in incremental regexp search. Typing C-s or C-r immediately
after starting the search retrieves the last incremental search regexp used; that is to say,
incremental regexp and non-regexp searches have independent defaults. They also have
separate search rings that you can access with M-p and M-n.

If you type 〈SPC〉 in incremental regexp search, it matches any sequence of whitespace
characters, including newlines. If you want to match just a space, type C-q 〈SPC〉.

Note that adding characters to the regexp in an incremental regexp search can make the
cursor move back and start again. For example, if you have searched for ‘foo’ and you add
‘\|bar’, the cursor backs up in case the first ‘bar’ precedes the first ‘foo’.

Nonincremental search for a regexp is done by the functions re-search-forward and
re-search-backward. You can invoke these with M-x, or bind them to keys, or invoke them
by way of incremental regexp search with C-M-s 〈RET〉 and C-M-r 〈RET〉.

If you use the incremental regexp search commands with a prefix argument, they perform
ordinary string search, like isearch-forward and isearch-backward. See Section 12.1
[Incremental Search], page 91.

12.5 Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character is a simple regular expression which matches
that same character and nothing else. The special characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’,

96 GNU Emacs Manual

‘[’, ‘]’ and ‘\’. Any other character appearing in a regular expression is ordinary, unless
a ‘\’ precedes it. (When you use regular expressions in a Lisp program, each ‘\’ must be
doubled, see the example near the end of this section.)

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches only ‘o’. (When case distinctions
are being ignored, these regexps also match ‘F’ and ‘O’, but we consider this a generalization
of “the same string,” rather than an exception.)

Any two regular expressions a and b can be concatenated. The result is a regular
expression which matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the
regular expression ‘fo’, which matches only the string ‘fo’. Still trivial. To do something
nontrivial, you need to use one of the special characters. Here is a list of them.

. (Period) is a special character that matches any single character except a newline. Using
concatenation, we can make regular expressions like ‘a.b’, which matches any
three-character string that begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively as many times as possible. Thus, ‘o*’
matches any number of ‘o’s (including no ‘o’s).
‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.
The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that
fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left
to match, so this try fails. The next alternative is for ‘a*’ to match only two
‘a’s. With this choice, the rest of the regexp matches successfully.

+ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. So, for example, ‘ca+r’ matches the strings ‘car’ and
‘caaaar’ but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

? is a postfix operator, similar to ‘*’ except that it can match the preceding
expression either once or not at all. For example, ‘ca?r’ matches ‘car’ or ‘cr’;
nothing else.

*?, +?, ??
are non-greedy variants of the operators above. The normal operators ‘*’, ‘+’,
‘?’ are greedy in that they match as much as they can, as long as the overall
regexp can still match. With a following ‘?’, they are non-greedy: they will
match as little as possible.
Thus, both ‘ab*’ and ‘ab*?’ can match the string ‘a’ and the string ‘abbbb’;
but if you try to match them both against the text ‘abbb’, ‘ab*’ will match it

Chapter 12: Searching and Replacement 97

all (the longest valid match), while ‘ab*?’ will match just ‘a’ (the shortest valid
match).

\{n\} is a postfix operator that specifies repetition n times—that is, the preceding
regular expression must match exactly n times in a row. For example, ‘x\{4\}’
matches the string ‘xxxx’ and nothing else.

\{n,m\} is a postfix operator that specifies repetition between n and m times—that is,
the preceding regular expression must match at least n times, but no more than
m times. If m is omitted, then there is no upper limit, but the preceding regular
expression must match at least n times.
‘\{0,1\}’ is equivalent to ‘?’.
‘\{0,\}’ is equivalent to ‘*’.
‘\{1,\}’ is equivalent to ‘+’.

[...] is a character set, which begins with ‘[’ and is terminated by ‘]’. In the simplest
case, the characters between the two brackets are what this set can match.
Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches any string
composed of just ‘a’s and ‘d’s (including the empty string), from which it follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.
You can also include character ranges in a character set, by writing the starting
and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches any
lower-case ASCII letter. Ranges may be intermixed freely with individual char-
acters, as in ‘[a-z$%.]’, which matches any lower-case ASCII letter or ‘$’, ‘%’
or period.
Note that the usual regexp special characters are not special inside a character
set. A completely different set of special characters exists inside character sets:
‘]’, ‘-’ and ‘^’.
To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first or last
character of the set, or put it after a range. Thus, ‘[]-]’ matches both ‘]’ and
‘-’.
To include ‘^’ in a set, put it anywhere but at the beginning of the set. (At the
beginning, it complements the set—see below.)
When you use a range in case-insensitive search, you should write both ends of
the range in upper case, or both in lower case, or both should be non-letters.
The behavior of a mixed-case range such as ‘A-z’ is somewhat ill-defined, and
it may change in future Emacs versions.

[^ ...] ‘[^’ begins a complemented character set, which matches any character except
the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except ASCII
letters and digits.
‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (in other words, ‘-’ and ‘]’ are not
special there).
A complemented character set can match a newline, unless newline is mentioned
as one of the characters not to match. This is in contrast to the handling of
regexps in programs such as grep.

98 GNU Emacs Manual

^ is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘x+$’ matches a
string of one ‘x’ or more at the end of a line.

\ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they
are in contexts where their special meanings make no sense. For example, ‘*foo’ treats
‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is poor
practice to depend on this behavior; it is better to quote the special character anyway,
regardless of where it appears.

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: two-character sequences starting with ‘\’ that have special
meanings. The second character in the sequence is always an ordinary character when used
on its own. Here is a table of ‘\’ constructs.

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches some text if either a matches it or b matches
it. It works by trying to match a, and if that fails, by trying to match b.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus,
‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any
(zero or more) number of ‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that is assigned as a second meaning to the same ‘\(...
\)’ construct. In practice there is usually no conflict between the two meanings;
when there is a conflict, you can use a “shy” group.

\(?: ... \)
specifies a “shy” group that does not record the matched substring; you can’t
refer back to it with ‘\d’. This is useful in mechanically combining regular ex-
pressions, so that you can add groups for syntactic purposes without interfering
with the numbering of the groups that were written by the user.

Chapter 12: Searching and Replacement 99

\d matches the same text that matched the dth occurrence of a ‘\(... \)’ con-
struct.
After the end of a ‘\(... \)’ construct, the matcher remembers the beginning
and end of the text matched by that construct. Then, later on in the regular
expression, you can use ‘\’ followed by the digit d to mean “match the same
text matched the dth time by the ‘\(... \)’ construct.”
The strings matching the first nine ‘\(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open-
parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.
For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.
If a particular ‘\(... \)’ construct matches more than once (which can easily
happen if it is followed by ‘*’), only the last match is recorded.

\‘ matches the empty string, but only at the beginning of the buffer or string
being matched against.

\’ matches the empty string, but only at the end of the buffer or string being
matched against.

\= matches the empty string, but only at point.

\b matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.
‘\b’ matches at the beginning or end of the buffer regardless of what text
appears next to it.

\B matches the empty string, but not at the beginning or end of a word.

\< matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer only if a word-constituent character follows.

\> matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer only if the contents end with a word-constituent character.

\w matches any word-constituent character. The syntax table determines which
characters these are. See Section 32.6 [Syntax], page 403.

\W matches any character that is not a word-constituent.

\sc matches any character whose syntax is c. Here c is a character that designates
a particular syntax class: thus, ‘w’ for word constituent, ‘-’ or ‘ ’ for whitespace,
‘.’ for ordinary punctuation, etc. See Section 32.6 [Syntax], page 403.

\Sc matches any character whose syntax is not c.

\cc matches any character that belongs to the category c. For example, ‘\cc’
matches Chinese characters, ‘\cg’ matches Greek characters, etc. For the de-
scription of the known categories, type M-x describe-categories 〈RET〉.

100 GNU Emacs Manual

\Cc matches any character that does not belong to category c.

The constructs that pertain to words and syntax are controlled by the setting of the
syntax table (see Section 32.6 [Syntax], page 403).

Here is a complicated regexp, stored in sentence-end and used by Emacs to recognize
the end of a sentence together with any whitespace that follows. We show its Lisp syntax to
distinguish the spaces from the tab characters. In Lisp syntax, the string constant begins
and ends with a double-quote. ‘\"’ stands for a double-quote as part of the regexp, ‘\\’ for
a backslash as part of the regexp, ‘\t’ for a tab, and ‘\n’ for a newline.

"[.?!][]\"’)]*\\($\\| $\\|\t\\| \\)[\t\n]*"

This contains four parts in succession: a character set matching period, ‘?’, or ‘!’; a char-
acter set matching close-brackets, quotes, or parentheses, repeated zero or more times; a
set of alternatives within backslash-parentheses that matches either end-of-line, a space at
the end of a line, a tab, or two spaces; and a character set matching whitespace characters,
repeated any number of times.

To enter the same regexp interactively, you would type 〈TAB〉 to enter a tab, and C-j
to enter a newline. (When typed interactively, C-j should be preceded by a C-q, to pre-
vent Emacs from running the command bound to a newline.) You would also type single
backslashes as themselves, instead of doubling them for Lisp syntax.

12.6 Searching and Case

Incremental searches in Emacs normally ignore the case of the text they are searching
through, if you specify the text in lower case. Thus, if you specify searching for ‘foo’, then
‘Foo’ and ‘foo’ are also considered a match. Regexps, and in particular character sets, are
included: ‘[ab]’ would match ‘a’ or ‘A’ or ‘b’ or ‘B’.

An upper-case letter anywhere in the incremental search string makes the search case-
sensitive. Thus, searching for ‘Foo’ does not find ‘foo’ or ‘FOO’. This applies to regular
expression search as well as to string search. The effect ceases if you delete the upper-case
letter from the search string.

Typing M-c within an incremental search toggles the case sensitivity of that search. The
effect does not extend beyond the current incremental search to the next one, but it does
override the effect of including an upper-case letter in the current search.

If you set the variable case-fold-search to nil, then all letters must match exactly,
including case. This is a per-buffer variable; altering the variable affects only the current
buffer, but there is a default value which you can change as well. See Section 32.2.4 [Locals],
page 387. This variable applies to nonincremental searches also, including those performed
by the replace commands (see Section 12.7 [Replace], page 100) and the minibuffer history
matching commands (see Section 5.4 [Minibuffer History], page 47).

12.7 Replacement Commands

Global search-and-replace operations are not needed often in Emacs, but they are avail-
able. In addition to the simple M-x replace-string command which is like that found in
most editors, there is a M-x query-replace command which finds each occurrence of the
pattern and asks you whether to replace it.

Chapter 12: Searching and Replacement 101

The replace commands normally operate on the text from point to the end of the buffer;
however, in Transient Mark mode (see Section 8.2 [Transient Mark], page 62), when the
mark is active, they operate on the region. The replace commands all replace one string (or
regexp) with one replacement string. It is possible to perform several replacements in par-
allel using the command expand-region-abbrevs (see Section 25.3 [Expanding Abbrevs],
page 284).

12.7.1 Unconditional Replacement

M-x replace-string 〈RET〉 string 〈RET〉 newstring 〈RET〉
Replace every occurrence of string with newstring.

M-x replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉
Replace every match for regexp with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x
replace-string with the two arguments ‘foo’ and ‘bar’. Replacement happens only in
the text after point, so if you want to cover the whole buffer you must go to the beginning
first. All occurrences up to the end of the buffer are replaced; to limit replacement to
part of the buffer, narrow to that part of the buffer before doing the replacement (see
Section 31.9 [Narrowing], page 366). In Transient Mark mode, when the region is active,
replacement is limited to the region (see Section 8.2 [Transient Mark], page 62).

When replace-string exits, it leaves point at the last occurrence replaced. It sets the
mark to the prior position of point (where the replace-string command was issued); use
C-u C-〈SPC〉 to move back there.

A numeric argument restricts replacement to matches that are surrounded by word
boundaries. The argument’s value doesn’t matter.

12.7.2 Regexp Replacement

The M-x replace-string command replaces exact matches for a single string. The
similar command M-x replace-regexp replaces any match for a specified pattern.

In replace-regexp, the newstring need not be constant: it can refer to all or part of
what is matched by the regexp. ‘\&’ in newstring stands for the entire match being replaced.
‘\d’ in newstring, where d is a digit, stands for whatever matched the dth parenthesized
grouping in regexp. To include a ‘\’ in the text to replace with, you must enter ‘\\’. For
example,

M-x replace-regexp 〈RET〉 c[ad]+r 〈RET〉 \&-safe 〈RET〉
replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.

M-x replace-regexp 〈RET〉 \(c[ad]+r\)-safe 〈RET〉 \1 〈RET〉
performs the inverse transformation.

12.7.3 Replace Commands and Case

If the first argument of a replace command is all lower case, the command ignores case
while searching for occurrences to replace—provided case-fold-search is non-nil. If
case-fold-search is set to nil, case is always significant in all searches.

102 GNU Emacs Manual

In addition, when the newstring argument is all or partly lower case, replacement com-
mands try to preserve the case pattern of each occurrence. Thus, the command

M-x replace-string 〈RET〉 foo 〈RET〉 bar 〈RET〉
replaces a lower case ‘foo’ with a lower case ‘bar’, an all-caps ‘FOO’ with ‘BAR’, and a
capitalized ‘Foo’ with ‘Bar’. (These three alternatives—lower case, all caps, and capitalized,
are the only ones that replace-string can distinguish.)

If upper-case letters are used in the replacement string, they remain upper case every
time that text is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if
either case-replace or case-fold-search is set to nil, replacement is done without case
conversion.

12.7.4 Query Replace

M-% string 〈RET〉 newstring 〈RET〉
M-x query-replace 〈RET〉 string 〈RET〉 newstring 〈RET〉

Replace some occurrences of string with newstring.

C-M-% regexp 〈RET〉 newstring 〈RET〉
M-x query-replace-regexp 〈RET〉 regexp 〈RET〉 newstring 〈RET〉

Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them,
then you cannot use an ordinary replace-string. Instead, use M-% (query-replace).
This command finds occurrences of ‘foo’ one by one, displays each occurrence and asks
you whether to replace it. Aside from querying, query-replace works just like replace-
string. It preserves case, like replace-string, provided case-replace is non-nil, as it
normally is. A numeric argument means consider only occurrences that are bounded by
word-delimiter characters.

C-M-% performs regexp search and replace (query-replace-regexp).
The characters you can type when you are shown a match for the string or regexp are:

〈SPC〉 to replace the occurrence with newstring.

〈DEL〉 to skip to the next occurrence without replacing this one.

, (Comma)
to replace this occurrence and display the result. You are then asked for another
input character to say what to do next. Since the replacement has already been
made, 〈DEL〉 and 〈SPC〉 are equivalent in this situation; both move to the next
occurrence.
You can type C-r at this point (see below) to alter the replaced text. You
can also type C-x u to undo the replacement; this exits the query-replace,
so if you want to do further replacement you must use C-x 〈ESC〉 〈ESC〉 〈RET〉 to
restart (see Section 5.5 [Repetition], page 49).

〈RET〉 to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit without searching for more occurrences.

Chapter 12: Searching and Replacement 103

! to replace all remaining occurrences without asking again.

^ to go back to the position of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake. This works by popping the mark
ring. Only one ^ in a row is meaningful, because only one previous replacement
position is kept during query-replace.

C-r to enter a recursive editing level, in case the occurrence needs to be edited
rather than just replaced with newstring. When you are done, exit the recursive
editing level with C-M-c to proceed to the next occurrence. See Section 31.13
[Recursive Edit], page 369.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c to proceed to the next
occurrence.

e to edit the replacement string in the minibuffer. When you exit the minibuf-
fer by typing 〈RET〉, the minibuffer contents replace the current occurrence of
the pattern. They also become the new replacement string for any further
occurrences.

C-l to redisplay the screen. Then you must type another character to specify what
to do with this occurrence.

C-h to display a message summarizing these options. Then you must type another
character to specify what to do with this occurrence.

Some other characters are aliases for the ones listed above: y, n and q are equivalent to
〈SPC〉, 〈DEL〉 and 〈RET〉.

Aside from this, any other character exits the query-replace, and is then reread as part
of a key sequence. Thus, if you type C-k, it exits the query-replace and then kills to end
of line.

To restart a query-replace once it is exited, use C-x 〈ESC〉 〈ESC〉, which repeats the
query-replace because it used the minibuffer to read its arguments. See Section 5.5
[Repetition], page 49.

See also Section 29.9 [Transforming File Names], page 326, for Dired commands to
rename, copy, or link files by replacing regexp matches in file names.

12.8 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all
ignore case in matching, if the pattern contains no upper-case letters and case-fold-
search is non-nil. Aside from occur, all operate on the text from point to the end of the
buffer, or on the active region in Transient Mark mode.

M-x occur 〈RET〉 regexp 〈RET〉
Display a list showing each line in the buffer that contains a match for regexp.
To limit the search to part of the buffer, narrow to that part (see Section 31.9
[Narrowing], page 366). A numeric argument n specifies that n lines of context
are to be displayed before and after each matching line.

104 GNU Emacs Manual

The buffer ‘*Occur*’ containing the output serves as a menu for finding the
occurrences in their original context. Click Mouse-2 on an occurrence listed in
‘*Occur*’, or position point there and type 〈RET〉; this switches to the buffer
that was searched and moves point to the original of the chosen occurrence.

M-x list-matching-lines
Synonym for M-x occur.

M-x how-many 〈RET〉 regexp 〈RET〉
Print the number of matches for regexp that exist in the buffer after point.
In Transient Mark mode, if the region is active, the command operates on the
region instead.

M-x flush-lines 〈RET〉 regexp 〈RET〉
Delete each line that contains a match for regexp, operating on the text after
point. In Transient Mark mode, if the region is active, the command operates
on the region instead.

M-x keep-lines 〈RET〉 regexp 〈RET〉
Delete each line that does not contain a match for regexp, operating on the
text after point. In Transient Mark mode, if the region is active, the command
operates on the region instead.

You can also search multiple files under control of a tags table (see Section 24.2.6 [Tags
Search], page 275) or through Dired A command (see Section 29.7 [Operating on Files],
page 323), or ask the grep program to do it (see Section 23.2 [Grep Searching], page 256).

Chapter 13: Commands for Fixing Typos 105

13 Commands for Fixing Typos

In this chapter we describe the commands that are especially useful for the times when
you catch a mistake in your text just after you have made it, or change your mind while
composing text on the fly.

The most fundamental command for correcting erroneous editing is the undo command,
C-x u or C-_. This command undoes a single command (usually), a part of a command (in
the case of query-replace), or several consecutive self-inserting characters. Consecutive
repetitions of C-_ or C-x u undo earlier and earlier changes, back to the limit of the undo
information available. See Section 4.4 [Undo], page 36, for more information.

13.1 Killing Your Mistakes

〈DEL〉 Delete last character (delete-backward-char).

M-〈DEL〉 Kill last word (backward-kill-word).

C-x 〈DEL〉 Kill to beginning of sentence (backward-kill-sentence).

The 〈DEL〉 character (delete-backward-char) is the most important correction com-
mand. It deletes the character before point. When 〈DEL〉 follows a self-inserting character
command, you can think of it as canceling that command. However, avoid the mistake of
thinking of 〈DEL〉 as a general way to cancel a command!

When your mistake is longer than a couple of characters, it might be more convenient
to use M-〈DEL〉 or C-x 〈DEL〉. M-〈DEL〉 kills back to the start of the last word, and C-x 〈DEL〉
kills back to the start of the last sentence. C-x 〈DEL〉 is particularly useful when you change
your mind about the phrasing of the text you are writing. M-〈DEL〉 and C-x 〈DEL〉 save the
killed text for C-y and M-y to retrieve. See Section 9.2 [Yanking], page 70.

M-〈DEL〉 is often useful even when you have typed only a few characters wrong, if you
know you are confused in your typing and aren’t sure exactly what you typed. At such a
time, you cannot correct with 〈DEL〉 except by looking at the screen to see what you did.
Often it requires less thought to kill the whole word and start again.

13.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two characters can be fixed, when they are adjacent,
with the C-t command (transpose-chars). Normally, C-t transposes the two characters
on either side of point. When given at the end of a line, rather than transposing the last
character of the line with the newline, which would be useless, C-t transposes the last two
characters on the line. So, if you catch your transposition error right away, you can fix
it with just a C-t. If you don’t catch it so fast, you must move the cursor back between

106 GNU Emacs Manual

the two transposed characters before you type C-t. If you transposed a space with the last
character of the word before it, the word motion commands are a good way of getting there.
Otherwise, a reverse search (C-r) is often the best way. See Chapter 12 [Search], page 91.

M-t transposes the word before point with the word after point (transpose-words). It
moves point forward over a word, dragging the word preceding or containing point forward as
well. The punctuation characters between the words do not move. For example, ‘FOO, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’.

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 22.4.1 [Expressions], page 232), and C-x C-t (transpose-lines) exchanges lines.
They work like M-t except as regards what units of text they transpose.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (word, expression, line) before or containing
point across several other characters (words, expressions, lines). For example, C-u 3 C-t
moves the character before point forward across three other characters. It would change
‘f?oobar’ into ‘oobf?ar’. This is equivalent to repeating C-t three times. C-u - 4 M-t
moves the word before point backward across four words. C-u - C-M-t would cancel the
effect of plain C-M-t.

A numeric argument of zero is assigned a special meaning (because otherwise a command
with a repeat count of zero would do nothing): to transpose the character (word, expression,
line) ending after point with the one ending after the mark.

13.3 Case Conversion

M-- M-l Convert last word to lower case. Note Meta-- is Meta-minus.

M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A very common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-l, M-u and M-c have a special feature when used with a negative
argument: they do not move the cursor. As soon as you see you have mistyped the last
word, you can simply case-convert it and go on typing. See Section 21.6 [Case], page 207.

13.4 Checking and Correcting Spelling

This section describes the commands to check the spelling of a single word or of a portion
of a buffer. These commands work with the spelling checker program Ispell, which is not
part of Emacs.

M-x flyspell-mode
Enable Flyspell mode, which highlights all misspelled words.

M-$ Check and correct spelling of the word at point (ispell-word).

M-〈TAB〉 Complete the word before point based on the spelling dictionary (ispell-
complete-word).

M-x ispell
Spell-check the active region or the current buffer.

Chapter 13: Commands for Fixing Typos 107

M-x ispell-buffer
Check and correct spelling of each word in the buffer.

M-x ispell-region
Check and correct spelling of each word in the region.

M-x ispell-message
Check and correct spelling of each word in a draft mail message, excluding cited
material.

M-x ispell-change-dictionary 〈RET〉 dict 〈RET〉
Restart the Ispell process, using dict as the dictionary.

M-x ispell-kill-ispell
Kill the Ispell subprocess.

Flyspell mode is a fully-automatic way to check spelling as you edit in Emacs. It operates
by checking words as you change or insert them. When it finds a word that it does not
recognize, it highlights that word. This does not interfere with your editing, but when you
see the highlighted word, you can move to it and fix it. Type M-x flyspell-mode to enable
or disable this mode in the current buffer.

When Flyspell mode highlights a word as misspelled, you can click on it with Mouse-2
to display a menu of possible corrections and actions. You can also correct the word by
editing it manually in any way you like.

The other Emacs spell-checking features check or look up words when you give an explicit
command to do so. Checking all or part of the buffer is useful when you have text that was
written outside of this Emacs session and might contain any number of misspellings.

To check the spelling of the word around or next to point, and optionally correct it as
well, use the command M-$ (ispell-word). If the word is not correct, the command offers
you various alternatives for what to do about it.

To check the entire current buffer, use M-x ispell-buffer. Use M-x ispell-region to
check just the current region. To check spelling in an email message you are writing, use
M-x ispell-message; that command checks the whole buffer, except for material that is
indented or appears to be cited from other messages.

The M-x ispell command spell-checks the active region if the Transient Mark mode is
on (see Section 8.2 [Transient Mark], page 62), otherwise it spell-checks the current buffer.

Each time these commands encounter an incorrect word, they ask you what to do. They
display a list of alternatives, usually including several “near-misses”—words that are close
to the word being checked. Then you must type a single-character response. Here are the
valid responses:

〈SPC〉 Skip this word—continue to consider it incorrect, but don’t change it here.

r new 〈RET〉
Replace the word (just this time) with new.

R new 〈RET〉
Replace the word with new, and do a query-replace so you can replace it
elsewhere in the buffer if you wish.

108 GNU Emacs Manual

digit Replace the word (just this time) with one of the displayed near-misses. Each
near-miss is listed with a digit; type that digit to select it.

a Accept the incorrect word—treat it as correct, but only in this editing session.

A Accept the incorrect word—treat it as correct, but only in this editing session
and for this buffer.

i Insert this word in your private dictionary file so that Ispell will consider it
correct from now on, even in future sessions.

u Insert the lower-case version of this word in your private dictionary file.

m Like i, but you can also specify dictionary completion information.

l word 〈RET〉
Look in the dictionary for words that match word. These words become the
new list of “near-misses”; you can select one of them as the replacement by
typing a digit. You can use ‘*’ in word as a wildcard.

C-g Quit interactive spell checking. You can restart it again afterward with C-u
M-$.

X Same as C-g.

x Quit interactive spell checking and move point back to where it was when you
started spell checking.

q Quit interactive spell checking and kill the Ispell subprocess.

C-l Refresh the screen.

C-z This key has its normal command meaning (suspend Emacs or iconify this
frame).

The command ispell-complete-word, which is bound to the key M-〈TAB〉 in Text mode
and related modes, shows a list of completions based on spelling correction. Insert the
beginning of a word, and then type M-〈TAB〉; the command displays a completion list window.
To choose one of the completions listed, click Mouse-2 on it, or move the cursor there in
the completions window and type 〈RET〉. See Section 21.7 [Text Mode], page 208.

Once started, the Ispell subprocess continues to run (waiting for something to do), so
that subsequent spell checking commands complete more quickly. If you want to get rid of
the Ispell process, use M-x ispell-kill-ispell. This is not usually necessary, since the
process uses no time except when you do spelling correction.

Ispell uses two dictionaries: the standard dictionary and your private dictionary.
The variable ispell-dictionary specifies the file name of the standard dictionary
to use. A value of nil says to use the default dictionary. The command M-x
ispell-change-dictionary sets this variable and then restarts the Ispell subprocess, so
that it will use a different dictionary.

The dictionary used by ispell-complete-word can be customized separately by setting
the value of the variable ispell-complete-word-dict.

Chapter 14: File Handling 109

14 File Handling

The operating system stores data permanently in named files, so most of the text you
edit with Emacs comes from a file and is ultimately stored in a file.

To edit a file, you must tell Emacs to read the file and prepare a buffer containing a
copy of the file’s text. This is called visiting the file. Editing commands apply directly to
text in the buffer; that is, to the copy inside Emacs. Your changes appear in the file itself
only when you save the buffer back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, keep multiple versions of them, and operate on file directories.

14.1 File Names

Most Emacs commands that operate on a file require you to specify the file name. (Saving
and reverting are exceptions; the buffer knows which file name to use for them.) You enter
the file name using the minibuffer (see Chapter 5 [Minibuffer], page 43). Completion is
available (see Section 5.3 [Completion], page 45) to make it easier to specify long file names.
When completing file names, Emacs ignores those whose file-name extensions appear in
the variable completion-ignored-extensions; see Section 5.3.4 [Completion Options],
page 47.

For most operations, there is a default file name which is used if you type just 〈RET〉 to
enter an empty argument. Normally the default file name is the name of the file visited
in the current buffer; this makes it easy to operate on that file with any of the Emacs file
commands.

Each buffer has a default directory which is normally the same as the directory of the file
visited in that buffer. When you enter a file name without a directory, the default directory
is used. If you specify a directory in a relative fashion, with a name that does not start
with a slash, it is interpreted with respect to the default directory. The default directory is
kept in the variable default-directory, which has a separate value in every buffer.

For example, if the default file name is ‘/u/rms/gnu/gnu.tasks’ then the default direc-
tory is ‘/u/rms/gnu/’. If you type just ‘foo’, which does not specify a directory, it is short
for ‘/u/rms/gnu/foo’. ‘../.login’ would stand for ‘/u/rms/.login’. ‘new/foo’ would
stand for the file name ‘/u/rms/gnu/new/foo’.

The command M-x pwd displays the current buffer’s default directory, and the command
M-x cd sets it (to a value read using the minibuffer). A buffer’s default directory changes
only when the cd command is used. A file-visiting buffer’s default directory is initialized to
the directory of the file that is visited in that buffer. If you create a buffer with C-x b, its
default directory is copied from that of the buffer that was current at the time.

The default directory actually appears in the minibuffer when the minibuffer becomes
active to read a file name. This serves two purposes: it shows you what the default is, so
that you can type a relative file name and know with certainty what it will mean, and it
allows you to edit the default to specify a different directory. This insertion of the default
directory is inhibited if the variable insert-default-directory is set to nil.

Note that it is legitimate to type an absolute file name after you enter the minibuffer,
ignoring the presence of the default directory name as part of the text. The final minibuffer

110 GNU Emacs Manual

contents may look invalid, but that is not so. For example, if the minibuffer starts out with
‘/usr/tmp/’ and you add ‘/x1/rms/foo’, you get ‘/usr/tmp//x1/rms/foo’; but Emacs
ignores everything through the first slash in the double slash; the result is ‘/x1/rms/foo’.
See Section 5.1 [Minibuffer File], page 43.

‘$’ in a file name is used to substitute environment variables. For example, if you have
used the shell command export FOO=rms/hacks to set up an environment variable named
FOO, then you can use ‘/u/$FOO/test.c’ or ‘/u/${FOO}/test.c’ as an abbreviation for
‘/u/rms/hacks/test.c’. The environment variable name consists of all the alphanumeric
characters after the ‘$’; alternatively, it may be enclosed in braces after the ‘$’. Note that
shell commands to set environment variables affect Emacs only if done before Emacs is
started.

You can use the ‘~/’ in a file name to mean your home directory, or ‘~user-id/’ to mean
the home directory of a user whose login name is user-id. (On DOS and Windows systems,
where a user doesn’t have a home directory, Emacs substitutes ‘~/’ with the value of the
environment variable HOME; see Section B.5.1 [General Variables], page 427.)

To access a file with ‘$’ in its name, type ‘$$’. This pair is converted to a single ‘$’ at
the same time as variable substitution is performed for a single ‘$’. Alternatively, quote the
whole file name with ‘/:’ (see Section 14.14 [Quoted File Names], page 146). File names
which begin with a literal ‘~’ should also be quoted with ‘/:’.

The Lisp function that performs the substitution is called substitute-in-file-name.
The substitution is performed only on file names read as such using the minibuffer.

You can include non-ASCII characters in file names if you set the variable file-name-
coding-system to a non-nil value. See Section 18.9 [Specify Coding], page 185.

14.2 Visiting Files

C-x C-f Visit a file (find-file).

C-x C-r Visit a file for viewing, without allowing changes to it (find-file-read-only).

C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x 4 f Visit a file, in another window (find-file-other-window). Don’t alter what
is displayed in the selected window.

C-x 5 f Visit a file, in a new frame (find-file-other-frame). Don’t alter what is
displayed in the selected frame.

M-x find-file-literally
Visit a file with no conversion of the contents.

Visiting a file means copying its contents into an Emacs buffer so you can edit them.
Emacs makes a new buffer for each file that you visit. We often say that this buffer “is
visiting” that file, or that the buffer’s “visited file” is that file. Emacs constructs the buffer
name from the file name by throwing away the directory, keeping just the name proper.
For example, a file named ‘/usr/rms/emacs.tex’ would get a buffer named ‘emacs.tex’.
If there is already a buffer with that name, Emacs constructs a unique name—the nor-
mal method is to append ‘<2>’, ‘<3>’, and so on, but you can select other methods (see
Section 15.7.1 [Uniquify], page 155).

Chapter 14: File Handling 111

Each window’s mode line shows the name of the buffer that is being displayed in that
window, so you can always tell what buffer you are editing.

The changes you make with editing commands are made in the Emacs buffer. They do
not take effect in the file that you visited, or any place permanent, until you save the buffer.
Saving the buffer means that Emacs writes the current contents of the buffer into its visited
file. See Section 14.3 [Saving], page 113.

If a buffer contains changes that have not been saved, we say the buffer is modified. This
is important because it implies that some changes will be lost if the buffer is not saved. The
mode line displays two stars near the left margin to indicate that the buffer is modified.

To visit a file, use the command C-x C-f (find-file). Follow the command with the
name of the file you wish to visit, terminated by a 〈RET〉.

The file name is read using the minibuffer (see Chapter 5 [Minibuffer], page 43), with
defaulting and completion in the standard manner (see Section 14.1 [File Names], page 109).
While in the minibuffer, you can abort C-x C-f by typing C-g. File-name completion ignores
certain filenames; for more about this, see Section 5.3.4 [Completion Options], page 47.

When Emacs is built with a suitable GUI toolkit, it pops up the standard File Selection
dialog of that toolkit instead of prompting for the file name in the minibuffer. On Unix
and GNU/Linux platforms, Emacs does that when built with LessTif and Motif toolkits;
on MS-Windows, the GUI version does that by default.

Your confirmation that C-x C-f has completed successfully is the appearance of new text
on the screen and a new buffer name in the mode line. If the specified file does not exist
and could not be created, or cannot be read, then you get an error, with an error message
displayed in the echo area.

If you visit a file that is already in Emacs, C-x C-f does not make another copy. It
selects the existing buffer containing that file. However, before doing so, it checks that the
file itself has not changed since you visited or saved it last. If the file has changed, a warning
message is shown. See Section 14.3.2 [Simultaneous Editing], page 117.

Since Emacs reads the visited file in its entirety, files whose size is larger than the
maximum Emacs buffer size (see Chapter 15 [Buffers], page 149) cannot be visited; if you
try, Emacs will display an error message saying that the maximum buffer size has been
exceeded.

What if you want to create a new file? Just visit it. Emacs displays ‘(New file)’ in the
echo area, but in other respects behaves as if you had visited an existing empty file. If you
make any changes and save them, the file is created.

Emacs recognizes from the contents of a file which convention it uses to separate lines—
newline (used on GNU/Linux and on Unix), carriage-return linefeed (used on Microsoft
systems), or just carriage-return (used on the Macintosh)—and automatically converts the
contents to the normal Emacs convention, which is that the newline character separates
lines. This is a part of the general feature of coding system conversion (see Section 18.7
[Coding Systems], page 181), and makes it possible to edit files imported from different
operating systems with equal convenience. If you change the text and save the file, Emacs
performs the inverse conversion, changing newlines back into carriage-return linefeed or just
carriage-return if appropriate.

If the file you specify is actually a directory, C-x C-f invokes Dired, the Emacs directory
browser, so that you can “edit” the contents of the directory (see Chapter 29 [Dired],

112 GNU Emacs Manual

page 319). Dired is a convenient way to delete, look at, or operate on the files in the
directory. However, if the variable find-file-run-dired is nil, then it is an error to try
to visit a directory.

Files which are actually collections of other files, or file archives, are visited in special
modes which invoke a Dired-like environment to allow operations on archive members. See
Section 14.12 [File Archives], page 144, for more about these features.

If the file name you specify contains shell-style wildcard characters, Emacs visits all the
files that match it. Wildcards include ‘?’, ‘*’, and ‘[...]’ sequences. See Section 14.14
[Quoted File Names], page 146, for information on how to visit a file whose name actually
contains wildcard characters. You can disable the wildcard feature by customizing find-
file-wildcards.

If you visit a file that the operating system won’t let you modify, Emacs makes the buffer
read-only, so that you won’t go ahead and make changes that you’ll have trouble saving
afterward. You can make the buffer writable with C-x C-q (vc-toggle-read-only). See
Section 15.3 [Misc Buffer], page 151.

Occasionally you might want to visit a file as read-only in order to protect yourself
from entering changes accidentally; do so by visiting the file with the command C-x C-r
(find-file-read-only).

If you visit a nonexistent file unintentionally (because you typed the wrong file name),
use the C-x C-v command (find-alternate-file) to visit the file you really wanted. C-x
C-v is similar to C-x C-f, but it kills the current buffer (after first offering to save it if it is
modified). When C-x C-v reads the file name to visit, it inserts the entire default file name
in the buffer, with point just after the directory part; this is convenient if you made a slight
error in typing the name.

If you find a file which exists but cannot be read, C-x C-f signals an error.

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x
4 f continues to show the same buffer it was already showing. If this command is used
when only one window is being displayed, that window is split in two, with one window
showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 16 [Windows], page 157.

C-x 5 f (find-file-other-frame) is similar, but opens a new frame, or makes visible
any existing frame showing the file you seek. This feature is available only when you are
using a window system. See Chapter 17 [Frames], page 163.

If you wish to edit a file as a sequence of ASCII characters with no special encoding or
conversion, use the M-x find-file-literally command. It visits a file, like C-x C-f, but
does not do format conversion (see Section 21.11 [Formatted Text], page 218), character
code conversion (see Section 18.7 [Coding Systems], page 181), or automatic uncompression
(see Section 14.11 [Compressed Files], page 144), and does not add a final newline because of
require-final-newline. If you already have visited the same file in the usual (non-literal)
manner, this command asks you whether to visit it literally instead.

Two special hook variables allow extensions to modify the operation of visiting files.
Visiting a file that does not exist runs the functions in the list find-file-not-found-
hooks; this variable holds a list of functions, and the functions are called one by one (with

Chapter 14: File Handling 113

no arguments) until one of them returns non-nil. This is not a normal hook, and the name
ends in ‘-hooks’ rather than ‘-hook’ to indicate that fact.

Successful visiting of any file, whether existing or not, calls the functions in the list
find-file-hooks, with no arguments. This variable is really a normal hook, but it has
an abnormal name for historical compatibility. In the case of a nonexistent file, the find-
file-not-found-hooks are run first. See Section 32.2.3 [Hooks], page 386.

There are several ways to specify automatically the major mode for editing the file (see
Section 19.1 [Choosing Modes], page 193), and to specify local variables defined for that file
(see Section 32.2.5 [File Variables], page 388).

14.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited
in the buffer.

C-x C-s Save the current buffer in its visited file on disk (save-buffer).

C-x s Save any or all buffers in their visited files (save-some-buffers).

M-~ Forget that the current buffer has been changed (not-modified). With prefix
argument (C-u), mark the current buffer as changed.

C-x C-w Save the current buffer as a specified file name (write-file).

M-x set-visited-file-name
Change the file name under which the current buffer will be saved.

When you wish to save the file and make your changes permanent, type C-x C-s (save-
buffer). After saving is finished, C-x C-s displays a message like this:

Wrote /u/rms/gnu/gnu.tasks

If the selected buffer is not modified (no changes have been made in it since the buffer was
created or last saved), saving is not really done, because it would have no effect. Instead,
C-x C-s displays a message like this in the echo area:

(No changes need to be saved)

The command C-x s (save-some-buffers) offers to save any or all modified buffers. It
asks you what to do with each buffer. The possible responses are analogous to those of
query-replace:

y Save this buffer and ask about the rest of the buffers.

n Don’t save this buffer, but ask about the rest of the buffers.

! Save this buffer and all the rest with no more questions.

〈RET〉 Terminate save-some-buffers without any more saving.

. Save this buffer, then exit save-some-buffers without even asking about other
buffers.

C-r View the buffer that you are currently being asked about. When you exit View
mode, you get back to save-some-buffers, which asks the question again.

C-h Display a help message about these options.

114 GNU Emacs Manual

C-x C-c, the key sequence to exit Emacs, invokes save-some-buffers and therefore
asks the same questions.

If you have changed a buffer but you do not want to save the changes, you should take
some action to prevent it. Otherwise, each time you use C-x s or C-x C-c, you are liable to
save this buffer by mistake. One thing you can do is type M-~ (not-modified), which clears
out the indication that the buffer is modified. If you do this, none of the save commands will
believe that the buffer needs to be saved. (‘~’ is often used as a mathematical symbol for
‘not’; thus M-~ is ‘not’, metafied.) You could also use set-visited-file-name (see below)
to mark the buffer as visiting a different file name, one which is not in use for anything
important. Alternatively, you can cancel all the changes made since the file was visited or
saved, by reading the text from the file again. This is called reverting. See Section 14.4
[Reverting], page 119. You could also undo all the changes by repeating the undo command
C-x u until you have undone all the changes; but reverting is easier.

M-x set-visited-file-name alters the name of the file that the current buffer is visit-
ing. It reads the new file name using the minibuffer. Then it marks the buffer as visiting
that file name, and changes the buffer name correspondingly. set-visited-file-name
does not save the buffer in the newly visited file; it just alters the records inside Emacs in
case you do save later. It also marks the buffer as “modified” so that C-x C-s in that buffer
will save.

If you wish to mark the buffer as visiting a different file and save it right away, use C-x
C-w (write-file). It is precisely equivalent to set-visited-file-name followed by C-x
C-s. C-x C-s used on a buffer that is not visiting a file has the same effect as C-x C-w; that
is, it reads a file name, marks the buffer as visiting that file, and saves it there. The default
file name in a buffer that is not visiting a file is made by combining the buffer name with
the buffer’s default directory (see Section 14.1 [File Names], page 109).

If the new file name implies a major mode, then C-x C-w switches to that major mode,
in most cases. The command set-visited-file-name also does this. See Section 19.1
[Choosing Modes], page 193.

If Emacs is about to save a file and sees that the date of the latest version on disk
does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it
probably indicates a problem caused by simultaneous editing and requires your immediate
attention. See Section 14.3.2 [Simultaneous Editing], page 117.

If the value of the variable require-final-newline is t, Emacs silently puts a newline
at the end of any file that doesn’t already end in one, every time a file is saved or written.
If the value is nil, Emacs leaves the end of the file unchanged; if it’s neither nil nor t,
Emacs asks you whether to add a newline. The default is nil.

14.3.1 Backup Files

On most operating systems, rewriting a file automatically destroys all record of what
the file used to contain. Thus, saving a file from Emacs throws away the old contents of the
file—or it would, except that Emacs carefully copies the old contents to another file, called
the backup file, before actually saving.

For most files, the variable make-backup-files determines whether to make backup
files. On most operating systems, its default value is t, so that Emacs does write backup
files.

Chapter 14: File Handling 115

For files managed by a version control system (see Section 14.7 [Version Control],
page 122), the variable vc-make-backup-files determines whether to make backup files.
By default it is nil, since backup files are redundant when you store all the previous
versions in a version control system. See Section 14.7.10.1 [General VC Options], page 140.

The default value of the backup-enable-predicate variable prevents backup files being
written for files in the directories used for temporary files, specified by temporary-file-
directory or small-temporary-file-directory.

At your option, Emacs can keep either a single backup file or a series of numbered backup
files for each file that you edit.

Emacs makes a backup for a file only the first time the file is saved from one buffer. No
matter how many times you save a file, its backup file continues to contain the contents from
before the file was visited. Normally this means that the backup file contains the contents
from before the current editing session; however, if you kill the buffer and then visit the file
again, a new backup file will be made by the next save.

You can also explicitly request making another backup file from a buffer even though it
has already been saved at least once. If you save the buffer with C-u C-x C-s, the version
thus saved will be made into a backup file if you save the buffer again. C-u C-u C-x C-s
saves the buffer, but first makes the previous file contents into a new backup file. C-u C-u
C-u C-x C-s does both things: it makes a backup from the previous contents, and arranges
to make another from the newly saved contents if you save again.

14.3.1.1 Single or Numbered Backups

If you choose to have a single backup file (this is the default), the backup file’s name is
normally constructed by appending ‘~’ to the file name being edited; thus, the backup file
for ‘eval.c’ would be ‘eval.c~’.

You can change this behavior by defining the variable make-backup-file-name-
function to a suitable function. Alternatively you can customize the variable
backup-directory-alist to specify that files matching certain patterns should be backed
up in specific directories.

A typical use is to add an element ("." . dir) to make all backups in the directory with
absolute name dir; Emacs modifies the backup file names to avoid clashes between files
with the same names originating in different directories. Alternatively, adding, say, ("." .
".~") would make backups in the invisible subdirectory ‘.~’ of the original file’s directory.
Emacs creates the directory, if necessary, to make the backup.

If access control stops Emacs from writing backup files under the usual names, it writes
the backup file as ‘%backup%~’ in your home directory. Only one such file can exist, so only
the most recently made such backup is available.

If you choose to have a series of numbered backup files, backup file names contain ‘.~’,
the number, and another ‘~’ after the original file name. Thus, the backup files of ‘eval.c’
would be called ‘eval.c.~1~’, ‘eval.c.~2~’, and so on, all the way through names like
‘eval.c.~259~’ and beyond. The variable backup-directory-alist applies to numbered
backups just as usual.

The choice of single backup or numbered backups is controlled by the variable version-
control. Its possible values are

116 GNU Emacs Manual

t Make numbered backups.

nil Make numbered backups for files that have numbered backups already. Other-
wise, make single backups.

never Never make numbered backups; always make single backups.

You can set version-control locally in an individual buffer to control the making of
backups for that buffer’s file. For example, Rmail mode locally sets version-control to
never to make sure that there is only one backup for an Rmail file. See Section 32.2.4
[Locals], page 387.

If you set the environment variable VERSION_CONTROL, to tell various GNU utilities
what to do with backup files, Emacs also obeys the environment variable by setting the
Lisp variable version-control accordingly at startup. If the environment variable’s value
is ‘t’ or ‘numbered’, then version-control becomes t; if the value is ‘nil’ or ‘existing’,
then version-control becomes nil; if it is ‘never’ or ‘simple’, then version-control
becomes never.

14.3.1.2 Automatic Deletion of Backups

To prevent excessive consumption of disk space, Emacs can delete numbered backup
versions automatically. Generally Emacs keeps the first few backups and the latest few
backups, deleting any in between. This happens every time a new backup is made.

The two variables kept-old-versions and kept-new-versions control this deletion.
Their values are, respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a new backup is
made. The backups in the middle (excluding those oldest and newest) are the excess middle
versions—those backups are deleted. These variables’ values are used when it is time to
delete excess versions, just after a new backup version is made; the newly made backup is
included in the count in kept-new-versions. By default, both variables are 2.

If delete-old-versions is non-nil, Emacs deletes the excess backup files silently. If it
is nil, the default, Emacs asks you whether it should delete the excess backup versions.

Dired’s . (Period) command can also be used to delete old versions. See Section 29.3
[Dired Deletion], page 319.

14.3.1.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This makes a
difference when the old file has multiple names (hard links). If the old file is renamed into
the backup file, then the alternate names become names for the backup file. If the old file
is copied instead, then the alternate names remain names for the file that you are editing,
and the contents accessed by those names will be the new contents.

The method of making a backup file may also affect the file’s owner and group. If
copying is used, these do not change. If renaming is used, you become the file’s owner, and
the file’s group becomes the default (different operating systems have different defaults for
the group).

Having the owner change is usually a good idea, because then the owner always shows
who last edited the file. Also, the owners of the backups show who produced those versions.

Chapter 14: File Handling 117

Occasionally there is a file whose owner should not change; it is a good idea for such
files to contain local variable lists to set backup-by-copying-when-mismatch locally (see
Section 32.2.5 [File Variables], page 388).

The choice of renaming or copying is controlled by four variables. Renaming is the
default choice. If the variable backup-by-copying is non-nil, copying is used. Otherwise,
if the variable backup-by-copying-when-linked is non-nil, then copying is used for files
that have multiple names, but renaming may still be used when the file being edited has only
one name. If the variable backup-by-copying-when-mismatch is non-nil, then copying is
used if renaming would cause the file’s owner or group to change. backup-by-copying-
when-mismatch is t by default if you start Emacs as the superuser. The fourth variable,
backup-by-copying-when-privileged-mismatch, gives the highest numeric user-id for
which backup-by-copying-when-mismatch will be forced on. This is useful when low-
numbered user-ids are assigned to special system users, such as root, bin, daemon, etc.,
which must maintain ownership of files.

When a file is managed with a version control system (see Section 14.7 [Version Control],
page 122), Emacs does not normally make backups in the usual way for that file. But check-
in and check-out are similar in some ways to making backups. One unfortunate similarity
is that these operations typically break hard links, disconnecting the file name you visited
from any alternate names for the same file. This has nothing to do with Emacs—the version
control system does it.

14.3.2 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
then both save them. If nobody were informed that this was happening, whichever user
saved first would later find that his changes were lost.

On some systems, Emacs notices immediately when the second user starts to change the
file, and issues an immediate warning. On all systems, Emacs checks when you save the
file, and warns if you are about to overwrite another user’s changes. You can prevent loss
of the other user’s work by taking the proper corrective action instead of saving the file.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that the file is locked by you. (It does this by creating a symbolic link in the same
directory with a different name.) Emacs removes the lock when you save the changes. The
idea is that the file is locked whenever an Emacs buffer visiting it has unsaved changes.

If you begin to modify the buffer while the visited file is locked by someone else, this
constitutes a collision. When Emacs detects a collision, it asks you what to do, by calling
the Lisp function ask-user-about-lock. You can redefine this function for the sake of
customization. The standard definition of this function asks you a question and accepts
three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you
gain the lock.

p Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked), and the buffer contents remain
unchanged—the modification you were trying to make does not actually take
place.

118 GNU Emacs Manual

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not realize that the two names are the same file and cannot prevent two users from
editing it simultaneously under different names. However, basing locking on names means
that Emacs can interlock the editing of new files that will not really exist until they are
saved.

Some systems are not configured to allow Emacs to make locks, and there are cases
where lock files cannot be written. In these cases, Emacs cannot detect trouble in advance,
but it still can detect the collision when you try to save a file and overwrite someone else’s
changes.

If Emacs or the operating system crashes, this may leave behind lock files which are
stale, so you may occasionally get warnings about spurious collisions. When you determine
that the collision is spurious, just use p to tell Emacs to go ahead anyway.

Every time Emacs saves a buffer, it first checks the last-modification date of the existing
file on disk to verify that it has not changed since the file was last visited or saved. If the
date does not match, it implies that changes were made in the file in some other way, and
these changes are about to be lost if Emacs actually does save. To prevent this, Emacs
displays a warning message and asks for confirmation before saving. Occasionally you will
know why the file was changed and know that it does not matter; then you can answer yes
and proceed. Otherwise, you should cancel the save with C-g and investigate the situation.

The first thing you should do when notified that simultaneous editing has already taken
place is to list the directory with C-u C-x C-d (see Section 14.8 [Directories], page 142).
This shows the file’s current author. You should attempt to contact him to warn him not
to continue editing. Often the next step is to save the contents of your Emacs buffer under
a different name, and use diff to compare the two files.

14.3.3 Shadowing Files

M-x shadow-initialize
Set up file shadowing.

M-x shadow-define-literal-group
Declare a single file to be shared between sites.

M-x shadow-define-regexp-group
Make all files that match each of a group of files be shared between hosts.

M-x shadow-define-cluster 〈RET〉 name 〈RET〉
Define a shadow file cluster name.

M-x shadow-copy-files
Copy all pending shadow files.

M-x shadow-cancel
Cancel the instruction to shadow some files.

You can arrange to keep identical shadow copies of certain files in more than one place—
possibly on different machines. To do this, first you must set up a shadow file group, which
is a set of identically-named files shared between a list of sites. The file group is permanent
and applies to further Emacs sessions as well as the current one. Once the group is set up,

Chapter 14: File Handling 119

every time you exit Emacs, it will copy the file you edited to the other files in its group.
You can also do the copying without exiting Emacs, by typing M-x shadow-copy-files.

To set up a shadow file group, use M-x shadow-define-literal-group or M-x
shadow-define-regexp-group. See their documentation strings for further information.

Before copying a file to its shadows, Emacs asks for confirmation. You can answer “no”
to bypass copying of this file, this time. If you want to cancel the shadowing permanently
for a certain file, use M-x shadow-cancel to eliminate or change the shadow file group.

A shadow cluster is a group of hosts that share directories, so that copying to or from
one of them is sufficient to update the file on all of them. Each shadow cluster has a name,
and specifies the network address of a primary host (the one we copy files to), and a regular
expression that matches the host names of all the other hosts in the cluster. You can define
a shadow cluster with M-x shadow-define-cluster.

14.3.4 Updating Time Stamps Automatically

You can arrange to put a time stamp in a file, so that it will be updated automatically
each time you edit and save the file. The time stamp has to be in the first eight lines of the
file, and you should insert it like this:

Time-stamp: <>

or like this:

Time-stamp: ""

Then add the hook function time-stamp to the hook write-file-hooks; that hook
function will automatically update the time stamp, inserting the current date and time
when you save the file. You can also use the command M-x time-stamp to update the time
stamp manually. For other customizations, see the Custom group time-stamp. Note that
non-numeric fields in the time stamp are formatted according to your locale setting (see
Section B.5 [Environment], page 426).

14.4 Reverting a Buffer

If you have made extensive changes to a file and then change your mind about them,
you can get rid of them by reading in the previous version of the file. To do this, use M-x
revert-buffer, which operates on the current buffer. Since reverting a buffer unintention-
ally could lose a lot of work, you must confirm this command with yes.

revert-buffer keeps point at the same distance (measured in characters) from the
beginning of the file. If the file was edited only slightly, you will be at approximately the
same piece of text after reverting as before. If you have made drastic changes, the same
value of point in the old file may address a totally different piece of text.

Reverting marks the buffer as “not modified” until another change is made.

Some kinds of buffers whose contents reflect data bases other than files, such as Dired
buffers, can also be reverted. For them, reverting means recalculating their contents from
the appropriate data base. Buffers created explicitly with C-x b cannot be reverted; revert-
buffer reports an error when asked to do so.

120 GNU Emacs Manual

When you edit a file that changes automatically and frequently—for example, a log of
output from a process that continues to run—it may be useful for Emacs to revert the file
without querying you, whenever you visit the file again with C-x C-f.

To request this behavior, set the variable revert-without-query to a list of regular
expressions. When a file name matches one of these regular expressions, find-file and
revert-buffer will revert it automatically if it has changed—provided the buffer itself is
not modified. (If you have edited the text, it would be wrong to discard your changes.)

You may find it useful to have Emacs revert files automatically when they change. Two
minor modes are available to do this. In Global Auto-Revert mode, Emacs periodically
checks all file buffers and reverts any when the corresponding file has changed. The local
variant, Auto-Revert mode, applies only to buffers in which it was activated. Checking the
files is done at intervals determined by the variable auto-revert-interval.

14.5 Auto-Saving: Protection Against Disasters

Emacs saves all the visited files from time to time (based on counting your keystrokes)
without being asked. This is called auto-saving. It prevents you from losing more than a
limited amount of work if the system crashes.

When Emacs determines that it is time for auto-saving, each buffer is considered, and
is auto-saved if auto-saving is turned on for it and it has been changed since the last time
it was auto-saved. The message ‘Auto-saving...’ is displayed in the echo area during
auto-saving, if any files are actually auto-saved. Errors occurring during auto-saving are
caught so that they do not interfere with the execution of commands you have been typing.

14.5.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because it can be very
undesirable to save a program that is in an inconsistent state when you have made half of a
planned change. Instead, auto-saving is done in a different file called the auto-save file, and
the visited file is changed only when you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front and rear of the
visited file name. Thus, a buffer visiting file ‘foo.c’ is auto-saved in a file ‘#foo.c#’. Most
buffers that are not visiting files are auto-saved only if you request it explicitly; when they
are auto-saved, the auto-save file name is made by appending ‘#%’ to the front and ‘#’ to the
rear of buffer name. For example, the ‘*mail*’ buffer in which you compose messages to
be sent is auto-saved in a file named ‘#%*mail*#’. Auto-save file names are made this way
unless you reprogram parts of Emacs to do something different (the functions make-auto-
save-file-name and auto-save-file-name-p). The file name to be used for auto-saving
in a buffer is calculated when auto-saving is turned on in that buffer.

When you delete a substantial part of the text in a large buffer, auto save turns off
temporarily in that buffer. This is because if you deleted the text unintentionally, you
might find the auto-save file more useful if it contains the deleted text. To reenable auto-
saving after this happens, save the buffer with C-x C-s, or use C-u 1 M-x auto-save.

If you want auto-saving to be done in the visited file rather than in a separate auto-save
file, set the variable auto-save-visited-file-name to a non-nil value. In this mode,
there is no real difference between auto-saving and explicit saving.

Chapter 14: File Handling 121

A buffer’s auto-save file is deleted when you save the buffer in its visited file. To inhibit
this, set the variable delete-auto-save-files to nil. Changing the visited file name with
C-x C-w or set-visited-file-name renames any auto-save file to go with the new visited
name.

14.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Chapter 3 [Entering Emacs],
page 31). The default for this variable is t, so auto-saving is the usual practice for file-visiting
buffers. Auto-saving can be turned on or off for any existing buffer with the command M-x
auto-save-mode. Like other minor mode commands, M-x auto-save-mode turns auto-
saving on with a positive argument, off with a zero or negative argument; with no argument,
it toggles.

Emacs does auto-saving periodically based on counting how many characters you have
typed since the last time auto-saving was done. The variable auto-save-interval specifies
how many characters there are between auto-saves. By default, it is 300.

Auto-saving also takes place when you stop typing for a while. The variable auto-
save-timeout says how many seconds Emacs should wait before it does an auto save (and
perhaps also a garbage collection). (The actual time period is longer if the current buffer
is long; this is a heuristic which aims to keep out of your way when you are editing long
buffers, in which auto-save takes an appreciable amount of time.) Auto-saving during idle
periods accomplishes two things: first, it makes sure all your work is saved if you go away
from the terminal for a while; second, it may avoid some auto-saving while you are actually
typing.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as ‘kill %emacs’, or disconnecting a phone line or
network connection.

You can request an auto-save explicitly with the command M-x do-auto-save.

14.5.3 Recovering Data from Auto-Saves

You can use the contents of an auto-save file to recover from a loss of data with the
command M-x recover-file 〈RET〉 file 〈RET〉. This visits file and then (after your confir-
mation) restores the contents from its auto-save file ‘#file#’. You can then save with C-x
C-s to put the recovered text into file itself. For example, to recover file ‘foo.c’ from its
auto-save file ‘#foo.c#’, do:

M-x recover-file 〈RET〉 foo.c 〈RET〉
yes 〈RET〉
C-x C-s

Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

If Emacs or the computer crashes, you can recover all the files you were editing from
their auto save files with the command M-x recover-session. This first shows you a list
of recorded interrupted sessions. Move point to the one you choose, and type C-c C-c.

122 GNU Emacs Manual

Then recover-session asks about each of the files that were being edited during that
session, asking whether to recover that file. If you answer y, it calls recover-file, which
works in its normal fashion. It shows the dates of the original file and its auto-save file, and
asks once again whether to recover that file.

When recover-session is done, the files you’ve chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

Emacs records interrupted sessions for later recovery in files named
‘~/.emacs.d/auto-save-list/.saves-pid-hostname’. The ‘~/.emacs.d/auto-save-list/.saves-’
portion of these names comes from the value of auto-save-list-file-prefix. You
can record sessions in a different place by customizing that variable. If you set
auto-save-list-file-prefix to nil in your ‘.emacs’ file, sessions are not recorded for
recovery.

14.6 File Name Aliases

Symbolic links and hard links both make it possible for several file names to refer to the
same file. Hard links are alternate names that refer directly to the file; all the names are
equally valid, and no one of them is preferred. By contrast, a symbolic link is a kind of
defined alias: when ‘foo’ is a symbolic link to ‘bar’, you can use either name to refer to the
file, but ‘bar’ is the real name, while ‘foo’ is just an alias. More complex cases occur when
symbolic links point to directories.

If you visit two names for the same file, normally Emacs makes two different buffers, but
it warns you about the situation.

Normally, if you visit a file which Emacs is already visiting under a different name,
Emacs displays a message in the echo area and uses the existing buffer visiting that file.
This can happen on systems that support symbolic links, or if you use a long file name
on a system that truncates long file names. You can suppress the message by setting the
variable find-file-suppress-same-file-warnings to a non-nil value. You can disable
this feature entirely by setting the variable find-file-existing-other-name to nil: then
if you visit the same file under two different names, you get a separate buffer for each file
name.

If the variable find-file-visit-truename is non-nil, then the file name recorded for a
buffer is the file’s truename (made by replacing all symbolic links with their target names),
rather than the name you specify. Setting find-file-visit-truename also implies the
effect of find-file-existing-other-name.

14.7 Version Control

Version control systems are packages that can record multiple versions of a source file,
usually storing the unchanged parts of the file just once. Version control systems also
record history information such as the creation time of each version, who created it, and a
description of what was changed in that version.

The Emacs version control interface is called VC. Its commands work with three version
control systems—RCS, CVS, and SCCS. The GNU project recommends RCS and CVS,
which are free software and available from the Free Software Foundation. We also have free

Chapter 14: File Handling 123

software to replace SCCS, known as CSSC; if you are using SCCS and don’t want to make
the incompatible change to RCS or CVS, you can switch to CSSC.

14.7.1 Introduction to Version Control

VC allows you to use a version control system from within Emacs, integrating the ver-
sion control operations smoothly with editing. VC provides a uniform interface to version
control, so that regardless of which version control system is in use, you can use it the same
way.

This section provides a general overview of version control, and describes the version
control systems that VC supports. You can skip this section if you are already familiar
with the version control system you want to use.

14.7.1.1 Supported Version Control Systems

VC currently works with three different version control systems or “back ends”: RCS,
CVS, and SCCS.

RCS is a free version control system that is available from the Free Software Foundation.
It is perhaps the most mature of the supported back ends, and the VC commands are
conceptually closest to RCS. Almost everything you can do with RCS can be done through
VC.

CVS is built on top of RCS, and extends the features of RCS, allowing for more sophis-
ticated release management, and concurrent multi-user development. VC supports basic
editing operations under CVS, but for some less common tasks you still need to call CVS
from the command line. Note also that before using CVS you must set up a repository,
which is a subject too complex to treat here.

SCCS is a proprietary but widely used version control system. In terms of capabilities, it
is the weakest of the three that VC supports. VC compensates for certain features missing
in SCCS (snapshots, for example) by implementing them itself, but some other VC features,
such as multiple branches, are not available with SCCS. You should use SCCS only if for
some reason you cannot use RCS.

14.7.1.2 Concepts of Version Control

When a file is under version control, we also say that it is registered in the version
control system. Each registered file has a corresponding master file which represents the
file’s present state plus its change history—enough to reconstruct the current version or any
earlier version. Usually the master file also records a log entry for each version, describing
in words what was changed in that version.

The file that is maintained under version control is sometimes called the work file cor-
responding to its master file. You edit the work file and make changes in it, as you would
with an ordinary file. (With SCCS and RCS, you must lock the file before you start to
edit it.) After you are done with a set of changes, you check the file in, which records the
changes in the master file, along with a log entry for them.

With CVS, there are usually multiple work files corresponding to a single master file—
often each user has his own copy. It is also possible to use RCS in this way, but this is not
the usual way to use RCS.

124 GNU Emacs Manual

A version control system typically has some mechanism to coordinate between users who
want to change the same file. One method is locking (analogous to the locking that Emacs
uses to detect simultaneous editing of a file, but distinct from it). The other method is to
merge your changes with other people’s changes when you check them in.

With version control locking, work files are normally read-only so that you cannot change
them. You ask the version control system to make a work file writable for you by locking it;
only one user can do this at any given time. When you check in your changes, that unlocks
the file, making the work file read-only again. This allows other users to lock the file to
make further changes. SCCS always uses locking, and RCS normally does.

The other alternative for RCS is to let each user modify the work file at any time. In
this mode, locking is not required, but it is permitted; check-in is still the way to record a
new version.

CVS normally allows each user to modify his own copy of the work file at any time, but
requires merging with changes from other users at check-in time. However, CVS can also
be set up to require locking. (see Section 14.7.10.3 [CVS Options], page 141).

14.7.2 Version Control and the Mode Line

When you visit a file that is under version control, Emacs indicates this on the mode
line. For example, ‘RCS-1.3’ says that RCS is used for that file, and the current version is
1.3.

The character between the back-end name and the version number indicates the version
control status of the file. ‘-’ means that the work file is not locked (if locking is in use),
or not modified (if locking is not in use). ‘:’ indicates that the file is locked, or that it is
modified. If the file is locked by some other user (for instance, ‘jim’), that is displayed as
‘RCS:jim:1.3’.

14.7.3 Basic Editing under Version Control

The principal VC command is an all-purpose command that performs either locking or
check-in, depending on the situation.

C-x C-q
C-x v v Perform the next logical version control operation on this file.

Strictly speaking, the command for this job is vc-next-action, bound to C-x v v. How-
ever, the normal meaning of C-x C-q is to make a read-only buffer writable, or vice versa;
we have extended it to do the same job properly for files managed by version control, by per-
forming the appropriate version control operations. When you type C-x C-q on a registered
file, it acts like C-x v v.

The precise action of this command depends on the state of the file, and whether the
version control system uses locking or not. SCCS and RCS normally use locking; CVS
normally does not use locking.

14.7.3.1 Basic Version Control with Locking

If locking is used for the file (as with SCCS, and RCS in its default mode), C-x C-q can
either lock a file or check it in:

Chapter 14: File Handling 125

• If the file is not locked, C-x C-q locks it, and makes it writable so that you can change
it.

• If the file is locked by you, and contains changes, C-x C-q checks in the changes. In
order to do this, it first reads the log entry for the new version. See Section 14.7.3.4
[Log Buffer], page 126.

• If the file is locked by you, but you have not changed it since you locked it, C-x C-q
releases the lock and makes the file read-only again.

• If the file is locked by some other user, C-x C-q asks you whether you want to “steal
the lock” from that user. If you say yes, the file becomes locked by you, but a message
is sent to the person who had formerly locked the file, to inform him of what has
happened.

These rules also apply when you use CVS in locking mode, except that there is no such
thing as stealing a lock.

14.7.3.2 Basic Version Control without Locking

When there is no locking—the default for CVS—work files are always writable; you do
not need to do anything before you begin to edit a file. The status indicator on the mode
line is ‘-’ if the file is unmodified; it flips to ‘:’ as soon as you save any changes in the work
file.

Here is what C-x C-q does when using CVS:

• If some other user has checked in changes into the master file, Emacs asks you whether
you want to merge those changes into your own work file. You must do this before you
can check in your own changes. (To pick up any recent changes from the master file
without trying to commit your own changes, type C-x v m 〈RET〉.) See Section 14.7.6.3
[Merging], page 132.

• If there are no new changes in the master file, but you have made modifications in your
work file, C-x C-q checks in your changes. In order to do this, it first reads the log
entry for the new version. See Section 14.7.3.4 [Log Buffer], page 126.

• If the file is not modified, the C-x C-q does nothing.

These rules also apply when you use RCS in the mode that does not require locking,
except that automatic merging of changes from the master file is not implemented. Unfor-
tunately, this means that nothing informs you if another user has checked in changes in the
same file since you began editing it, and when this happens, his changes will be effectively
removed when you check in your version (though they will remain in the master file, so
they will not be entirely lost). You must therefore verify the current version is unchanged,
before you check in your changes. We hope to eliminate this risk and provide automatic
merging with RCS in a future Emacs version.

In addition, locking is possible with RCS even in this mode, although it is not required;
C-x C-q with an unmodified file locks the file, just as it does with RCS in its normal (locking)
mode.

126 GNU Emacs Manual

14.7.3.3 Advanced Control in C-x C-q

When you give a prefix argument to vc-next-action (C-u C-x C-q), it still performs the
next logical version control operation, but accepts additional arguments to specify precisely
how to do the operation.
• If the file is modified (or locked), you can specify the version number to use for the new

version that you check in. This is one way to create a new branch (see Section 14.7.6
[Branches], page 130).

• If the file is not modified (and unlocked), you can specify the version to select; this lets
you start working from an older version, or on another branch. If you do not enter any
version, that takes you to the highest version on the current branch; therefore C-u C-x
C-q 〈RET〉 is a convenient way to get the latest version of a file from the repository.

• Instead of the version number, you can also specify the name of a version control
system. This is useful when one file is being managed with two version control systems
at the same time (see Section 14.7.7.2 [Local Version Control], page 134).

14.7.3.4 Features of the Log Entry Buffer

When you check in changes, C-x C-q first reads a log entry. It pops up a buffer called
‘*VC-Log*’ for you to enter the log entry. When you are finished, type C-c C-c in the
‘*VC-Log*’ buffer. That is when check-in really happens.

To abort check-in, just don’t type C-c C-c in that buffer. You can switch buffers and
do other editing. As long as you don’t try to check in another file, the entry you were
editing remains in the ‘*VC-Log*’ buffer, and you can go back to that buffer at any time to
complete the check-in.

If you change several source files for the same reason, it is often convenient to specify
the same log entry for many of the files. To do this, use the history of previous log entries.
The commands M-n, M-p, M-s and M-r for doing this work just like the minibuffer history
commands (except that these versions are used outside the minibuffer).

Each time you check in a file, the log entry buffer is put into VC Log mode, which
involves running two hooks: text-mode-hook and vc-log-mode-hook. See Section 32.2.3
[Hooks], page 386.

14.7.4 Examining And Comparing Old Versions

One of the convenient features of version control is the ability to examine any version of
a file, or compare two versions.

C-x v ~ version 〈RET〉
Examine version version of the visited file, in a buffer of its own.

C-x v = Compare the current buffer contents with the latest checked-in version of the
file.

C-u C-x v = file 〈RET〉 oldvers 〈RET〉 newvers 〈RET〉
Compare the specified two versions of file.

C-x v g Display the result of the CVS annotate command using colors.

Chapter 14: File Handling 127

To examine an old version in its entirety, visit the file and then type C-x v ~ version
〈RET〉 (vc-version-other-window). This puts the text of version version in a file named
‘filename.~version~’, and visits it in its own buffer in a separate window. (In RCS, you
can also select an old version and create a branch from it. See Section 14.7.6 [Branches],
page 130.)

It is usually more convenient to compare two versions of the file, with the command
C-x v = (vc-diff). Plain C-x v = compares the current buffer contents (saving them in the
file if necessary) with the last checked-in version of the file. C-u C-x v =, with a numeric
argument, reads a file name and two version numbers, then compares those versions of the
specified file. Both forms display the output in a special buffer in another window.

You can specify a checked-in version by its number; an empty input specifies the current
contents of the work file (which may be different from all the checked-in versions). You can
also specify a snapshot name (see Section 14.7.8 [Snapshots], page 135) instead of one or
both version numbers.

If you supply a directory name instead of the name of a registered file, this command
compares the two specified versions of all registered files in that directory and its subdirec-
tories.

C-x v = works by running a variant of the diff utility designed to work with the version
control system in use. When you invoke diff this way, in addition to the options specified
by diff-switches (see Section 14.9 [Comparing Files], page 142), it receives those specified
by vc-diff-switches, plus those specified for the specific back end by vc-backend-diff-
switches. For instance, when the version control back end is RCS, diff uses the options
in vc-rcs-diff-switches. The ‘vc...diff-switches’ variables are nil by default.

Unlike the M-x diff command, C-x v = does not try to locate the changes in the old and
new versions. This is because normally one or both versions do not exist as files when you
compare them; they exist only in the records of the master file. See Section 14.9 [Comparing
Files], page 142, for more information about M-x diff.

For CVS-controlled files, you can display the result of the CVS annotate command, using
colors to enhance the visual appearance. Use the command M-x vc-annotate to do this.
It creates a new buffer to display file’s text, colored to show how old each part is. Text
colored red is new, blue means old, and intermediate colors indicate intermediate ages. By
default, the time scale is 360 days, so that everything more than one year old is shown in
blue.

When you give a prefix argument to this command, it uses the minibuffer to read two
arguments: which version number to display and annotate (instead of the current file con-
tents), and a stretch factor for the time scale. A stretch factor of 0.1 means that the color
range from red to blue spans the past 36 days instead of 360 days. A stretch factor greater
than 1 means the color range spans more than a year.

14.7.5 The Secondary Commands of VC

This section explains the secondary commands of VC; those that you might use once a
day.

128 GNU Emacs Manual

14.7.5.1 Registering a File for Version Control

You can put any file under version control by simply visiting it, and then typing C-x v i
(vc-register).

C-x v i Register the visited file for version control.

To register the file, Emacs must choose which version control system to use for it. If the
file’s directory already contains files registered in a version control system, Emacs uses that
system. If there is more than one system in use for a directory, Emacs uses the one that
appears first in vc-handled-backends (see Section 14.7.10 [Customizing VC], page 139).
On the other hand, if there are no files already registered, Emacs uses the first system from
vc-handled-backends that could register the file—for example, you cannot register a file
under CVS if its directory is not already part of a CVS tree.

With the default value of vc-handled-backends, this means that Emacs uses RCS if
there are any files under RCS control, CVS if there are any files under CVS, SCCS if any
files are under SCCS, or RCS as the ultimate default.

If locking is in use, C-x v i leaves the file unlocked and read-only. Type C-x C-q if you
wish to start editing it. After registering a file with CVS, you must subsequently commit
the initial version by typing C-x C-q.

The initial version number for a newly registered file is 1.1, by default. You can specify a
different default by setting the variable vc-default-init-version, or you can give C-x v
i a numeric argument; then it reads the initial version number for this particular file using
the minibuffer.

If vc-initial-comment is non-nil, C-x v i reads an initial comment to describe the
purpose of this source file. Reading the initial comment works like reading a log entry (see
Section 14.7.3.4 [Log Buffer], page 126).

14.7.5.2 VC Status Commands

C-x v l Display version control state and change history.

To view the detailed version control status and history of a file, type C-x v l (vc-print-
log). It displays the history of changes to the current file, including the text of the log
entries. The output appears in a separate window.

14.7.5.3 Undoing Version Control Actions

C-x v u Revert the buffer and the file to the last checked-in version.

C-x v c Remove the last-entered change from the master for the visited file. This undoes
your last check-in.

If you want to discard your current set of changes and revert to the last version checked
in, use C-x v u (vc-revert-buffer). This leaves the file unlocked; if locking is in use, you
must first lock the file again before you change it again. C-x v u requires confirmation,
unless it sees that you haven’t made any changes since the last checked-in version.

C-x v u is also the command to unlock a file if you lock it and then decide not to change
it.

Chapter 14: File Handling 129

To cancel a change that you already checked in, use C-x v c (vc-cancel-version). This
command discards all record of the most recent checked-in version. C-x v c also offers to
revert your work file and buffer to the previous version (the one that precedes the version
that is deleted).

If you answer no, VC keeps your changes in the buffer, and locks the file. The no-revert
option is useful when you have checked in a change and then discover a trivial error in it;
you can cancel the erroneous check-in, fix the error, and check the file in again.

When C-x v c does not revert the buffer, it unexpands all version control headers in the
buffer instead (see Section 14.7.9.3 [Version Headers], page 138). This is because the buffer
no longer corresponds to any existing version. If you check it in again, the check-in process
will expand the headers properly for the new version number.

However, it is impossible to unexpand the RCS ‘Log’ header automatically. If you use
that header feature, you have to unexpand it by hand—by deleting the entry for the version
that you just canceled.

Be careful when invoking C-x v c, as it is easy to lose a lot of work with it. To help you be
careful, this command always requires confirmation with yes. Note also that this command
is disabled under CVS, because canceling versions is very dangerous and discouraged with
CVS.

14.7.5.4 Dired under VC

The VC Dired Mode described here works with all the version control systems that VC
supports. Another more powerful facility, designed specifically for CVS, is called PCL-CVS.
See section “About PCL-CVS” in PCL-CVS — The Emacs Front-End to CVS.

When you are working on a large program, it is often useful to find out which files
have changed within an entire directory tree, or to view the status of all files under version
control at once, and to perform version control operations on collections of files. You can
use the command C-x v d (vc-directory) to make a directory listing that includes only
files relevant for version control.

C-x v d creates a buffer which uses VC Dired Mode. This looks much like an ordinary
Dired buffer (see Chapter 29 [Dired], page 319); however, normally it shows only the note-
worthy files (those locked or not up-to-date). This is called terse display. If you set the
variable vc-dired-terse-display to nil, then VC Dired shows all relevant files—those
managed under version control, plus all subdirectories (full display). The command v t in
a VC Dired buffer toggles between terse display and full display (see Section 14.7.5.5 [VC
Dired Commands], page 130).

By default, VC Dired produces a recursive listing of noteworthy or relevant files at or
below the given directory. You can change this by setting the variable vc-dired-recurse
to nil; then VC Dired shows only the files in the given directory.

The line for an individual file shows the version control state in the place of the hard link
count, owner, group, and size of the file. If the file is unmodified, in sync with the master
file, the version control state shown is blank. Otherwise it consists of text in parentheses.
Under RCS and SCCS, the name of the user locking the file is shown; under CVS, an
abbreviated version of the ‘cvs status’ output is used. Here is an example using RCS:

130 GNU Emacs Manual

/home/jim/project:

-rw-r--r-- (jim) Apr 2 23:39 file1
-r--r--r-- Apr 5 20:21 file2

The files ‘file1’ and ‘file2’ are under version control, ‘file1’ is locked by user jim, and
‘file2’ is unlocked.

Here is an example using CVS:
/home/joe/develop:

-rw-r--r-- (modified) Aug 2 1997 file1.c
-rw-r--r-- Apr 4 20:09 file2.c
-rw-r--r-- (merge) Sep 13 1996 file3.c

Here ‘file1.c’ is modified with respect to the repository, and ‘file2.c’ is not. ‘file3.c’
is modified, but other changes have also been checked in to the repository—you need to
merge them with the work file before you can check it in.

When VC Dired displays subdirectories (in the “full” display mode), it omits some
that should never contain any files under version control. By default, this includes Version
Control subdirectories such as ‘RCS’ and ‘CVS’; you can customize this by setting the variable
vc-directory-exclusion-list.

You can fine-tune VC Dired’s format by typing C-u C-x v d—as in ordinary Dired, that
allows you to specify additional switches for the ‘ls’ command.

14.7.5.5 VC Dired Commands

All the usual Dired commands work normally in VC Dired mode, except for v, which is
redefined as the version control prefix. You can invoke VC commands such as vc-diff and
vc-print-log by typing v =, or v l, and so on. Most of these commands apply to the file
name on the current line.

The command v v (vc-next-action) operates on all the marked files, so that you can
lock or check in several files at once. If it operates on more than one file, it handles each file
according to its current state; thus, it might lock one file, but check in another file. This
could be confusing; it is up to you to avoid confusing behavior by marking a set of files that
are in a similar state.

If any files call for check-in, v v reads a single log entry, then uses it for all the files being
checked in. This is convenient for registering or checking in several files at once, as part of
the same change.

You can toggle between terse display (only locked files, or files not up-to-date) and full
display at any time by typing v t (vc-dired-toggle-terse-mode). There is also a special
command * l (vc-dired-mark-locked), which marks all files currently locked (or, with
CVS, all files not up-to-date). Thus, typing * l t k is another way to delete from the buffer
all files except those currently locked.

14.7.6 Multiple Branches of a File

One use of version control is to maintain multiple “current” versions of a file. For
example, you might have different versions of a program in which you are gradually adding

Chapter 14: File Handling 131

various unfinished new features. Each such independent line of development is called a
branch. VC allows you to create branches, switch between different branches, and merge
changes from one branch to another. Please note, however, that branches are only supported
for RCS at the moment.

A file’s main line of development is usually called the trunk. The versions on the trunk
are normally numbered 1.1, 1.2, 1.3, etc. At any such version, you can start an independent
branch. A branch starting at version 1.2 would have version number 1.2.1.1, and consecutive
versions on this branch would have numbers 1.2.1.2, 1.2.1.3, 1.2.1.4, and so on. If there
is a second branch also starting at version 1.2, it would consist of versions 1.2.2.1, 1.2.2.2,
1.2.2.3, etc.

If you omit the final component of a version number, that is called a branch number. It
refers to the highest existing version on that branch—the head version of that branch. The
branches in the example above have branch numbers 1.2.1 and 1.2.2.

14.7.6.1 Switching between Branches

To switch between branches, type C-u C-x C-q and specify the version number you want
to select. This version is then visited unlocked (write-protected), so you can examine it
before locking it. Switching branches in this way is allowed only when the file is not locked.

You can omit the minor version number, thus giving only the branch number; this takes
you to the head version on the chosen branch. If you only type 〈RET〉, Emacs goes to the
highest version on the trunk.

After you have switched to any branch (including the main branch), you stay on it for
subsequent VC commands, until you explicitly select some other branch.

14.7.6.2 Creating New Branches

To create a new branch from a head version (one that is the latest in the branch that
contains it), first select that version if necessary, lock it with C-x C-q, and make whatever
changes you want. Then, when you check in the changes, use C-u C-x C-q. This lets
you specify the version number for the new version. You should specify a suitable branch
number for a branch starting at the current version. For example, if the current version
is 2.5, the branch number should be 2.5.1, 2.5.2, and so on, depending on the number of
existing branches at that point.

To create a new branch at an older version (one that is no longer the head of a branch),
first select that version (see Section 14.7.6.1 [Switching Branches], page 131), then lock it
with C-x C-q. You’ll be asked to confirm, when you lock the old version, that you really
mean to create a new branch—if you say no, you’ll be offered a chance to lock the latest
version instead.

Then make your changes and type C-x C-q again to check in a new version. This auto-
matically creates a new branch starting from the selected version. You need not specially
request a new branch, because that’s the only way to add a new version at a point that is
not the head of a branch.

After the branch is created, you “stay” on it. That means that subsequent check-ins
create new versions on that branch. To leave the branch, you must explicitly select a

132 GNU Emacs Manual

different version with C-u C-x C-q. To transfer changes from one branch to another, use
the merge command, described in the next section.

14.7.6.3 Merging Branches

When you have finished the changes on a certain branch, you will often want to in-
corporate them into the file’s main line of development (the trunk). This is not a trivial
operation, because development might also have proceeded on the trunk, so that you must
merge the changes into a file that has already been changed otherwise. VC allows you to
do this (and other things) with the vc-merge command.

C-x v m (vc-merge)
Merge changes into the work file.

C-x v m (vc-merge) takes a set of changes and merges it into the current version of the
work file. It firsts asks you in the minibuffer where the changes should come from. If you
just type 〈RET〉, Emacs merges any changes that were made on the same branch since you
checked the file out (we call this merging the news). This is the common way to pick up
recent changes from the repository, regardless of whether you have already changed the file
yourself.

You can also enter a branch number or a pair of version numbers in the minibuffer. Then
C-x v m finds the changes from that branch, or the differences between the two versions you
specified, and merges them into the current version of the current file.

As an example, suppose that you have finished a certain feature on branch 1.3.1. In the
meantime, development on the trunk has proceeded to version 1.5. To merge the changes
from the branch to the trunk, first go to the head version of the trunk, by typing C-u C-x
C-q 〈RET〉. Version 1.5 is now current. If locking is used for the file, type C-x C-q to lock
version 1.5 so that you can change it. Next, type C-x v m 1.3.1 〈RET〉. This takes the entire
set of changes on branch 1.3.1 (relative to version 1.3, where the branch started, up to the
last version on the branch) and merges it into the current version of the work file. You can
now check in the changed file, thus creating version 1.6 containing the changes from the
branch.

It is possible to do further editing after merging the branch, before the next check-in.
But it is usually wiser to check in the merged version, then lock it and make the further
changes. This will keep a better record of the history of changes.

When you merge changes into a file that has itself been modified, the changes might
overlap. We call this situation a conflict, and reconciling the conflicting changes is called
resolving a conflict.

Whenever conflicts occur during merging, VC detects them, tells you about them in the
echo area, and asks whether you want help in merging. If you say yes, it starts an Ediff
session (see section “Ediff” in The Ediff Manual).

If you say no, the conflicting changes are both inserted into the file, surrounded by
conflict markers. The example below shows how a conflict region looks; the file is called
‘name’ and the current master file version with user B’s changes in it is 1.11.

Chapter 14: File Handling 133

<<<<<<< name
User A’s version

=======
User B’s version

>>>>>>> 1.11

Then you can resolve the conflicts by editing the file manually. Or you can type M-x
vc-resolve-conflicts after visiting the file. This starts an Ediff session, as described
above. Don’t forget to check in the merged version afterwards.

14.7.6.4 Multi-User Branching

It is often useful for multiple developers to work simultaneously on different branches
of a file. CVS allows this by default; for RCS, it is possible if you create multiple source
directories. Each source directory should have a link named ‘RCS’ which points to a common
directory of RCS master files. Then each source directory can have its own choice of selected
versions, but all share the same common RCS records.

This technique works reliably and automatically, provided that the source files contain
RCS version headers (see Section 14.7.9.3 [Version Headers], page 138). The headers enable
Emacs to be sure, at all times, which version number is present in the work file.

If the files do not have version headers, you must instead tell Emacs explicitly in each
session which branch you are working on. To do this, first find the file, then type C-u C-x
C-q and specify the correct branch number. This ensures that Emacs knows which branch
it is using during this particular editing session.

14.7.7 Remote Repositories

A common way of using CVS is to set up a central CVS repository on some Internet
host, then have each developer check out a personal working copy of the files on his local
machine. Committing changes to the repository, and picking up changes from other users
into one’s own working area, then works by direct interactions with the CVS server.

One difficulty is that access to the CVS server is often slow, and that developers might
need to work off-line as well. VC is designed to reduce the amount of network interaction
necessary.

14.7.7.1 Version Backups

When VC sees that the CVS repository for a file is on a remote machine, it automatically
makes local backups of unmodified versions of the file—automatic version backups. This
means that you can compare the file to the repository version (C-x v =), or revert to that
version (C-x v u), without any network interactions.

The local copy of the unmodified file is called a version backup to indicate that it
corresponds exactly to a version that is stored in the repository. Note that version backups
are not the same as ordinary Emacs backup files (see Section 14.3.1 [Backup], page 114).
But they follow a similar naming convention.

For a file that comes from a remote CVS repository, VC makes a version backup whenever
you save the first changes to the file, and removes it after you have committed your modified

134 GNU Emacs Manual

version to the repository. You can disable the making of automatic version backups by
setting vc-cvs-stay-local to nil (see Section 14.7.10.3 [CVS Options], page 141).

The name of the automatic version backup for version version of file file is file.~version.~.
This is almost the same as the name used by C-x v ~ (see Section 14.7.4 [Old Versions],
page 126), the only difference being the additional dot (‘.’) after the version number. This
similarity is intentional, because both kinds of files store the same kind of information. The
file made by C-x v ~ acts as a manual version backup.

All the VC commands that operate on old versions of a file can use both kinds of version
backups. For instance, C-x v ~ uses either an automatic or a manual version backup, if
possible, to get the contents of the version you request. Likewise, C-x v = and C-x v u use
either an automatic or a manual version backup, if one of them exists, to get the contents of a
version to compare or revert to. If you changed a file outside of Emacs, so that no automatic
version backup was created for the previous text, you can create a manual backup of that
version using C-x v ~, and thus obtain the benefit of the local copy for Emacs commands.

The only difference in Emacs’s handling of manual and automatic version backups, once
they exist, is that Emacs deletes automatic version backups when you commit to the repos-
itory. By contrast, manual version backups remain until you delete them.

14.7.7.2 Local Version Control

When you make many changes to a file that comes from a remote repository, it can
be convenient to have version control on your local machine as well. You can then record
intermediate versions, revert to a previous state, etc., before you actually commit your
changes to the remote server.

VC lets you do this by putting a file under a second, local version control system, so
that the file is effectively registered in two systems at the same time. For the description
here, we will assume that the remote system is CVS, and you use RCS locally, although the
mechanism works with any combination of version control systems (back ends).

To make it work with other back ends, you must make sure that the “more local” back
end comes before the “more remote” back end in the setting of vc-handled-backends (see
Section 14.7.10 [Customizing VC], page 139). By default, this variable is set up so that you
can use remote CVS and local RCS as described here.

To start using local RCS for a file that comes from a remote CVS server, you must
register the file in RCS, by typing C-u C-x v v rcs 〈RET〉. (In other words, use vc-next-
action with a prefix argument, and specify RCS as the back end.)

You can do this at any time; it does not matter whether you have already modified the
file with respect to the version in the CVS repository. If possible, VC tries to make the
RCS master start with the unmodified repository version, then checks in any local changes
as a new version. This works if you have not made any changes yet, or if the unmodified
repository version exists locally as a version backup (see Section 14.7.7.1 [Version Backups],
page 133). If the unmodified version is not available locally, the RCS master starts with
the modified version; the only drawback to this is that you cannot compare your changes
locally to what is stored in the repository.

The version number of the RCS master is derived from the current CVS version, starting
a branch from it. For example, if the current CVS version is 1.23, the local RCS branch

Chapter 14: File Handling 135

will be 1.23.1. Version 1.23 in the RCS master will be identical to version 1.23 under CVS;
your first changes are checked in as 1.23.1.1. (If the unmodified file is not available locally,
VC will check in the modified file twice, both as 1.23 and 1.23.1.1, to make the revision
numbers consistent.)

If you do not use locking under CVS (the default), locking is also disabled for RCS, so
that editing under RCS works exactly as under CVS.

When you are done with local editing, you can commit the final version back to the
CVS repository by typing C-u C-x v v cvs 〈RET〉. This initializes the log entry buffer (see
Section 14.7.3.4 [Log Buffer], page 126) to contain all the log entries you have recorded
in the RCS master; you can edit them as you wish, and then commit in CVS by typing
C-c C-c. If the commit is successful, VC removes the RCS master, so that the file is once
again registered under CVS only. (The RCS master is not actually deleted, just renamed
by appending ‘~’ to the name, so that you can refer to it later if you wish.)

While using local RCS, you can pick up recent changes from the CVS repository into
your local file, or commit some of your changes back to CVS, without terminating local
RCS version control. To do this, switch to the CVS back end temporarily, with the C-x v
b command:

C-x v b Switch to another back end that the current file is registered under (vc-switch-
backend).

C-u C-x v b backend 〈RET〉
Switch to backend for the current file.

C-x v b does not change the buffer contents, or any files; it only changes VC’s perspective
on how to handle the file. Any subsequent VC commands for that file will operate on the
back end that is currently selected.

If the current file is registered in more than one back end, typing C-x v b “cycles”
through all of these back ends. With a prefix argument, it asks for the back end to use in
the minibuffer.

Thus, if you are using local RCS, and you want to pick up some recent changes in the
file from remote CVS, first visit the file, then type C-x v b to switch to CVS, and finally
use C-x v m 〈RET〉 to merge the news (see Section 14.7.6.3 [Merging], page 132). You can
then switch back to RCS by typing C-x v b again, and continue to edit locally.

But if you do this, the revision numbers in the RCS master no longer correspond to
those of CVS. Technically, this is not a problem, but it can become difficult to keep track
of what is in the CVS repository and what is not. So we suggest that you return from time
to time to CVS-only operation, using C-u C-x v v cvs 〈RET〉.

14.7.8 Snapshots

A snapshot is a named set of file versions (one for each registered file) that you can treat
as a unit. One important kind of snapshot is a release, a (theoretically) stable version of
the system that is ready for distribution to users.

136 GNU Emacs Manual

14.7.8.1 Making and Using Snapshots

There are two basic commands for snapshots; one makes a snapshot with a given name,
the other retrieves a named snapshot.

C-x v s name 〈RET〉
Define the last saved versions of every registered file in or under the current
directory as a snapshot named name (vc-create-snapshot).

C-x v r name 〈RET〉
For all registered files at or below the current directory level, select whatever
versions correspond to the snapshot name (vc-retrieve-snapshot).
This command reports an error if any files are locked at or below the cur-
rent directory, without changing anything; this is to avoid overwriting work in
progress.

A snapshot uses a very small amount of resources—just enough to record the list of file
names and which version belongs to the snapshot. Thus, you need not hesitate to create
snapshots whenever they are useful.

You can give a snapshot name as an argument to C-x v = or C-x v ~ (see Section 14.7.4
[Old Versions], page 126). Thus, you can use it to compare a snapshot against the current
files, or two snapshots against each other, or a snapshot against a named version.

14.7.8.2 Snapshot Caveats

VC’s snapshot facilities are modeled on RCS’s named-configuration support. They use
RCS’s native facilities for this, so under VC snapshots made using RCS are visible even
when you bypass VC.

For SCCS, VC implements snapshots itself. The files it uses contain name/file/version-
number triples. These snapshots are visible only through VC.

A snapshot is a set of checked-in versions. So make sure that all the files are checked in
and not locked when you make a snapshot.

File renaming and deletion can create some difficulties with snapshots. This is not a
VC-specific problem, but a general design issue in version control systems that no one has
solved very well yet.

If you rename a registered file, you need to rename its master along with it (the command
vc-rename-file does this automatically). If you are using SCCS, you must also update the
records of the snapshot, to mention the file by its new name (vc-rename-file does this,
too). An old snapshot that refers to a master file that no longer exists under the recorded
name is invalid; VC can no longer retrieve it. It would be beyond the scope of this manual
to explain enough about RCS and SCCS to explain how to update the snapshots by hand.

Using vc-rename-file makes the snapshot remain valid for retrieval, but it does not
solve all problems. For example, some of the files in your program probably refer to others
by name. At the very least, the makefile probably mentions the file that you renamed. If
you retrieve an old snapshot, the renamed file is retrieved under its new name, which is not
the name that the makefile expects. So the program won’t really work as retrieved.

Chapter 14: File Handling 137

14.7.9 Miscellaneous Commands and Features of VC

This section explains the less-frequently-used features of VC.

14.7.9.1 Change Logs and VC

If you use RCS or CVS for a program and also maintain a change log file for it (see
Section 24.1 [Change Log], page 267), you can generate change log entries automatically
from the version control log entries:

C-x v a Visit the current directory’s change log file and, for registered files in that
directory, create new entries for versions checked in since the most recent entry
in the change log file. (vc-update-change-log).
This command works with RCS or CVS only, not with SCCS.

C-u C-x v a
As above, but only find entries for the current buffer’s file.

M-1 C-x v a
As above, but find entries for all the currently visited files that are maintained
with version control. This works only with RCS, and it puts all entries in the
log for the default directory, which may not be appropriate.

For example, suppose the first line of ‘ChangeLog’ is dated 1999-04-10, and that the
only check-in since then was by Nathaniel Bowditch to ‘rcs2log’ on 1999-05-22 with log
text ‘Ignore log messages that start with ‘#’.’. Then C-x v a visits ‘ChangeLog’ and
inserts text like this:

1999-05-22 Nathaniel Bowditch <nat@apn.org>

* rcs2log: Ignore log messages that start with ‘#’.

You can then edit the new change log entry further as you wish.
Some of the new change log entries may duplicate what’s already in ChangeLog. You

will have to remove these duplicates by hand.
Normally, the log entry for file ‘foo’ is displayed as ‘* foo: text of log entry’. The

‘:’ after ‘foo’ is omitted if the text of the log entry starts with ‘(functionname): ’. For
example, if the log entry for ‘vc.el’ is ‘(vc-do-command): Check call-process status.’,
then the text in ‘ChangeLog’ looks like this:

1999-05-06 Nathaniel Bowditch <nat@apn.org>

* vc.el (vc-do-command): Check call-process status.

When C-x v a adds several change log entries at once, it groups related log entries
together if they all are checked in by the same author at nearly the same time. If the log
entries for several such files all have the same text, it coalesces them into a single entry. For
example, suppose the most recent check-ins have the following log entries:
• For ‘vc.texinfo’: ‘Fix expansion typos.’
• For ‘vc.el’: ‘Don’t call expand-file-name.’
• For ‘vc-hooks.el’: ‘Don’t call expand-file-name.’
They appear like this in ‘ChangeLog’:

138 GNU Emacs Manual

1999-04-01 Nathaniel Bowditch <nat@apn.org>

* vc.texinfo: Fix expansion typos.

* vc.el, vc-hooks.el: Don’t call expand-file-name.

Normally, C-x v a separates log entries by a blank line, but you can mark several related
log entries to be clumped together (without an intervening blank line) by starting the text
of each related log entry with a label of the form ‘{clumpname} ’. The label itself is not
copied to ‘ChangeLog’. For example, suppose the log entries are:
• For ‘vc.texinfo’: ‘{expand} Fix expansion typos.’
• For ‘vc.el’: ‘{expand} Don’t call expand-file-name.’
• For ‘vc-hooks.el’: ‘{expand} Don’t call expand-file-name.’
Then the text in ‘ChangeLog’ looks like this:

1999-04-01 Nathaniel Bowditch <nat@apn.org>

* vc.texinfo: Fix expansion typos.
* vc.el, vc-hooks.el: Don’t call expand-file-name.

A log entry whose text begins with ‘#’ is not copied to ‘ChangeLog’. For example, if you
merely fix some misspellings in comments, you can log the change with an entry beginning
with ‘#’ to avoid putting such trivia into ‘ChangeLog’.

14.7.9.2 Renaming VC Work Files and Master Files

When you rename a registered file, you must also rename its master file correspondingly
to get proper results. Use vc-rename-file to rename the source file as you specify, and
rename its master file accordingly. It also updates any snapshots (see Section 14.7.8 [Snap-
shots], page 135) that mention the file, so that they use the new name; despite this, the
snapshot thus modified may not completely work (see Section 14.7.8.2 [Snapshot Caveats],
page 136).

You cannot use vc-rename-file on a file that is locked by someone else.

14.7.9.3 Inserting Version Control Headers

Sometimes it is convenient to put version identification strings directly into working files.
Certain special strings called version headers are replaced in each successive version by the
number of that version.

If you are using RCS, and version headers are present in your working files, Emacs can
use them to determine the current version and the locking state of the files. This is more
reliable than referring to the master files, which is done when there are no version headers.
Note that in a multi-branch environment, version headers are necessary to make VC behave
correctly (see Section 14.7.6.4 [Multi-User Branching], page 133).

Searching for version headers is controlled by the variable vc-consult-headers. If it is
non-nil (the default), Emacs searches for headers to determine the version number you are
editing. Setting it to nil disables this feature.

You can use the C-x v h command (vc-insert-headers) to insert a suitable header
string.

Chapter 14: File Handling 139

C-x v h Insert headers in a file for use with your version-control system.

The default header string is ‘Id’ for RCS and ‘%W%’ for SCCS. You can specify other
headers to insert by setting the variable vc-header-alist. Its value is a list of elements of
the form (program . string) where program is RCS or SCCS and string is the string to use.

Instead of a single string, you can specify a list of strings; then each string in the list is
inserted as a separate header on a line of its own.

It is often necessary to use “superfluous” backslashes when writing the strings that you
put in this variable. For instance, you might write "$Id\$" rather than "Id". The extra
backslash prevents the string constant from being interpreted as a header, if the Emacs Lisp
file containing it is maintained with version control.

Each header is inserted surrounded by tabs, inside comment delimiters, on a new line at
point. Normally the ordinary comment start and comment end strings of the current mode
are used, but for certain modes, there are special comment delimiters for this purpose; the
variable vc-comment-alist specifies them. Each element of this list has the form (mode
starter ender).

The variable vc-static-header-alist specifies further strings to add based on the
name of the buffer. Its value should be a list of elements of the form (regexp . format).
Whenever regexp matches the buffer name, format is inserted as part of the header. A
header line is inserted for each element that matches the buffer name, and for each string
specified by vc-header-alist. The header line is made by processing the string from
vc-header-alist with the format taken from the element. The default value for vc-
static-header-alist is as follows:

(("\\.c$" .
"\n#ifndef lint\nstatic char vcid[] = \"\%s\";\n\

#endif /* lint */\n"))

It specifies insertion of text of this form:

#ifndef lint
static char vcid[] = "string";
#endif /* lint */

Note that the text above starts with a blank line.
If you use more than one version header in a file, put them close together in the file. The

mechanism in revert-buffer that preserves markers may not handle markers positioned
between two version headers.

14.7.10 Customizing VC

The variable vc-handled-backends determines which version control systems VC should
handle. The default value is (RCS CVS SCCS), so it contains all three version systems that
are currently supported. If you want VC to ignore one or more of these systems, exclude
its name from the list.

The order of systems in the list is significant: when you visit a file registered in more than
one system (see Section 14.7.7.2 [Local Version Control], page 134), VC uses the system
that comes first in vc-handled-backends by default. The order is also significant when
you register a file for the first time, see Section 14.7.5.1 [Registering], page 128 for details.

140 GNU Emacs Manual

14.7.10.1 General Options

Emacs normally does not save backup files for source files that are maintained with
version control. If you want to make backup files even for files that use version control, set
the variable vc-make-backup-files to a non-nil value.

Normally the work file exists all the time, whether it is locked or not. If you set vc-
keep-workfiles to nil, then checking in a new version with C-x C-q deletes the work file;
but any attempt to visit the file with Emacs creates it again. (With CVS, work files are
always kept.)

Editing a version-controlled file through a symbolic link can be dangerous. It bypasses
the version control system—you can edit the file without locking it, and fail to check your
changes in. Also, your changes might overwrite those of another user. To protect against
this, VC checks each symbolic link that you visit, to see if it points to a file under version
control.

The variable vc-follow-symlinks controls what to do when a symbolic link points to
a version-controlled file. If it is nil, VC only displays a warning message. If it is t, VC
automatically follows the link, and visits the real file instead, telling you about this in the
echo area. If the value is ask (the default), VC asks you each time whether to follow the
link.

If vc-suppress-confirm is non-nil, then C-x C-q and C-x v i can save the current
buffer without asking, and C-x v u also operates without asking for confirmation. (This
variable does not affect C-x v c; that operation is so drastic that it should always ask for
confirmation.)

VC mode does much of its work by running the shell commands for RCS, CVS and
SCCS. If vc-command-messages is non-nil, VC displays messages to indicate which shell
commands it runs, and additional messages when the commands finish.

You can specify additional directories to search for version control programs by setting
the variable vc-path. These directories are searched before the usual search path. It is
rarely necessary to set this variable, because VC normally finds the proper files automati-
cally.

14.7.10.2 Options for RCS and SCCS

By default, RCS uses locking to coordinate the activities of several users, but there is a
mode called non-strict locking in which you can check-in changes without locking the file
first. Use ‘rcs -U’ to switch to non-strict locking for a particular file, see the rcs manual
page for details.

When deducing the version control state of an RCS file, VC first looks for an RCS version
header string in the file (see Section 14.7.9.3 [Version Headers], page 138). If there is no
header string, VC normally looks at the file permissions of the work file; this is fast. But
there might be situations when the file permissions cannot be trusted. In this case the
master file has to be consulted, which is rather expensive. Also the master file can only
tell you if there’s any lock on the file, but not whether your work file really contains that
locked version.

Chapter 14: File Handling 141

You can tell VC not to use version headers to determine the file status by setting vc-
consult-headers to nil. VC then always uses the file permissions (if it is supposed to
trust them), or else checks the master file.

You can specify the criterion for whether to trust the file permissions by setting the
variable vc-mistrust-permissions. Its value can be t (always mistrust the file permissions
and check the master file), nil (always trust the file permissions), or a function of one
argument which makes the decision. The argument is the directory name of the ‘RCS’
subdirectory. A non-nil value from the function says to mistrust the file permissions. If
you find that the file permissions of work files are changed erroneously, set vc-mistrust-
permissions to t. Then VC always checks the master file to determine the file’s status.

VC determines the version control state of files under SCCS much as with RCS. It does
not consider SCCS version headers, though. Thus, the variable vc-mistrust-permissions
affects SCCS use, but vc-consult-headers does not.

14.7.10.3 Options specific for CVS

By default, CVS does not use locking to coordinate the activities of several users; anyone
can change a work file at any time. However, there are ways to restrict this, resulting in
behavior that resembles locking.

For one thing, you can set the CVSREAD environment variable (the value you use makes
no difference). If this variable is defined, CVS makes your work files read-only by default.
In Emacs, you must type C-x C-q to make the file writable, so that editing works in fact
similar as if locking was used. Note however, that no actual locking is performed, so several
users can make their files writable at the same time. When setting CVSREAD for the first
time, make sure to check out all your modules anew, so that the file protections are set
correctly.

Another way to achieve something similar to locking is to use the watch feature of CVS.
If a file is being watched, CVS makes it read-only by default, and you must also use C-x
C-q in Emacs to make it writable. VC calls cvs edit to make the file writable, and CVS
takes care to notify other developers of the fact that you intend to change the file. See the
CVS documentation for details on using the watch feature.

When a file’s repository is on a remote machine, VC tries to keep network interactions to
a minimum. This is controlled by the variable vc-cvs-stay-local. If it is t (the default),
then VC uses only the entry in the local CVS subdirectory to determine the file’s state (and
possibly information returned by previous CVS commands). One consequence of this is that
when you have modified a file, and somebody else has already checked in other changes to
the file, you are not notified of it until you actually try to commit. (But you can try to pick
up any recent changes from the repository first, using C-x v m 〈RET〉, see Section 14.7.6.3
[Merging], page 132).

When vc-cvs-stay-local is t, VC also makes local version backups, so that simple diff
and revert operations are completely local (see Section 14.7.7.1 [Version Backups], page 133).

On the other hand, if you set vc-cvs-stay-local to nil, then VC queries the remote
repository before it decides what to do in vc-next-action (C-x v v), just as it does for
local repositories. It also does not make any version backups.

142 GNU Emacs Manual

You can also set vc-cvs-stay-local to a regular expression that is matched against
the repository host name; VC then stays local only for repositories from hosts that match
the pattern.

14.8 File Directories

The file system groups files into directories. A directory listing is a list of all the files
in a directory. Emacs provides commands to create and delete directories, and to make
directory listings in brief format (file names only) and verbose format (sizes, dates, and
authors included). There is also a directory browser called Dired; see Chapter 29 [Dired],
page 319.

C-x C-d dir-or-pattern 〈RET〉
Display a brief directory listing (list-directory).

C-u C-x C-d dir-or-pattern 〈RET〉
Display a verbose directory listing.

M-x make-directory 〈RET〉 dirname 〈RET〉
Create a new directory named dirname.

M-x delete-directory 〈RET〉 dirname 〈RET〉
Delete the directory named dirname. It must be empty, or you get an error.

The command to display a directory listing is C-x C-d (list-directory). It reads using
the minibuffer a file name which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,

C-x C-d /u2/emacs/etc 〈RET〉
lists all the files in directory ‘/u2/emacs/etc’. Here is an example of specifying a file name
pattern:

C-x C-d /u2/emacs/src/*.c 〈RET〉
Normally, C-x C-d displays a brief directory listing containing just file names. A numeric

argument (regardless of value) tells it to make a verbose listing including sizes, dates, and
owners (like ‘ls -l’).

The text of a directory listing is obtained by running ls in an inferior process. Two
Emacs variables control the switches passed to ls: list-directory-brief-switches is a
string giving the switches to use in brief listings ("-CF" by default), and list-directory-
verbose-switches is a string giving the switches to use in a verbose listing ("-l" by
default).

14.9 Comparing Files

The command M-x diff compares two files, displaying the differences in an Emacs buffer
named ‘*diff*’. It works by running the diff program, using options taken from the
variable diff-switches. The value of diff-switches should be a string; the default is
"-c" to specify a context diff.

The buffer ‘*diff*’ has Compilation mode as its major mode, so you can use C-x
‘ to visit successive changed locations in the two source files. You can also move to a

Chapter 14: File Handling 143

particular hunk of changes and type 〈RET〉 or C-c C-c, or click Mouse-2 on it, to move
to the corresponding source location. You can also use the other special commands of
Compilation mode: 〈SPC〉 and 〈DEL〉 for scrolling, and M-p and M-n for cursor motion. See
Section 23.1 [Compilation], page 255.

The command M-x diff-backup compares a specified file with its most recent backup.
If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of.

The command M-x compare-windows compares the text in the current window with
that in the next window. Comparison starts at point in each window, and each starting
position is pushed on the mark ring in its respective buffer. Then point moves forward in
each window, a character at a time, until a mismatch between the two windows is reached.
Then the command is finished. For more information about windows in Emacs, Chapter 16
[Windows], page 157.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, it ignores differences in case as well.

Differences between versions of files are often distributed as patches, which are the output
from diff or a version control system that uses diff. M-x diff-mode turns on Diff mode,
a major mode for viewing and editing patches, either as “unified diffs” or “context diffs.”

You can use M-x smerge-mode to turn on Smerge mode, a minor mode for editing output
from the diff3 program. This is typically the result of a failed merge from a version control
system “update” outside VC, due to conflicting changes to a file. Smerge mode provides
commands to resolve conflicts by selecting specific changes.

See also Section 24.3 [Emerge], page 276, and section “Top” in The Ediff Manual, for
convenient facilities for merging two similar files.

14.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one
file; they do not accept wildcard file names.

M-x view-file allows you to scan or read a file by sequential screenfuls. It reads a file
name argument using the minibuffer. After reading the file into an Emacs buffer, view-
file displays the beginning. You can then type 〈SPC〉 to scroll forward one windowful, or
〈DEL〉 to scroll backward. Various other commands are provided for moving around in the
file, but none for changing it; type ? while viewing for a list of them. They are mostly
the same as normal Emacs cursor motion commands. To exit from viewing, type q. The
commands for viewing are defined by a special major mode called View mode.

A related command, M-x view-buffer, views a buffer already present in Emacs. See
Section 15.3 [Misc Buffer], page 151.

M-x insert-file (also C-x i) inserts a copy of the contents of the specified file into the
current buffer at point, leaving point unchanged before the contents and the mark after
them.

M-x write-region is the inverse of M-x insert-file; it copies the contents of the region
into the specified file. M-x append-to-file adds the text of the region to the end of the
specified file. See Section 9.3 [Accumulating Text], page 72.

144 GNU Emacs Manual

M-x delete-file deletes the specified file, like the rm command in the shell. If you are
deleting many files in one directory, it may be more convenient to use Dired (see Chapter 29
[Dired], page 319).

M-x rename-file reads two file names old and new using the minibuffer, then renames
file old as new. If the file name new already exists, you must confirm with yes or renaming
is not done; this is because renaming causes the old meaning of the name new to be lost.
If old and new are on different file systems, the file old is copied and deleted.

The similar command M-x add-name-to-file is used to add an additional name to an
existing file without removing its old name. The new name is created as a “hard link” to
the existing file. The new name must belong on the same file system that the file is on. On
Windows, this command works only if the file resides in an NTFS file system. On MS-DOS,
it works by copying the file.

M-x copy-file reads the file old and writes a new file named new with the same con-
tents. Confirmation is required if a file named new already exists, because copying has the
consequence of overwriting the old contents of the file new.

M-x make-symbolic-link reads two file names target and linkname, then creates a sym-
bolic link named linkname, which points at target. The effect is that future attempts to
open file linkname will refer to whatever file is named target at the time the opening is
done, or will get an error if the name target is not in use at that time. This command does
not expand the argument target, so that it allows you to specify a relative name as the
target of the link.

Confirmation is required when creating the link if linkname is in use. Note that not all
systems support symbolic links; on systems that don’t support them, this command is not
defined.

14.11 Accessing Compressed Files

Emacs comes with a library that can automatically uncompress compressed files when
you visit them, and automatically recompress them if you alter them and save them. To
enable this feature, type the command M-x auto-compression-mode. You can enable it
permanently by customizing the option auto-compression-mode.

When automatic compression (which implies automatic uncompression as well) is en-
abled, Emacs recognizes compressed files by their file names. File names ending in ‘.gz’
indicate a file compressed with gzip. Other endings indicate other compression programs.

Automatic uncompression and compression apply to all the operations in which Emacs
uses the contents of a file. This includes visiting it, saving it, inserting its contents into a
buffer, loading it, and byte compiling it.

14.12 File Archives

A file whose name ends in ‘.tar’ is normally an archive made by the tar program.
Emacs views these files in a special mode called Tar mode which provides a Dired-like list
of the contents (see Chapter 29 [Dired], page 319). You can move around through the list
just as you would in Dired, and visit the subfiles contained in the archive. However, not all
Dired commands are available in Tar mode.

Chapter 14: File Handling 145

If you enable Auto Compression mode (see Section 14.11 [Compressed Files], page 144),
then Tar mode is used also for compressed archives—files with extensions ‘.tgz’, .tar.Z
and .tar.gz.

The keys e, f and 〈RET〉 all extract a component file into its own buffer. You can edit
it there and when you save the buffer the edited version will replace the version in the Tar
buffer. v extracts a file into a buffer in View mode. o extracts the file and displays it in
another window, so you could edit the file and operate on the archive simultaneously. d
marks a file for deletion when you later use x, and u unmarks a file, as in Dired. C copies a
file from the archive to disk and R renames a file. g reverts the buffer from the archive on
disk.

The keys M, G, and O change the file’s permission bits, group, and owner, respectively.
If your display supports colors and the mouse, moving the mouse pointer across a file

name highlights that file name, indicating that you can click on it. Clicking Mouse-2 on
the highlighted file name extracts the file into a buffer and displays that buffer.

Saving the Tar buffer writes a new version of the archive to disk with the changes you
made to the components.

You don’t need the tar program to use Tar mode—Emacs reads the archives directly.
However, accessing compressed archives requires the appropriate uncompression program.

A separate but similar Archive mode is used for archives produced by the programs arc,
jar, lzh, zip, and zoo, which have extensions corresponding to the program names.

The key bindings of Archive mode are similar to those in Tar mode, with the addition
of the m key which marks a file for subsequent operations, and M-〈DEL〉 which unmarks all
the marked files. Also, the a key toggles the display of detailed file information, for those
archive types where it won’t fit in a single line. Operations such as renaming a subfile, or
changing its mode or owner, are supported only for some of the archive formats.

Unlike Tar mode, Archive mode runs the archiving program to unpack and repack
archives. Details of the program names and their options can be set in the ‘Archive’
Customize group. However, you don’t need these programs to look at the archive table of
contents, only to extract or manipulate the subfiles in the archive.

14.13 Remote Files

You can refer to files on other machines using a special file name syntax:
/host:filename
/user@host:filename
/user@host#port:filename

When you do this, Emacs uses the FTP program to read and write files on the specified
host. It logs in through FTP using your user name or the name user. It may ask you for a
password from time to time; this is used for logging in on host. The form using port allows
you to access servers running on a non-default TCP port.

If you want to disable backups for remote files, set the variable ange-ftp-make-backup-
files to nil.

Normally, if you do not specify a user name in a remote file name, that means to use your
own user name. But if you set the variable ange-ftp-default-user to a string, that string
is used instead. (The Emacs package that implements FTP file access is called ange-ftp.)

146 GNU Emacs Manual

To visit files accessible by anonymous FTP, you use special user names ‘anonymous’
or ‘ftp’. Passwords for these user names are handled specially. The variable ange-ftp-
generate-anonymous-password controls what happens: if the value of this variable is a
string, then that string is used as the password; if non-nil (the default), then the value of
user-mail-address is used; if nil, the user is prompted for a password as normal.

Sometimes you may be unable to access files on a remote machine because a firewall in
between blocks the connection for security reasons. If you can log in on a gateway machine
from which the target files are accessible, and whose FTP server supports gatewaying
features, you can still use remote file names; all you have to do is specify the name of
the gateway machine by setting the variable ange-ftp-gateway-host, and set ange-ftp-
smart-gateway to t. Otherwise you may be able to make remote file names work, but the
procedure is complex. You can read the instructions by typing M-x finder-commentary
〈RET〉 ange-ftp 〈RET〉.

You can entirely turn off the FTP file name feature by removing the entries ange-ftp-
completion-hook-function and ange-ftp-hook-function from the variable file-name-
handler-alist. You can turn off the feature in individual cases by quoting the file name
with ‘/:’ (see Section 14.14 [Quoted File Names], page 146).

14.14 Quoted File Names

You can quote an absolute file name to prevent special characters and syntax in it from
having their special effects. The way to do this is to add ‘/:’ at the beginning.

For example, you can quote a local file name which appears remote, to prevent it from
being treated as a remote file name. Thus, if you have a directory named ‘/foo:’ and a file
named ‘bar’ in it, you can refer to that file in Emacs as ‘/:/foo:/bar’.

‘/:’ can also prevent ‘~’ from being treated as a special character for a user’s home
directory. For example, ‘/:/tmp/~hack’ refers to a file whose name is ‘~hack’ in directory
‘/tmp’.

Likewise, quoting with ‘/:’ is one way to enter in the minibuffer a file name that contains
‘$’. However, the ‘/:’ must be at the beginning of the minibuffer in order to quote ‘$’.

You can also quote wildcard characters with ‘/:’, for visiting. For example,
‘/:/tmp/foo*bar’ visits the file ‘/tmp/foo*bar’. However, in most cases you can simply
type the wildcard characters for themselves. For example, if the only file name in ‘/tmp’
that starts with ‘foo’ and ends with ‘bar’ is ‘foo*bar’, then specifying ‘/tmp/foo*bar’
will visit just ‘/tmp/foo*bar’. Another way is to specify ‘/tmp/foo[*]bar’.

14.15 File Name Cache

You can use the file name cache to make it easy to locate a file by name, without having
to remember exactly where it is located. When typing a file name in the minibuffer, C-〈tab〉
(file-cache-minibuffer-complete) completes it using the file name cache. If you repeat
C-〈tab〉, that cycles through the possible completions of what you had originally typed. Note
that the C-〈tab〉 character cannot be typed on most text-only terminals.

The file name cache does not fill up automatically. Instead, you load file names into the
cache using these commands:

Chapter 14: File Handling 147

M-x file-cache-add-directory 〈RET〉 directory 〈RET〉
Add each file name in directory to the file name cache.

M-x file-cache-add-directory-using-find 〈RET〉 directory 〈RET〉
Add each file name in directory and all of its nested subdirectories to the file
name cache.

M-x file-cache-add-directory-using-locate 〈RET〉 directory 〈RET〉
Add each file name in directory and all of its nested subdirectories to the file
name cache, using locate to find them all.

M-x file-cache-add-directory-list 〈RET〉 variable 〈RET〉
Add each file name in each directory listed in variable to the file name cache.
variable should be a Lisp variable such as load-path or exec-path, whose
value is a list of directory names.

M-x file-cache-clear-cache 〈RET〉
Clear the cache; that is, remove all file names from it.

14.16 Convenience Features for Finding Files

If you enable Recentf mode, with M-x recentf-mode, the ‘File’ menu includes a sub-
menu containing a list of recently opened files. M-x recentf-save-list saves the current
recent-file-list to a file, and M-x recentf-edit-list edits it.

When Auto-image-file minor mode is enabled, visiting an image file displays it as an
image, not as text. Likewise, inserting an image file into a buffer inserts it as an image. This
works only when Emacs can display the relevant image type. The variables image-file-
name-extensions or image-file-name-regexps control which file names are recognized
as containing images.

The M-x ffap command generalizes find-file with more powerful heuristic defaults
(see Section 31.15.3 [FFAP], page 372), often based on the text at point. Partial Comple-
tion mode offers other features extending find-file, which can be used with ffap. See
Section 5.3.4 [Completion Options], page 47.

148 GNU Emacs Manual

Chapter 15: Using Multiple Buffers 149

15 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer. Each time
you visit a file, a buffer is created to hold the file’s text. Each time you invoke Dired, a
buffer is created to hold the directory listing. If you send a message with C-x m, a buffer
named ‘*mail*’ is used to hold the text of the message. When you ask for a command’s
documentation, that appears in a buffer called ‘*Help*’.

At any time, one and only one buffer is current. It is also called the selected buffer.
Often we say that a command operates on “the buffer” as if there were only one; but really
this means that the command operates on the current buffer (most commands do).

When Emacs has multiple windows, each window has its own chosen buffer and displays
it; at any time, only one of the windows is selected, and its chosen buffer is the current
buffer. Each window’s mode line normally displays the name of the window’s chosen buffer
(see Chapter 16 [Windows], page 157).

Each buffer has a name, which can be of any length, and you can select any buffer by
giving its name. Most buffers are made by visiting files, and their names are derived from
the files’ names. But you can also create an empty buffer with any name you want. A
newly started Emacs has a buffer named ‘*scratch*’ which can be used for evaluating
Lisp expressions in Emacs. The distinction between upper and lower case matters in buffer
names.

Each buffer records individually what file it is visiting, whether it is modified, and what
major mode and minor modes are in effect in it (see Chapter 19 [Major Modes], page 193).
Any Emacs variable can be made local to a particular buffer, meaning its value in that
buffer can be different from the value in other buffers. See Section 32.2.4 [Locals], page 387.

A buffer’s size cannot be larger than some maximum, which is defined by the largest
buffer position representable by the Emacs integer data type. This is because Emacs tracks
buffer positions using that data type. For 32-bit machines, the largest buffer size is 128
megabytes.

15.1 Creating and Selecting Buffers

C-x b buffer 〈RET〉
Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer 〈RET〉
Similar, but select buffer in another window (switch-to-buffer-other-
window).

C-x 5 b buffer 〈RET〉
Similar, but select buffer in a separate frame (switch-to-buffer-other-
frame).

To select the buffer named bufname, type C-x b bufname 〈RET〉. This runs the command
switch-to-buffer with argument bufname. You can use completion on an abbreviation
for the buffer name you want (see Section 5.3 [Completion], page 45). An empty argument
to C-x b specifies the buffer that was current most recently among those not now displayed
in any window.

150 GNU Emacs Manual

To select a buffer in a window other than the current one, type C-x 4 b bufname 〈RET〉.
This runs the command switch-to-buffer-other-window which displays the buffer buf-
name in another window. By default, if displaying the buffer causes two vertically adjacent
windows to be displayed, the heights of those windows are evened out; to countermand that
and preserve the window configuration, set the variable even-window-heights to nil.

Similarly, C-x 5 b buffer 〈RET〉 runs the command switch-to-buffer-other-frame
which selects a buffer in another frame.

You can control how certain buffers are handled by these commands by customizing the
variables special-display-buffer-names, special-display-regexps, same-window-
buffer-names, and same-window-regexps. See Section 16.5 [Force Same Window],
page 160, and Section 17.11 [Special Buffer Frames], page 169, for more about these
variables. In addition, if the value of display-buffer-reuse-frames is non-nil, and the
buffer you want to switch to is already displayed in some frame, Emacs will raise that
frame.

Most buffers are created by visiting files, or by Emacs commands that want to display
some text, but you can also create a buffer explicitly by typing C-x b bufname 〈RET〉. This
makes a new, empty buffer that is not visiting any file, and selects it for editing. Such buffers
are used for making notes to yourself. If you try to save one, you are asked for the file name
to use. The new buffer’s major mode is determined by the value of default-major-mode
(see Chapter 19 [Major Modes], page 193).

Note that C-x C-f, and any other command for visiting a file, can also be used to switch
to an existing file-visiting buffer. See Section 14.2 [Visiting], page 110.

Emacs uses buffer names that start with a space for internal purposes. It treats these
buffers specially in minor ways—for example, by default they do not record undo informa-
tion. It is best to avoid using such buffer names yourself.

15.2 Listing Existing Buffers

C-x C-b List the existing buffers (list-buffers).

To display a list of all the buffers that exist, type C-x C-b. Each line in the list shows
one buffer’s name, major mode and visited file. The buffers are listed in the order that they
were current; the buffers that were current most recently come first.

‘*’ at the beginning of a line indicates the buffer is “modified.” If several buffers are
modified, it may be time to save some with C-x s (see Section 14.3 [Saving], page 113). ‘%’
indicates a read-only buffer. ‘.’ marks the current buffer. Here is an example of a buffer
list:

MR Buffer Size Mode File
-- ------ ---- ---- ----
.* emacs.tex 383402 Texinfo /u2/emacs/man/emacs.tex

Help 1287 Fundamental
files.el 23076 Emacs-Lisp /u2/emacs/lisp/files.el

% RMAIL 64042 RMAIL /u/rms/RMAIL
*% man 747 Dired /u2/emacs/man/

net.emacs 343885 Fundamental /u/rms/net.emacs
fileio.c 27691 C /u2/emacs/src/fileio.c

Chapter 15: Using Multiple Buffers 151

NEWS 67340 Text /u2/emacs/etc/NEWS
scratch 0 Lisp Interaction

Note that the buffer ‘*Help*’ was made by a help request; it is not visiting any file. The
buffer man was made by Dired on the directory ‘/u2/emacs/man/’. You can list only buffers
that are visiting files by giving the command a prefix; for instance, by typing C-u C-x C-b.

15.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (vc-toggle-read-only).

M-x rename-buffer 〈RET〉 name 〈RET〉
Change the name of the current buffer.

M-x rename-uniquely
Rename the current buffer by adding ‘<number>’ to the end.

M-x view-buffer 〈RET〉 buffer 〈RET〉
Scroll through buffer buffer.

A buffer can be read-only, which means that commands to change its contents are not
allowed. The mode line indicates read-only buffers with ‘%%’ or ‘%*’ near the left margin.
Read-only buffers are usually made by subsystems such as Dired and Rmail that have
special commands to operate on the text; also by visiting a file whose access control says
you cannot write it.

If you wish to make changes in a read-only buffer, use the command C-x C-q (vc-
toggle-read-only). It makes a read-only buffer writable, and makes a writable buffer
read-only. In most cases, this works by setting the variable buffer-read-only, which has
a local value in each buffer and makes the buffer read-only if its value is non-nil. If the
file is maintained with version control, C-x C-q works through the version control system
to change the read-only status of the file as well as the buffer. See Section 14.7 [Version
Control], page 122.

M-x rename-buffer changes the name of the current buffer. Specify the new name as
a minibuffer argument. There is no default. If you specify a name that is in use for some
other buffer, an error happens and no renaming is done.

M-x rename-uniquely renames the current buffer to a similar name with a numeric suffix
added to make it both different and unique. This command does not need an argument.
It is useful for creating multiple shell buffers: if you rename the ‘*Shell*’ buffer, then do
M-x shell again, it makes a new shell buffer named ‘*Shell*’; meanwhile, the old shell
buffer continues to exist under its new name. This method is also good for mail buffers,
compilation buffers, and most Emacs features that create special buffers with particular
names.

M-x view-buffer is much like M-x view-file (see Section 14.10 [Misc File Ops],
page 143) except that it examines an already existing Emacs buffer. View mode provides
commands for scrolling through the buffer conveniently but not for changing it. When
you exit View mode with q, that switches back to the buffer (and the position) which
was previously displayed in the window. Alternatively, if you exit View mode with e, the
buffer and the value of point that resulted from your perusal remain in effect.

152 GNU Emacs Manual

The commands M-x append-to-buffer and M-x insert-buffer can be used to copy
text from one buffer to another. See Section 9.3 [Accumulating Text], page 72.

15.4 Killing Buffers

If you continue an Emacs session for a while, you may accumulate a large number of
buffers. You may then find it convenient to kill the buffers you no longer need. On most
operating systems, killing a buffer releases its space back to the operating system so that
other programs can use it. Here are some commands for killing buffers:

C-x k bufname 〈RET〉
Kill buffer bufname (kill-buffer).

M-x kill-some-buffers
Offer to kill each buffer, one by one.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. The
default, used if you type just 〈RET〉 in the minibuffer, is to kill the current buffer. If you
kill the current buffer, another buffer becomes current: one that was current in the recent
past but is not displayed in any window now. If you ask to kill a file-visiting buffer that is
modified (has unsaved editing), then you must confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of y means to kill the buffer. Killing the current buffer or a buffer containing unsaved
changes selects a new buffer or asks for confirmation just like kill-buffer.

The buffer menu feature (see Section 15.5 [Several Buffers], page 152) is also convenient
for killing various buffers.

If you want to do something special every time a buffer is killed, you can add hook
functions to the hook kill-buffer-hook (see Section 32.2.3 [Hooks], page 386).

If you run one Emacs session for a period of days, as many people do, it can fill up
with buffers that you used several days ago. The command M-x clean-buffer-list is a
convenient way to purge them; it kills all the unmodified buffers that you have not used for
a long time. An ordinary buffer is killed if it has not been displayed for three days; however,
you can specify certain buffers that should never be killed automatically, and others that
should be killed if they have been unused for a mere hour.

You can also have this buffer purging done for you, every day at midnight, by enabling
Midnight mode. Midnight mode operates each day at midnight; at that time, it runs clean-
buffer-list, or whichever functions you have placed in the normal hook midnight-hook
(see Section 32.2.3 [Hooks], page 386).

To enable Midnight mode, use the Customization buffer to set the variable midnight-
mode to t. See Section 32.2.2 [Easy Customization], page 380.

15.5 Operating on Several Buffers

The buffer-menu facility is like a “Dired for buffers”; it allows you to request operations
on various Emacs buffers by editing an Emacs buffer containing a list of them. You can
save buffers, kill them (here called deleting them, for consistency with Dired), or display
them.

Chapter 15: Using Multiple Buffers 153

M-x buffer-menu
Begin editing a buffer listing all Emacs buffers.

The command buffer-menu writes a list of all Emacs buffers into the buffer ‘*Buffer
List*’, and selects that buffer in Buffer Menu mode. The buffer is read-only, and can be
changed only through the special commands described in this section. The usual Emacs cur-
sor motion commands can be used in the ‘*Buffer List*’ buffer. The following commands
apply to the buffer described on the current line.

d Request to delete (kill) the buffer, then move down. The request shows as a ‘D’
on the line, before the buffer name. Requested deletions take place when you
type the x command.

C-d Like d but move up afterwards instead of down.

s Request to save the buffer. The request shows as an ‘S’ on the line. Requested
saves take place when you type the x command. You may request both saving
and deletion for the same buffer.

x Perform previously requested deletions and saves.

u Remove any request made for the current line, and move down.

〈DEL〉 Move to previous line and remove any request made for that line.

The d, C-d, s and u commands to add or remove flags also move down (or up) one line.
They accept a numeric argument as a repeat count.

These commands operate immediately on the buffer listed on the current line:

~ Mark the buffer “unmodified.” The command ~ does this immediately when
you type it.

% Toggle the buffer’s read-only flag. The command % does this immediately when
you type it.

t Visit the buffer as a tags table. See Section 24.2.4 [Select Tags Table], page 273.

There are also commands to select another buffer or buffers:

q Quit the buffer menu—immediately display the most recent formerly visible
buffer in its place.

〈RET〉
f Immediately select this line’s buffer in place of the ‘*Buffer List*’ buffer.

o Immediately select this line’s buffer in another window as if by C-x 4 b, leaving
‘*Buffer List*’ visible.

C-o Immediately display this line’s buffer in another window, but don’t select the
window.

1 Immediately select this line’s buffer in a full-screen window.

2 Immediately set up two windows, with this line’s buffer in one, and the previ-
ously current buffer (aside from the buffer ‘*Buffer List*’) in the other.

b Bury the buffer listed on this line.

154 GNU Emacs Manual

m Mark this line’s buffer to be displayed in another window if you exit with the
v command. The request shows as a ‘>’ at the beginning of the line. (A single
buffer may not have both a delete request and a display request.)

v Immediately select this line’s buffer, and also display in other windows any
buffers previously marked with the m command. If you have not marked any
buffers, this command is equivalent to 1.

All that buffer-menu does directly is create and switch to a suitable buffer, and turn
on Buffer Menu mode. Everything else described above is implemented by the special
commands provided in Buffer Menu mode. One consequence of this is that you can switch
from the ‘*Buffer List*’ buffer to another Emacs buffer, and edit there. You can reselect
the ‘*Buffer List*’ buffer later, to perform the operations already requested, or you can
kill it, or pay no further attention to it.

The only difference between buffer-menu and list-buffers is that buffer-menu
switches to the ‘*Buffer List*’ buffer in the selected window; list-buffers displays it
in another window. If you run list-buffers (that is, type C-x C-b) and select the buffer
list manually, you can use all of the commands described here.

The buffer ‘*Buffer List*’ is not updated automatically when buffers are created and
killed; its contents are just text. If you have created, deleted or renamed buffers, the way
to update ‘*Buffer List*’ to show what you have done is to type g (revert-buffer) or
repeat the buffer-menu command.

15.6 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of
the indirect buffer. In some ways it is the analogue, for buffers, of a symbolic link between
files.

M-x make-indirect-buffer 〈RET〉 base-buffer 〈RET〉 indirect-name 〈RET〉
Create an indirect buffer named indirect-name whose base buffer is base-buffer.

M-x clone-indirect-buffer 〈RET〉
Create an indirect buffer that is a twin copy of the current buffer.

C-x 4 c Create an indirect buffer that is a twin copy of the current buffer, and select it
in another window (clone-indirect-buffer-other-window).

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. But in all other respects,
the indirect buffer and its base buffer are completely separate. They have different names,
different values of point, different narrowing, different markers, different major modes, and
different local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect
buffer, that actually works by saving the base buffer. Killing the base buffer effectively kills
the indirect buffer, but killing an indirect buffer has no effect on its base buffer.

One way to use indirect buffers is to display multiple views of an outline. See Sec-
tion 21.8.4 [Outline Views], page 212.

Chapter 15: Using Multiple Buffers 155

A quick and handy way to make an indirect buffer is with the command M-x
clone-indirect-buffer. It creates and selects an indirect buffer whose base buffer is
the current buffer. With a numeric argument, it prompts for the name of the indirect
buffer; otherwise it defaults to the name of the current buffer, modifying it by adding a
‘<n>’ prefix if required. C-x 4 c (clone-indirect-buffer-other-window) works like
M-x clone-indirect-buffer, but it selects the cloned buffer in another window. These
commands come in handy if you want to create new ‘*info*’ or ‘*Help*’ buffers, for
example.

The more general way is with the command M-x make-indirect-buffer. It creates an
indirect buffer from buffer base-buffer, under the name indirect-name. It prompts for both
base-buffer and indirect-name using the minibuffer.

15.7 Convenience Features and Customization of Buffer
Handling

This section describes several modes and features that make it more convenient to switch
between buffers.

15.7.1 Making Buffer Names Unique

When several buffers visit identically-named files, Emacs must give the buffers distinct
names. The usual method for making buffer names unique adds ‘<2>’, ‘<3>’, etc. to the
end of the buffer names (all but one of them).

Other methods work by adding parts of each file’s directory to the buffer name. To
select one, customize the variable uniquify-buffer-name-style (see Section 32.2.2 [Easy
Customization], page 380).

For instance, the forward naming method puts part of the directory name at the be-
ginning of the buffer name; using this method, buffers visiting ‘/u/mernst/tmp/Makefile’
and ‘/usr/projects/zaphod/Makefile’ would be named ‘tmp/Makefile’ and
‘zaphod/Makefile’, respectively (instead of ‘Makefile’ and ‘Makefile<2>’).

By contrast, the post-forward naming method would call the buffers ‘Makefile|tmp’
and ‘Makefile|zaphod’, and the reverse naming method would call them ‘Makefile\tmp’
and ‘Makefile\zaphod’. The nontrivial difference between post-forward and reverse
occurs when just one directory name is not enough to distinguish two files; then
reverse puts the directory names in reverse order, so that ‘/top/middle/file’ becomes
‘file\middle\top’, while post-forward puts them in forward order after the file name,
as in ‘file|top/middle’.

Which rule to follow for putting the directory names in the buffer name is not very
important if you are going to look at the buffer names before you type one. But as an
experienced user, if you know the rule, you won’t have to look. And then you may find that
one rule or another is easier for you to remember and utilize fast.

15.7.2 Switching Between Buffers using Substrings

Iswitchb global minor mode provides convenient switching between buffers using sub-
strings of their names. It replaces the normal definitions of C-x b, C-x 4 b, C-x 5 b, and
C-x 4 C-o with alternative commands that are somewhat “smarter.”

156 GNU Emacs Manual

When one of these commands prompts you for a buffer name, you can type in just a
substring of the name you want to choose. As you enter the substring, Iswitchb mode
continuously displays a list of buffers that match the substring you have typed.

At any time, you can type 〈RET〉 to select the first buffer in the list. So the way to select
a particular buffer is to make it the first in the list. There are two ways to do this. You can
type more of the buffer name and thus narrow down the list, excluding unwanted buffers
above the desired one. Alternatively, you can use C-s and C-r to rotate the list until the
desired buffer is first.

〈TAB〉 while entering the buffer name performs completion on the string you have entered,
based on the displayed list of buffers.

To enable Iswitchb mode, type M-x iswitchb-mode, or customize the variable iswitchb-
mode to t (see Section 32.2.2 [Easy Customization], page 380).

15.7.3 Customizing Buffer Menus

M-x bs-show
Make a list of buffers similarly to M-x list-buffers but customizable.

M-x bs-show pops up a buffer list similar to the one normally displayed by C-x C-b
but which you can customize. If you prefer this to the usual buffer list, you can bind
this command to C-x C-b. To customize this buffer list, use the bs Custom group (see
Section 32.2.2 [Easy Customization], page 380).

MSB global minor mode (“MSB” stands for “mouse select buffer”) provides a different
and customizable mouse buffer menu which you may prefer. It replaces the bindings of
mouse-buffer-menu, normally on C-Down-Mouse-1, and the menu bar buffer menu. You
can customize the menu in the msb Custom group.

Chapter 16: Multiple Windows 157

16 Multiple Windows

Emacs can split a frame into two or many windows. Multiple windows can display parts
of different buffers, or different parts of one buffer. Multiple frames always imply multiple
windows, because each frame has its own set of windows. Each window belongs to one and
only one frame.

16.1 Concepts of Emacs Windows

Each Emacs window displays one Emacs buffer at any time. A single buffer may appear
in more than one window; if it does, any changes in its text are displayed in all the windows
where it appears. But the windows showing the same buffer can show different parts of it,
because each window has its own value of point.

At any time, one of the windows is the selected window; the buffer this window is
displaying is the current buffer. The terminal’s cursor shows the location of point in this
window. Each other window has a location of point as well, but since the terminal has only
one cursor there is no way to show where those locations are. When multiple frames are
visible in X, each frame has a cursor which appears in the frame’s selected window. The
cursor in the selected frame is solid; the cursor in other frames is a hollow box.

Commands to move point affect the value of point for the selected Emacs window only.
They do not change the value of point in any other Emacs window, even one showing the
same buffer. The same is true for commands such as C-x b to change the current buffer
in the selected window; they do not affect other windows at all. However, there are other
commands such as C-x 4 b that select a different window and switch buffers in it. Also, all
commands that display information in a window, including (for example) C-h f (describe-
function) and C-x C-b (list-buffers), work by switching buffers in a nonselected window
without affecting the selected window.

When multiple windows show the same buffer, they can have different regions, because
they can have different values of point. However, they all have the same value for the mark,
because each buffer has only one mark position.

Each window has its own mode line, which displays the buffer name, modification status
and major and minor modes of the buffer that is displayed in the window. See Section 1.3
[Mode Line], page 23, for full details on the mode line.

158 GNU Emacs Manual

16.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-
window-vertically).

C-x 3 Split the selected window into two windows positioned side by side (split-
window-horizontally).

C-Mouse-2
In the mode line or scroll bar of a window, split that window.

The command C-x 2 (split-window-vertically) breaks the selected window into two
windows, one above the other. Both windows start out displaying the same buffer, with the
same value of point. By default the two windows each get half the height of the window
that was split; a numeric argument specifies how many lines to give to the top window.

C-x 3 (split-window-horizontally) breaks the selected window into two side-by-side
windows. A numeric argument specifies how many columns to give the one on the left. A
line of vertical bars separates the two windows. Windows that are not the full width of
the screen have mode lines, but they are truncated. On terminals where Emacs does not
support highlighting, truncated mode lines sometimes do not appear in inverse video.

You can split a window horizontally or vertically by clicking C-Mouse-2 in the mode
line or the scroll bar. (This does not work in scroll bars implemented by X toolkits.) The
line of splitting goes through the place where you click: if you click on the mode line, the
new scroll bar goes above the spot; if you click in the scroll bar, the mode line of the split
window is side by side with your click.

When a window is less than the full width, text lines too long to fit are frequent. Contin-
uing all those lines might be confusing. The variable truncate-partial-width-windows
can be set non-nil to force truncation in all windows less than the full width of the screen,
independent of the buffer being displayed and its value for truncate-lines. See Section 4.8
[Continuation Lines], page 39.

Horizontal scrolling is often used in side-by-side windows. See Chapter 11 [Display],
page 79.

If split-window-keep-point is non-nil, the default, both of the windows resulting
from C-x 2 inherit the value of point from the window that was split. This means that
scrolling is inevitable. If this variable is nil, then C-x 2 tries to avoid scrolling the text
currently visible on the screen, by putting point in each window at a position already visible
in the window. It also selects whichever window contain the screen line that the cursor was
previously on. Some users prefer the latter mode on slow terminals.

16.3 Using Other Windows

C-x o Select another window (other-window). That is o, not zero.

C-M-v Scroll the next window (scroll-other-window).

M-x compare-windows
Find next place where the text in the selected window does not match the text
in the next window.

Chapter 16: Multiple Windows 159

Mouse-1 Mouse-1, in a window’s mode line, selects that window but does not move point
in it (mouse-select-window).

To select a different window, click with Mouse-1 on its mode line. With the keyboard,
you can switch windows by typing C-x o (other-window). That is an o, for “other,” not
a zero. When there are more than two windows, this command moves through all the
windows in a cyclic order, generally top to bottom and left to right. After the rightmost
and bottommost window, it goes back to the one at the upper left corner. A numeric
argument means to move several steps in the cyclic order of windows. A negative argument
moves around the cycle in the opposite order. When the minibuffer is active, the minibuffer
is the last window in the cycle; you can switch from the minibuffer window to one of the
other windows, and later switch back and finish supplying the minibuffer argument that is
requested. See Section 5.2 [Minibuffer Edit], page 44.

The usual scrolling commands (see Chapter 11 [Display], page 79) apply to the selected
window only, but there is one command to scroll the next window. C-M-v (scroll-other-
window) scrolls the window that C-x o would select. It takes arguments, positive and
negative, like C-v. (In the minibuffer, C-M-v scrolls the window that contains the minibuffer
help display, if any, rather than the next window in the standard cyclic order.)

The command M-x compare-windows lets you compare two files or buffers visible in two
windows, by moving through them to the next mismatch. See Section 14.9 [Comparing
Files], page 142, for details.

16.4 Displaying in Another Window

C-x 4 is a prefix key for commands that select another window (splitting the window
if there is only one) and select a buffer in that window. Different C-x 4 commands have
different ways of finding the buffer to select.

C-x 4 b bufname 〈RET〉
Select buffer bufname in another window. This runs switch-to-buffer-
other-window.

C-x 4 C-o bufname 〈RET〉
Display buffer bufname in another window, but don’t select that buffer or that
window. This runs display-buffer.

C-x 4 f filename 〈RET〉
Visit file filename and select its buffer in another window. This runs find-
file-other-window. See Section 14.2 [Visiting], page 110.

C-x 4 d directory 〈RET〉
Select a Dired buffer for directory directory in another window. This runs
dired-other-window. See Chapter 29 [Dired], page 319.

C-x 4 m Start composing a mail message in another window. This runs mail-other-
window; its same-window analogue is C-x m (see Chapter 27 [Sending Mail],
page 293).

C-x 4 . Find a tag in the current tags table, in another window. This runs find-tag-
other-window, the multiple-window variant of M-. (see Section 24.2 [Tags],
page 268).

160 GNU Emacs Manual

C-x 4 r filename 〈RET〉
Visit file filename read-only, and select its buffer in another window. This runs
find-file-read-only-other-window. See Section 14.2 [Visiting], page 110.

16.5 Forcing Display in the Same Window

Certain Emacs commands switch to a specific buffer with special contents. For example,
M-x shell switches to a buffer named ‘*Shell*’. By convention, all these commands are
written to pop up the buffer in a separate window. But you can specify that certain of
these buffers should appear in the selected window.

If you add a buffer name to the list same-window-buffer-names, the effect is that such
commands display that particular buffer by switching to it in the selected window. For
example, if you add the element "*grep*" to the list, the grep command will display its
output buffer in the selected window.

The default value of same-window-buffer-names is not nil: it specifies buffer names
‘*info*’, ‘*mail*’ and ‘*shell*’ (as well as others used by more obscure Emacs packages).
This is why M-x shell normally switches to the ‘*shell*’ buffer in the selected window. If
you delete this element from the value of same-window-buffer-names, the behavior of M-x
shell will change—it will pop up the buffer in another window instead.

You can specify these buffers more generally with the variable same-window-regexps.
Set it to a list of regular expressions; then any buffer whose name matches one of those
regular expressions is displayed by switching to it in the selected window. (Once again,
this applies only to buffers that normally get displayed for you in a separate window.) The
default value of this variable specifies Telnet and rlogin buffers.

An analogous feature lets you specify buffers which should be displayed in their own
individual frames. See Section 17.11 [Special Buffer Frames], page 169.

16.6 Deleting and Rearranging Windows

C-x 0 Delete the selected window (delete-window). The last character in this key
sequence is a zero.

C-x 1 Delete all windows in the selected frame except the selected window (delete-
other-windows).

C-x 4 0 Delete the selected window and kill the buffer that was showing in it (kill-
buffer-and-window). The last character in this key sequence is a zero.

C-x ^ Make selected window taller (enlarge-window).

C-x } Make selected window wider (enlarge-window-horizontally).

C-x { Make selected window narrower (shrink-window-horizontally).

C-x - Shrink this window if its buffer doesn’t need so many lines (shrink-window-
if-larger-than-buffer).

C-x + Make all windows the same height (balance-windows).

Chapter 16: Multiple Windows 161

Drag-Mouse-1
Dragging a window’s mode line up or down with Mouse-1 changes window
heights.

Mouse-2 Mouse-2 in a window’s mode line deletes all other windows in the frame (mouse-
delete-other-windows).

Mouse-3 Mouse-3 in a window’s mode line deletes that window (mouse-delete-window),
unless the frame has only one window, in which case it buries the current buffer
instead and switches to another buffer.

To delete a window, type C-x 0 (delete-window). (That is a zero.) The space occupied
by the deleted window is given to an adjacent window (but not the minibuffer window,
even if that is active at the time). Once a window is deleted, its attributes are forgotten;
only restoring a window configuration can bring it back. Deleting the window has no effect
on the buffer it used to display; the buffer continues to exist, and you can select it in any
window with C-x b.

C-x 4 0 (kill-buffer-and-window) is a stronger command than C-x 0; it kills the cur-
rent buffer and then deletes the selected window.

C-x 1 (delete-other-windows) is more powerful in a different way; it deletes all the
windows except the selected one (and the minibuffer); the selected window expands to use
the whole frame except for the echo area.

You can also delete a window by clicking on its mode line with Mouse-2, and delete all
the windows in a frame except one window by clicking on that window’s mode line with
Mouse-3.

The easiest way to adjust window heights is with a mouse. If you press Mouse-1 on a
mode line, you can drag that mode line up or down, changing the heights of the windows
above and below it.

To readjust the division of space among vertically adjacent windows, use C-x ^
(enlarge-window). It makes the currently selected window get one line bigger, or as
many lines as is specified with a numeric argument. With a negative argument, it makes
the selected window smaller. C-x } (enlarge-window-horizontally) makes the selected
window wider by the specified number of columns. C-x { (shrink-window-horizontally)
makes the selected window narrower by the specified number of columns.

When you make a window bigger, the space comes from one of its neighbors. If this
makes any window too small, it is deleted and its space is given to an adjacent window.
The minimum size is specified by the variables window-min-height and window-min-width.

The command C-x - (shrink-window-if-larger-than-buffer) reduces the height of
the selected window, if it is taller than necessary to show the whole text of the buffer it is
displaying. It gives the extra lines to other windows in the frame.

You can also use C-x + (balance-windows) to even out the heights of all the windows
in the selected frame.

16.7 Window Handling Convenience Features and
Customization

M-x winner-mode is a global minor mode that records the changes in the window config-
uration (i.e. how the frames are partitioned into windows), so that you can “undo” them.

162 GNU Emacs Manual

To undo, use C-x left (winner-undo). If you change your mind while undoing, you can
redo the changes you had undone using C-x right (M-x winner-redo). Another way to
enable Winner mode is by customizing the variable winner-mode.

The Windmove commands move directionally between neighboring windows in
a frame. M-x windmove-right selects the window immediately to the right of the
currently selected one, and similarly for the “left,” “up,” and “down” counterparts.
M-x windmove-default-keybindings binds these commands to S-right etc. (Not all
terminals support shifted arrow keys, however.)

Follow minor mode (M-x follow-mode) synchronizes several windows on the same buffer
so that they always display adjacent sections of that buffer. See Section 11.8 [Follow Mode],
page 87.

M-x scroll-all-mode provides commands to scroll all visible windows together. You
can also turn it on by customizing the variable scroll-all-mode. The commands provided
are M-x scroll-all-scroll-down-all, M-x scroll-all-page-down-all and their corre-
sponding “up” equivalents. To make this mode useful, you should bind these commands to
appropriate keys.

Chapter 17: Frames and X Windows 163

17 Frames and X Windows

When using the X Window System, you can create multiple windows at the X level in
a single Emacs session. Each X window that belongs to Emacs displays a frame which can
contain one or several Emacs windows. A frame initially contains a single general-purpose
Emacs window which you can subdivide vertically or horizontally into smaller windows. A
frame normally contains its own echo area and minibuffer, but you can make frames that
don’t have these—they use the echo area and minibuffer of another frame.

Editing you do in one frame also affects the other frames. For instance, if you put text
in the kill ring in one frame, you can yank it in another frame. If you exit Emacs through
C-x C-c in one frame, it terminates all the frames. To delete just one frame, use C-x 5 0
(that is zero, not o).

To avoid confusion, we reserve the word “window” for the subdivisions that Emacs
implements, and never use it to refer to a frame.

Emacs compiled for MS-DOS emulates some aspects of the window system so that you
can use many of the features described in this chapter. See Section E.1 [MS-DOS Input],
page 451, for more information.

Emacs compiled for MS Windows mostly supports the same features as under X. How-
ever, images, tool bars, and tooltips are not yet available in Emacs version 21.1 on MS-
Windows.

17.1 Mouse Commands for Editing

The mouse commands for selecting and copying a region are mostly compatible with the
xterm program. You can use the same mouse commands for copying between Emacs and
other X client programs.

If you select a region with any of these mouse commands, and then immediately afterward
type the 〈DELETE〉 function key, it deletes the region that you selected. The 〈BACKSPACE〉
function key and the ASCII character 〈DEL〉 do not do this; if you type any other key in
between the mouse command and 〈DELETE〉, it does not do this.

Mouse-1 Move point to where you click (mouse-set-point). This is normally the left
button.

Drag-Mouse-1
Set the region to the text you select by dragging, and copy it to the kill ring
(mouse-set-region). You can specify both ends of the region with this single
command.
If you move the mouse off the top or bottom of the window while dragging,
the window scrolls at a steady rate until you move the mouse back into the
window. This way, you can select regions that don’t fit entirely on the screen.
The number of lines scrolled per step depends on how far away from the window
edge the mouse has gone; the variable mouse-scroll-min-lines specifies a
minimum step size.

Mouse-2 Yank the last killed text, where you click (mouse-yank-at-click). This is
normally the middle button.

164 GNU Emacs Manual

Mouse-3 This command, mouse-save-then-kill, has several functions depending on
where you click and the status of the region.

The most basic case is when you click Mouse-1 in one place and then Mouse-3
in another. This selects the text between those two positions as the region. It
also copies the new region to the kill ring, so that you can copy it to someplace
else.

If you click Mouse-1 in the text, scroll with the scroll bar, and then click
Mouse-3, it remembers where point was before scrolling (where you put it with
Mouse-1), and uses that position as the other end of the region. This is so that
you can select a region that doesn’t fit entirely on the screen.

More generally, if you do not have a highlighted region, Mouse-3 selects the
text between point and the click position as the region. It does this by setting
the mark where point was, and moving point to where you click.

If you have a highlighted region, or if the region was set just before by dragging
button 1, Mouse-3 adjusts the nearer end of the region by moving it to where
you click. The adjusted region’s text also replaces the old region’s text in the
kill ring.

If you originally specified the region using a double or triple Mouse-1, so that
the region is defined to consist of entire words or lines, then adjusting the region
with Mouse-3 also proceeds by entire words or lines.

If you use Mouse-3 a second time consecutively, at the same place, that kills
the region already selected.

Double-Mouse-1
This key sets the region around the word which you click on. If you click on
a character with “symbol” syntax (such as underscore, in C mode), it sets the
region around the symbol surrounding that character.

If you click on a character with open-parenthesis or close-parenthesis syntax, it
sets the region around the parenthetical grouping which that character starts
or ends. If you click on a character with string-delimiter syntax (such as a
singlequote or doublequote in C), it sets the region around the string constant
(using heuristics to figure out whether that character is the beginning or the
end of it).

Double-Drag-Mouse-1
This key selects a region made up of the words you drag across.

Triple-Mouse-1
This key sets the region around the line you click on.

Triple-Drag-Mouse-1
This key selects a region made up of the lines you drag across.

The simplest way to kill text with the mouse is to press Mouse-1 at one end, then press
Mouse-3 twice at the other end. See Section 9.1 [Killing], page 67. To copy the text into the
kill ring without deleting it from the buffer, press Mouse-3 just once—or just drag across
the text with Mouse-1. Then you can copy it elsewhere by yanking it.

Chapter 17: Frames and X Windows 165

To yank the killed or copied text somewhere else, move the mouse there and press
Mouse-2. See Section 9.2 [Yanking], page 70. However, if mouse-yank-at-point is non-
nil, Mouse-2 yanks at point. Then it does not matter where you click, or even which of the
frame’s windows you click on. The default value is nil. This variable also affects yanking
the secondary selection.

To copy text to another X window, kill it or save it in the kill ring. Under X, this
also sets the primary selection. Then use the “paste” or “yank” command of the program
operating the other window to insert the text from the selection.

To copy text from another X window, use the “cut” or “copy” command of the program
operating the other window, to select the text you want. Then yank it in Emacs with C-y
or Mouse-2.

The standard coding system for X selections is compound-text. To specify another
coding system for X selections, use C-x 〈RET〉 x or C-x 〈RET〉 X. See Section 18.9 [Specify
Coding], page 185.

These cutting and pasting commands also work on MS-Windows.
When Emacs puts text into the kill ring, or rotates text to the front of the kill ring, it

sets the primary selection in the X server. This is how other X clients can access the text.
Emacs also stores the text in the cut buffer, but only if the text is short enough (the value
of x-cut-buffer-max specifies the maximum number of characters); putting long strings
in the cut buffer can be slow.

The commands to yank the first entry in the kill ring actually check first for a primary
selection in another program; after that, they check for text in the cut buffer. If neither of
those sources provides text to yank, the kill ring contents are used.

17.2 Secondary Selection

The secondary selection is another way of selecting text using X. It does not use point
or the mark, so you can use it to kill text without setting point or the mark.

M-Drag-Mouse-1
Set the secondary selection, with one end at the place where you press down
the button, and the other end at the place where you release it (mouse-set-
secondary). The highlighting appears and changes as you drag. You can
control the appearance of the highlighting by customizing the secondary-
selection face (see Section 32.2.2.3 [Face Customization], page 384).
If you move the mouse off the top or bottom of the window while dragging, the
window scrolls at a steady rate until you move the mouse back into the window.
This way, you can mark regions that don’t fit entirely on the screen.

M-Mouse-1
Set one endpoint for the secondary selection (mouse-start-secondary).

M-Mouse-3
Make a secondary selection, using the place specified with M-Mouse-1 as the
other end (mouse-secondary-save-then-kill). A second click at the same
place kills the secondary selection just made.

166 GNU Emacs Manual

M-Mouse-2
Insert the secondary selection where you click (mouse-yank-secondary). This
places point at the end of the yanked text.

Double or triple clicking of M-Mouse-1 operates on words and lines, much like Mouse-1.

If mouse-yank-at-point is non-nil, M-Mouse-2 yanks at point. Then it does not matter
precisely where you click; all that matters is which window you click on. See Section 17.1
[Mouse Commands], page 163.

17.3 Using the Clipboard

As well as the primary and secondary selection types, X supports a clipboard selection
type which is used by some applications, particularly under OpenWindows and Gnome.

The command M-x menu-bar-enable-clipboard makes the Cut, Paste and Copy menu
items, as well as the keys of the same names, all use the clipboard.

You can customize the option x-select-enable-clipboard to make the Emacs yank
functions consult the clipboard before the primary selection, and to make the kill functions
to store in the clipboard as well as the primary selection. Otherwise they do not access the
clipboard at all. Using the clipboard is the default on MS-Windows, unlike most systems.

17.4 Following References with the Mouse

Some Emacs buffers display lists of various sorts. These include lists of files, of buffers,
of possible completions, of matches for a pattern, and so on.

Since yanking text into these buffers is not very useful, most of them define Mouse-2
specially, as a command to use or view the item you click on.

For example, if you click Mouse-2 on a file name in a Dired buffer, you visit that file. If
you click Mouse-2 on an error message in the ‘*Compilation*’ buffer, you go to the source
code for that error message. If you click Mouse-2 on a completion in the ‘*Completions*’
buffer, you choose that completion.

You can usually tell when Mouse-2 has this special sort of meaning because the sensitive
text highlights when you move the mouse over it.

17.5 Mouse Clicks for Menus

Mouse clicks modified with the 〈CTRL〉 and 〈SHIFT〉 keys bring up menus.

C-Mouse-1
This menu is for selecting a buffer.

The MSB (“mouse select buffer”) global minor mode makes this menu smarter
and more customizable. See Section 15.7.3 [Buffer Menus], page 156.

C-Mouse-2
This menu is for specifying faces and other text properties for editing formatted
text. See Section 21.11 [Formatted Text], page 218.

Chapter 17: Frames and X Windows 167

C-Mouse-3
This menu is mode-specific. For most modes if Menu-bar mode is on, this menu
has the same items as all the mode-specific menu-bar menus put together. Some
modes may specify a different menu for this button.1 If Menu-bar mode is off,
this menu contains all the items which would be present in the menu bar—not
just the mode-specific ones—so that you can access them without having to
display the menu bar.

S-Mouse-1
This menu is for specifying the frame’s principal font.

17.6 Mode Line Mouse Commands

You can use mouse clicks on window mode lines to select and manipulate windows.

Mouse-1 Mouse-1 on a mode line selects the window above. By dragging Mouse-1 on
the mode line, you can move it, thus changing the height of the windows above
and below.

Mouse-2 Mouse-2 on a mode line expands that window to fill its frame.

Mouse-3 Mouse-3 on a mode line deletes the window above. If the frame has only one
window, it buries the current buffer instead and switches to another buffer.

C-Mouse-2
C-Mouse-2 on a mode line splits the window above horizontally, above the place
in the mode line where you click.

C-Mouse-2 on a scroll bar splits the corresponding window vertically, unless you are using
an X toolkit’s implementation of scroll bars. See Section 16.2 [Split Window], page 158.

The commands above apply to areas of the mode line which do not have special mouse
bindings of their own. Some areas, such as the buffer name and the major mode name, have
their own special mouse bindings. Emacs displays information about these bindings when
you hold the mouse over such a place (see Section 17.18 [Tooltips], page 173).

17.7 Creating Frames

The prefix key C-x 5 is analogous to C-x 4, with parallel subcommands. The difference
is that C-x 5 commands create a new frame rather than just a new window in the selected
frame (see Section 16.4 [Pop Up Window], page 159). If an existing visible or iconified
frame already displays the requested material, these commands use the existing frame,
after raising or deiconifying as necessary.

The various C-x 5 commands differ in how they find or create the buffer to select:

C-x 5 2 Create a new frame (make-frame-command).

C-x 5 b bufname 〈RET〉
Select buffer bufname in another frame. This runs switch-to-buffer-other-
frame.

1 Some systems use Mouse-3 for a mode-specific menu. We took a survey of users, and found they preferred
to keep Mouse-3 for selecting and killing regions. Hence the decision to use C-Mouse-3 for this menu.

168 GNU Emacs Manual

C-x 5 f filename 〈RET〉
Visit file filename and select its buffer in another frame. This runs find-file-
other-frame. See Section 14.2 [Visiting], page 110.

C-x 5 d directory 〈RET〉
Select a Dired buffer for directory directory in another frame. This runs dired-
other-frame. See Chapter 29 [Dired], page 319.

C-x 5 m Start composing a mail message in another frame. This runs mail-other-
frame. It is the other-frame variant of C-x m. See Chapter 27 [Sending Mail],
page 293.

C-x 5 . Find a tag in the current tag table in another frame. This runs find-tag-
other-frame, the multiple-frame variant of M-.. See Section 24.2 [Tags],
page 268.

C-x 5 r filename 〈RET〉
Visit file filename read-only, and select its buffer in another frame. This runs
find-file-read-only-other-frame. See Section 14.2 [Visiting], page 110.

You can control the appearance of new frames you create by setting the frame parame-
ters in default-frame-alist. You can use the variable initial-frame-alist to specify
parameters that affect only the initial frame. See section “Initial Parameters” in The Emacs
Lisp Reference Manual, for more information.

The easiest way to specify the principal font for all your Emacs frames is with an X
resource (see Section B.7 [Font X], page 430), but you can also do it by modifying default-
frame-alist to specify the font parameter, as shown here:

(add-to-list ’default-frame-alist ’(font . "10x20"))

Here’s a similar example for specifying a foreground color:

(add-to-list ’default-frame-alist ’(background-color . "blue"))

17.8 Frame Commands

The following commands let you create, delete and operate on frames:

C-z Iconify the selected Emacs frame (iconify-or-deiconify-frame). The normal
meaning of C-z, to suspend Emacs, is not useful under a window system, so it
has a different binding in that case.

If you type this command on an Emacs frame’s icon, it deiconifies the frame.

C-x 5 0 Delete the selected frame (delete-frame). This is not allowed if there is only
one frame.

C-x 5 o Select another frame, raise it, and warp the mouse to it so that it stays selected.
If you repeat this command, it cycles through all the frames on your terminal.

C-x 5 1 Delete all frames except the selected one.

Chapter 17: Frames and X Windows 169

17.9 Making and Using a Speedbar Frame

An Emacs frame can have a speedbar, which is a vertical window that serves as a
scrollable menu of files you could visit and tags within those files. To create a speedbar,
type M-x speedbar; this creates a speedbar window for the selected frame. From then on,
you can click on a file name in the speedbar to visit that file in the corresponding Emacs
frame, or click on a tag name to jump to that tag in the Emacs frame.

Initially the speedbar lists the immediate contents of the current directory, one file per
line. Each line also has a box, ‘[+]’ or ‘<+>’, that you can click on with Mouse-2 to “open
up” the contents of that item. If the line names a directory, opening it adds the contents of
that directory to the speedbar display, underneath the directory’s own line. If the line lists
an ordinary file, opening it up adds a list of the tags in that file to the speedbar display.
When a file is opened up, the ‘[+]’ changes to ‘[-]’; you can click on that box to “close
up” that file (hide its contents).

Some major modes, including Rmail mode, Info, and GUD, have specialized ways of
putting useful items into the speedbar for you to select. For example, in Rmail mode, the
speedbar shows a list of Rmail files, and lets you move the current message to another Rmail
file by clicking on its ‘<M>’ box.

A speedbar belongs to one Emacs frame, and always operates on that frame. If you use
multiple frames, you can make a speedbar for some or all of the frames; type M-x speedbar
in any given frame to make a speedbar for it.

17.10 Multiple Displays

A single Emacs can talk to more than one X display. Initially, Emacs uses just one
display—the one specified with the DISPLAY environment variable or with the ‘--display’
option (see Section B.2 [Initial Options], page 424). To connect to another display, use the
command make-frame-on-display:

M-x make-frame-on-display 〈RET〉 display 〈RET〉
Create a new frame on display display.

A single X server can handle more than one screen. When you open frames on two
screens belonging to one server, Emacs knows they share a single keyboard, and it treats
all the commands arriving from these screens as a single stream of input.

When you open frames on different X servers, Emacs makes a separate input stream for
each server. This way, two users can type simultaneously on the two displays, and Emacs
will not garble their input. Each server also has its own selected frame. The commands
you enter with a particular X server apply to that server’s selected frame.

Despite these features, people using the same Emacs job from different displays can still
interfere with each other if they are not careful. For example, if any one types C-x C-c,
that exits the Emacs job for all of them!

17.11 Special Buffer Frames

You can make certain chosen buffers, for which Emacs normally creates a second window
when you have just one window, appear in special frames of their own. To do this, set the

170 GNU Emacs Manual

variable special-display-buffer-names to a list of buffer names; any buffer whose name
is in that list automatically gets a special frame, when an Emacs command wants to display
it “in another window.”

For example, if you set the variable this way,
(setq special-display-buffer-names

’("*Completions*" "*grep*" "*tex-shell*"))

then completion lists, grep output and the TEX mode shell buffer get individual frames of
their own. These frames, and the windows in them, are never automatically split or reused
for any other buffers. They continue to show the buffers they were created for, unless you
alter them by hand. Killing the special buffer deletes its frame automatically.

More generally, you can set special-display-regexps to a list of regular expressions;
then a buffer gets its own frame if its name matches any of those regular expressions. (Once
again, this applies only to buffers that normally get displayed for you in a separate window.)

The variable special-display-frame-alist specifies the frame parameters for these
frames. It has a default value, so you don’t need to set it.

For those who know Lisp, an element of special-display-buffer-names or special-
display-regexps can also be a list. Then the first element is the buffer name or regular
expression; the rest of the list specifies how to create the frame. It can be an association
list specifying frame parameter values; these values take precedence over parameter values
specified in special-display-frame-alist. Alternatively, it can have this form:

(function args...)

where function is a symbol. Then the frame is constructed by calling function; its first
argument is the buffer, and its remaining arguments are args.

An analogous feature lets you specify buffers which should be displayed in the selected
window. See Section 16.5 [Force Same Window], page 160. The same-window feature takes
precedence over the special-frame feature; therefore, if you add a buffer name to special-
display-buffer-names and it has no effect, check to see whether that feature is also in
use for the same buffer name.

17.12 Setting Frame Parameters

This section describes commands for altering the display style and window management
behavior of the selected frame.

M-x set-foreground-color 〈RET〉 color 〈RET〉
Specify color color for the foreground of the selected frame. (This also changes
the foreground color of the default face.)

M-x set-background-color 〈RET〉 color 〈RET〉
Specify color color for the background of the selected frame. (This also changes
the background color of the default face.)

M-x set-cursor-color 〈RET〉 color 〈RET〉
Specify color color for the cursor of the selected frame.

M-x set-mouse-color 〈RET〉 color 〈RET〉
Specify color color for the mouse cursor when it is over the selected frame.

Chapter 17: Frames and X Windows 171

M-x set-border-color 〈RET〉 color 〈RET〉
Specify color color for the border of the selected frame.

M-x list-colors-display
Display the defined color names and show what the colors look like. This
command is somewhat slow.

M-x auto-raise-mode
Toggle whether or not the selected frame should auto-raise. Auto-raise means
that every time you move the mouse onto the frame, it raises the frame.
Note that this auto-raise feature is implemented by Emacs itself. Some window
managers also implement auto-raise. If you enable auto-raise for Emacs frames
in your X window manager, it should work, but it is beyond Emacs’s control
and therefore auto-raise-mode has no effect on it.

M-x auto-lower-mode
Toggle whether or not the selected frame should auto-lower. Auto-lower means
that every time you move the mouse off the frame, the frame moves to the
bottom of the stack of X windows.
The command auto-lower-mode has no effect on auto-lower implemented by
the X window manager. To control that, you must use the appropriate window
manager features.

M-x set-frame-font 〈RET〉 font 〈RET〉
Specify font font as the principal font for the selected frame. The principal font
controls several face attributes of the default face (see Section 11.1 [Faces],
page 79). For example, if the principal font has a height of 12 pt, all text will
be drawn in 12 pt fonts, unless you use another face that specifies a different
height. See Section B.7 [Font X], page 430, for ways to list the available fonts
on your system.
You can also set a frame’s principal font through a pop-up menu. Press
S-Mouse-1 to activate this menu.

In Emacs versions that use an X toolkit, the color-setting and font-setting functions
don’t affect menus and the menu bar, since they are displayed by their own widget classes.
To change the appearance of the menus and menu bar, you must use X resources (see
Section B.13 [Resources X], page 435). See Section B.8 [Colors X], page 432, regarding
colors. See Section B.7 [Font X], page 430, regarding choice of font.

Colors, fonts, and other attributes of the frame’s display can also be customized by
setting frame parameters in the variable default-frame-alist (see Section 17.7 [Creating
Frames], page 167). For a detailed description of frame parameters and customization, see
section “Frame Parameters” in The Emacs Lisp Reference Manual.

17.13 Scroll Bars

When using X, Emacs normally makes a scroll bar at the left of each Emacs window.2

The scroll bar runs the height of the window, and shows a moving rectangular inner box

2 Placing it at the left is usually more useful with overlapping frames with text starting at the left margin.

172 GNU Emacs Manual

which represents the portion of the buffer currently displayed. The entire height of the
scroll bar represents the entire length of the buffer.

You can use Mouse-2 (normally, the middle button) in the scroll bar to move or drag
the inner box up and down. If you move it to the top of the scroll bar, you see the top of
the buffer. If you move it to the bottom of the scroll bar, you see the bottom of the buffer.

The left and right buttons in the scroll bar scroll by controlled increments. Mouse-1
(normally, the left button) moves the line at the level where you click up to the top of the
window. Mouse-3 (normally, the right button) moves the line at the top of the window
down to the level where you click. By clicking repeatedly in the same place, you can scroll
by the same distance over and over.

If you are using Emacs’s own implementation of scroll bars, as opposed to scroll bars
from an X toolkit, you can also click C-Mouse-2 in the scroll bar to split a window vertically.
The split occurs on the line where you click.

You can enable or disable Scroll Bar mode with the command M-x scroll-bar-mode.
With no argument, it toggles the use of scroll bars. With an argument, it turns use of
scroll bars on if and only if the argument is positive. This command applies to all frames,
including frames yet to be created. Customize the option scroll-bar-mode to control the
use of scroll bars at startup. You can use it to specify that they are placed at the right of
windows if you prefer that. You can use the X resource ‘verticalScrollBars’ to control
the initial setting of Scroll Bar mode similarly. See Section B.13 [Resources X], page 435.

To enable or disable scroll bars for just the selected frame, use the M-x
toggle-scroll-bar command.

You can control the scroll bar width by changing the value of the scroll-bar-width
frame parameter.

17.14 Scrolling With “Wheeled” Mice

Some mice have a “wheel” instead of a third button. You can usually click the wheel
to act as either Mouse-2 or Mouse-3, depending on the setup. You can also use the wheel
to scroll windows instead of using the scroll bar or keyboard commands. To do so, turn
on Mouse Wheel global minor mode with the command M-x mouse-wheel-mode or by cus-
tomizing the option mouse-wheel-mode. Support for the wheel depends on the system
generating appropriate events for Emacs.

The variables mouse-wheel-follow-mouse and mouse-wheel-scroll-amount
determine where and by how much buffers are scrolled.

17.15 Menu Bars

You can turn display of menu bars on or off with M-x menu-bar-mode or by customizing
the option menu-bar-mode. With no argument, this command toggles Menu Bar mode, a
minor mode. With an argument, the command turns Menu Bar mode on if the argument
is positive, off if the argument is not positive. You can use the X resource ‘menuBarLines’
to control the initial setting of Menu Bar mode. See Section B.13 [Resources X], page 435.

Expert users often turn off the menu bar, especially on text-only terminals, where this
makes one additional line available for text. If the menu bar is off, you can still pop up

Chapter 17: Frames and X Windows 173

a menu of its contents with C-Mouse-3 on a display which supports pop-up menus. See
Section 17.5 [Menu Mouse Clicks], page 166.

See Section 1.4 [Menu Bar], page 25, for information on how to invoke commands with
the menu bar.

17.16 Tool Bars

The tool bar is a line (or multiple lines) of icons at the top of the Emacs window. You
can click on these icons with the mouse to do various jobs.

The global tool bar contains general commands. Some major modes define their own
tool bars to replace it. A few “special” modes that are not designed for ordinary editing
remove some items from the global tool bar.

Tool bars work only on a graphical display. The tool bar uses colored XPM icons if Emacs
was built with XPM support. Otherwise, the tool bar uses monochrome icons (PBM or
XBM format).

You can turn display of tool bars on or off with M-x tool-bar-mode.

17.17 Using Dialog Boxes

A dialog box is a special kind of menu for asking you a yes-or-no question or some other
special question. Many Emacs commands use a dialog box to ask a yes-or-no question, if
you used the mouse to invoke the command to begin with.

You can customize the option use-dialog-box to suppress the use of dialog boxes. This
also controls whether to use file selection windows (but those are not supported on all
platforms).

17.18 Tooltips (or “Balloon Help”)

Tooltips are small X windows displaying a help string at the current mouse position,
typically over text—including the mode line—which can be activated with the mouse or
other keys. (This facility is sometimes known as balloon help.) Help text may be available
for menu items too.

To use tooltips, enable Tooltip mode with the command M-x tooltip-mode. The cus-
tomization group tooltip controls various aspects of how tooltips work. When Tooltip
mode is disabled, the help text is displayed in the echo area instead.

As of Emacs 21.1, tooltips are not supported on MS-Windows. So help text always
appears in the echo area.

17.19 Mouse Avoidance

Mouse Avoidance mode keeps the window system mouse pointer away from point, to
avoid obscuring text. Whenever it moves the mouse, it also raises the frame. To use Mouse
Avoidance mode, customize the option mouse-avoidance-mode. You can set this to various
values to move the mouse in several ways:

banish Move the mouse to the upper-right corner on any key-press;

174 GNU Emacs Manual

exile Move the mouse to the corner only if the cursor gets too close, and allow it to
return once the cursor is out of the way;

jump If the cursor gets too close to the mouse, displace the mouse a random distance
& direction;

animate As jump, but shows steps along the way for illusion of motion;

cat-and-mouse
The same as animate;

proteus As animate, but changes the shape of the mouse pointer too.

You can also use the command M-x mouse-avoidance-mode to enable the mode.

17.20 Non-Window Terminals

If your terminal does not have a window system that Emacs supports, then it can display
only one Emacs frame at a time. However, you can still create multiple Emacs frames, and
switch between them. Switching frames on these terminals is much like switching between
different window configurations.

Use C-x 5 2 to create a new frame and switch to it; use C-x 5 o to cycle through the
existing frames; use C-x 5 0 to delete the current frame.

Each frame has a number to distinguish it. If your terminal can display only one frame
at a time, the selected frame’s number n appears near the beginning of the mode line, in
the form ‘Fn’.

‘Fn’ is actually the frame’s name. You can also specify a different name if you wish, and
you can select a frame by its name. Use the command M-x set-frame-name 〈RET〉 name
〈RET〉 to specify a new name for the selected frame, and use M-x select-frame-by-name
〈RET〉 name 〈RET〉 to select a frame according to its name. The name you specify appears in
the mode line when the frame is selected.

17.21 Using a Mouse in Terminal Emulators

Some terminal emulators under X support mouse clicks in the terminal window. In a
terminal emulator which is compatible with xterm, you can use M-x xterm-mouse-mode to
enable simple use of the mouse—only single clicks are supported. The normal xterm mouse
functionality is still available by holding down the SHIFT key when you press the mouse
button. The Linux console supports this mode if it has support for the mouse enabled, e.g.
using the gpm daemon.

Chapter 18: International Character Set Support 175

18 International Character Set Support

Emacs supports a wide variety of international character sets, including European vari-
ants of the Latin alphabet, as well as Chinese, Cyrillic, Devanagari (Hindi and Marathi),
Ethiopic, Greek, Hebrew, IPA, Japanese, Korean, Lao, Thai, Tibetan, and Vietnamese
scripts. These features have been merged from the modified version of Emacs known as
MULE (for “MULti-lingual Enhancement to GNU Emacs”)

Emacs also supports various encodings of these characters used by other internationalized
software, such as word processors and mailers.

Emacs allows editing text with international characters by supporting all the related
activities:
• You can visit files with non-ASCII characters, save non-ASCII text, and pass non-

ASCII text between Emacs and programs it invokes (such as compilers, spell-checkers,
and mailers). Setting your language environment (see Section 18.3 [Language Environ-
ments], page 177) takes care of setting up the coding systems and other options for a
specific language or culture. Alternatively, you can specify how Emacs should encode
or decode text for each command; see Section 18.9 [Specify Coding], page 185.

• You can display non-ASCII characters encoded by the various scripts. This works by
using appropriate fonts on X and similar graphics displays (see Section 18.11 [Defining
Fontsets], page 188), and by sending special codes to text-only displays (see Section 18.9
[Specify Coding], page 185). If some characters are displayed incorrectly, refer to
Section 18.12 [Undisplayable Characters], page 190, which describes possible problems
and explains how to solve them.

• You can insert non-ASCII characters or search for them. To do that, you can specify
an input method (see Section 18.5 [Select Input Method], page 180) suitable for your
language, or use the default input method set up when you set your language environ-
ment. (Emacs input methods are part of the Leim package, which must be installed for
you to be able to use them.) If your keyboard can produce non-ASCII characters, you
can select an appropriate keyboard coding system (see Section 18.9 [Specify Coding],
page 185), and Emacs will accept those characters. Latin-1 characters can also be input
by using the C-x 8 prefix, see Section 18.13 [Single-Byte Character Support], page 190.
On X Window systems, your locale should be set to an appropriate value to make sure
Emacs interprets keyboard input correctly, see Section 18.3 [Language Environments],
page 177.

The rest of this chapter describes these issues in detail.

18.1 Introduction to International Character Sets

The users of international character sets and scripts have established many more-or-less
standard coding systems for storing files. Emacs internally uses a single multibyte character
encoding, so that it can intermix characters from all these scripts in a single buffer or string.
This encoding represents each non-ASCII character as a sequence of bytes in the range 0200
through 0377. Emacs translates between the multibyte character encoding and various other
coding systems when reading and writing files, when exchanging data with subprocesses,
and (in some cases) in the C-q command (see Section 18.6 [Multibyte Conversion], page 181).

176 GNU Emacs Manual

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which shows how
to say “hello” in many languages. This illustrates various scripts. If some characters can’t
be displayed on your terminal, they appear as ‘?’ or as hollow boxes (see Section 18.12
[Undisplayable Characters], page 190).

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. So Emacs supports various input methods, typically
one for each script or language, to make it convenient to type them.

The prefix key C-x 〈RET〉 is used for commands that pertain to multibyte characters,
coding systems, and input methods.

18.2 Enabling Multibyte Characters

You can enable or disable multibyte character support, either for Emacs as a whole,
or for a single buffer. When multibyte characters are disabled in a buffer, then each byte
in that buffer represents a character, even codes 0200 through 0377. The old features for
supporting the European character sets, ISO Latin-1 and ISO Latin-2, work as they did in
Emacs 19 and also work for the other ISO 8859 character sets.

However, there is no need to turn off multibyte character support to use ISO Latin; the
Emacs multibyte character set includes all the characters in these character sets, and Emacs
can translate automatically to and from the ISO codes.

By default, Emacs starts in multibyte mode, because that allows you to use all the
supported languages and scripts without limitations.

To edit a particular file in unibyte representation, visit it using find-file-literally.
See Section 14.2 [Visiting], page 110. To convert a buffer in multibyte representation into a
single-byte representation of the same characters, the easiest way is to save the contents in
a file, kill the buffer, and find the file again with find-file-literally. You can also use
C-x 〈RET〉 c (universal-coding-system-argument) and specify ‘raw-text’ as the coding
system with which to find or save a file. See Section 18.9 [Specify Coding], page 185.
Finding a file as ‘raw-text’ doesn’t disable format conversion, uncompression and auto
mode selection as find-file-literally does.

To turn off multibyte character support by default, start Emacs with the ‘--unibyte’
option (see Section B.2 [Initial Options], page 424), or set the environment variable EMACS_
UNIBYTE. You can also customize enable-multibyte-characters or, equivalently, directly
set the variable default-enable-multibyte-characters to nil in your init file to have
basically the same effect as ‘--unibyte’.

To convert a unibyte session to a multibyte session, set default-enable-multibyte-
characters to t. Buffers which were created in the unibyte session before you turn on
multibyte support will stay unibyte. You can turn on multibyte support in a specific buffer
by invoking the command toggle-enable-multibyte-characters in that buffer.

With ‘--unibyte’, multibyte strings are not created during initialization from the values
of environment variables, ‘/etc/passwd’ entries etc. that contain non-ASCII 8-bit charac-
ters.

Emacs normally loads Lisp files as multibyte, regardless of whether you used ‘--unibyte’.
This includes the Emacs initialization file, ‘.emacs’, and the initialization files of Emacs
packages such as Gnus. However, you can specify unibyte loading for a particular Lisp file,

Chapter 18: International Character Set Support 177

by putting ‘-*-unibyte: t;-*-’ in a comment on the first line. Then that file is always
loaded as unibyte text, even if you did not start Emacs with ‘--unibyte’. The motivation
for these conventions is that it is more reliable to always load any particular Lisp file in the
same way. However, you can load a Lisp file as unibyte, on any one occasion, by typing C-x
〈RET〉 c raw-text 〈RET〉 immediately before loading it.

The mode line indicates whether multibyte character support is enabled in the current
buffer. If it is, there are two or more characters (most often two dashes) before the colon
near the beginning of the mode line. When multibyte characters are not enabled, just one
dash precedes the colon.

18.3 Language Environments

All supported character sets are supported in Emacs buffers whenever multibyte char-
acters are enabled; there is no need to select a particular language in order to display its
characters in an Emacs buffer. However, it is important to select a language environment
in order to set various defaults. The language environment really represents a choice of
preferred script (more or less) rather than a choice of language.

The language environment controls which coding systems to recognize when reading
text (see Section 18.8 [Recognize Coding], page 183). This applies to files, incoming mail,
netnews, and any other text you read into Emacs. It may also specify the default coding
system to use when you create a file. Each language environment also specifies a default
input method.

To select a language environment, customize the option current-language-
environment or use the command M-x set-language-environment. It makes no
difference which buffer is current when you use this command, because the effects apply
globally to the Emacs session. The supported language environments include:

Chinese-BIG5, Chinese-CNS, Chinese-GB, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-
KOI8, Czech, Devanagari, Dutch, English, Ethiopic, German, Greek, Hebrew,
IPA, Japanese, Korean, Lao, Latin-1, Latin-2, Latin-3, Latin-4, Latin-5, Latin-
8 (Celtic), Latin-9 (updated Latin-1, with the Euro sign), Polish, Romanian,
Slovak, Slovenian, Spanish, Thai, Tibetan, Turkish, and Vietnamese.

To display the script(s) used by your language environment on a graphical display, you
need to have a suitable font. If some of the characters appear as empty boxes, you should
install the GNU Intlfonts package, which includes fonts for all supported scripts.1 See
Section 18.10 [Fontsets], page 188, for more details about setting up your fonts.

Some operating systems let you specify the character-set locale you are using by setting
the locale environment variables LC_ALL, LC_CTYPE, or LANG.2 During startup, Emacs looks
up your character-set locale’s name in the system locale alias table, matches its canonical
name against entries in the value of the variables locale-charset-language-names and

1 If you run Emacs on X, you need to inform the X server about the location of the newly installed fonts
with the following commands:

xset fp+ /usr/local/share/emacs/fonts

xset fp rehash

2 If more than one of these is set, the first one that is nonempty specifies your locale for this purpose.

178 GNU Emacs Manual

locale-language-names, and selects the corresponding language environment if a match
is found. (The former variable overrides the latter.) It also adjusts the display table and
terminal coding system, the locale coding system, the preferred coding system as needed
for the locale, and—last but not least—the way Emacs decodes non-ASCII characters sent
by your keyboard.

If you modify the LC_ALL, LC_CTYPE, or LANG environment variables while running
Emacs, you may want to invoke the set-locale-environment function afterwards to read-
just the language environment from the new locale.

The set-locale-environment function normally uses the preferred coding system es-
tablished by the language environment to decode system messages. But if your locale
matches an entry in the variable locale-preferred-coding-systems, Emacs uses the
corresponding coding system instead. For example, if the locale ‘ja_JP.PCK’ matches
japanese-shift-jis in locale-preferred-coding-systems, Emacs uses that encoding
even though it might normally use japanese-iso-8bit.

You can override the language environment chosen at startup with explicit use of the
command set-language-environment, or with customization of current-language-
environment in your init file.

To display information about the effects of a certain language environment lang-env, use
the command C-h L lang-env 〈RET〉 (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. By default, this command describes the chosen
language environment.

You can customize any language environment with the normal hook set-language-
environment-hook. The command set-language-environment runs that hook after set-
ting up the new language environment. The hook functions can test for a specific language
environment by checking the variable current-language-environment. This hook is where
you should put non-default settings for specific language environment, such as coding sys-
tems for keyboard input and terminal output, the default input method, etc.

Before it starts to set up the new language environment, set-language-environment
first runs the hook exit-language-environment-hook. This hook is useful for undoing
customizations that were made with set-language-environment-hook. For instance, if
you set up a special key binding in a specific language environment using set-language-
environment-hook, you should set up exit-language-environment-hook to restore the
normal binding for that key.

18.4 Input Methods

An input method is a kind of character conversion designed specifically for interactive
input. In Emacs, typically each language has its own input method; sometimes several
languages which use the same characters can share one input method. A few languages
support several input methods.

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet; this allows you to use one other alphabet instead of ASCII. The Greek and Russian
input methods work this way.

Chapter 18: International Character Set Support 179

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII
letter from a sequence that consists of a letter followed by accent characters (or vice versa).
For example, some methods convert the sequence a’ into a single accented letter. These
input methods have no special commands of their own; all they do is compose sequences of
printing characters.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these which make up a
whole syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). One input sequence typically corresponds to many possible Chi-
nese characters. You select the one you mean using keys such as C-f, C-b, C-n, C-p, and
digits, which have special meanings in this situation.

The possible characters are conceptually arranged in several rows, with each row holding
up to 10 alternatives. Normally, Emacs displays just one row at a time, in the echo area;
(i/j) appears at the beginning, to indicate that this is the ith row out of a total of j rows.
Type C-n or C-p to display the next row or the previous row.

Type C-f and C-b to move forward and backward among the alternatives in the current
row. As you do this, Emacs highlights the current alternative with a special color; type
C-〈SPC〉 to select the current alternative and use it as input. The alternatives in the row are
also numbered; the number appears before the alternative. Typing a digit n selects the nth
alternative of the current row and uses it as input.

〈TAB〉 in these Chinese input methods displays a buffer showing all the possible characters
at once; then clicking Mouse-2 on one of them selects that alternative. The keys C-f, C-b,
C-n, C-p, and digits continue to work as usual, but they do the highlighting in the buffer
showing the possible characters, rather than in the echo area.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, Emacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to a number of different Japanese words; to
select one of them, use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence e ’ combines to form an ‘e’ with an accent. What if you
want to enter them as separate characters?

One way is to type the accent twice; this is a special feature for entering the separate
letter and accent. For example, e ’ ’ gives you the two characters ‘e’’. Another way is to
type another letter after the e—something that won’t combine with that—and immediately
delete it. For example, you could type e e 〈DEL〉 ’ to get separate ‘e’ and ‘’’.

Another method, more general but not quite as easy to type, is to use C-\ C-\ between
two characters to stop them from combining. This is the command C-\ (toggle-input-
method) used twice.

180 GNU Emacs Manual

C-\ C-\ is especially useful inside an incremental search, because it stops waiting for
more characters to combine, and starts searching for what you have already entered.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer (for most input methods—some
disable this feature). If input-method-verbose-flag is non-nil, the list of possible char-
acters to type next is displayed in the echo area (but not when you are in the minibuffer).

Input methods are implemented in the separate Leim package: they are available only
if the system administrator used Leim when building Emacs. If Emacs was built without
Leim, you will find that no input methods are defined.

18.5 Selecting an Input Method

C-\ Enable or disable use of the selected input method.

C-x 〈RET〉 C-\ method 〈RET〉
Select a new input method for the current buffer.

C-h I method 〈RET〉
C-h C-\ method 〈RET〉

Describe the input method method (describe-input-method). By default, it
describes the current input method (if any). This description should give you
the full details of how to use any particular input method.

M-x list-input-methods
Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x 〈RET〉 C-\ (set-input-
method). This command reads the input method name from the minibuffer; the name
normally starts with the language environment that it is meant to be used with. The
variable current-input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts for you to
specify one. This has the same effect as using C-x 〈RET〉 C-\ to specify an input method.

When invoked with a numeric argument, as in C-u C-\, toggle-input-method always
prompts you for an input method, suggesting the most recently selected one as the default.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

In some language environments, which support several different input methods, you
might want to use an input method different from the default chosen by set-language-
environment. You can instruct Emacs to select a different default input method for a
certain language environment, if you wish, by using set-language-environment-hook (see
Section 18.3 [Language Environments], page 177). For example:

Chapter 18: International Character Set Support 181

(defun my-chinese-setup ()
"Set up my private Chinese environment."
(if (equal current-language-environment "Chinese-GB")

(setq default-input-method "chinese-tonepy")))
(add-hook ’set-language-environment-hook ’my-chinese-setup)

This sets the default input method to be chinese-tonepy whenever you choose a Chinese-
GB language environment.

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this
remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout.

To display a list of all the supported input methods, type M-x list-input-methods.
The list gives information about each input method, including the string that stands for it
in the mode line.

18.6 Unibyte and Multibyte Non-ASCII characters

When multibyte characters are enabled, character codes 0240 (octal) through 0377 (oc-
tal) are not really legitimate in the buffer. The valid non-ASCII printing characters have
codes that start from 0400.

If you type a self-inserting character in the range 0240 through 0377, or if you use C-q
to insert one, Emacs assumes you intended to use one of the ISO Latin-n character sets,
and converts it to the Emacs code representing that Latin-n character. You select which
ISO Latin character set to use through your choice of language environment (see above). If
you do not specify a choice, the default is Latin-1.

If you insert a character in the range 0200 through 0237, which forms the eight-bit-
control character set, it is inserted literally. You should normally avoid doing this since
buffers containing such characters have to be written out in either the emacs-mule or raw-
text coding system, which is usually not what you want.

18.7 Coding Systems

Users of various languages have established many more-or-less standard coding systems
for representing them. Emacs does not use these coding systems internally; instead, it
converts from various coding systems to its own system when reading data, and converts the
internal coding system to other coding systems when writing data. Conversion is possible
in reading or writing files, in sending or receiving from the terminal, and in exchanging data
with subprocesses.

Emacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems no-conversion, raw-text and emacs-mule which do not convert
printing characters at all.

A special class of coding systems, collectively known as codepages, is designed to support
text encoded by MS-Windows and MS-DOS software. To use any of these systems, you need

182 GNU Emacs Manual

to create it with M-x codepage-setup. See Section E.6 [MS-DOS and MULE], page 458.
After creating the coding system for the codepage, you can use it as any other coding
system. For example, to visit a file encoded in codepage 850, type C-x 〈RET〉 c cp850 〈RET〉
C-x C-f filename 〈RET〉.

In addition to converting various representations of non-ASCII characters, a coding
system can perform end-of-line conversion. Emacs handles three different conventions for
how to separate lines in a file: newline, carriage-return linefeed, and just carriage-return.

C-h C coding 〈RET〉
Describe coding system coding.

C-h C 〈RET〉
Describe the coding systems currently in use.

M-x list-coding-systems
Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular
coding systems. You can specify a coding system name as the argument; alternatively, with
an empty argument, it describes the coding systems currently selected for various purposes,
both in the current buffer and as the defaults, and the priority list for recognizing coding
systems (see Section 18.8 [Recognize Coding], page 183).

To display a list of all the supported coding systems, type M-x list-coding-systems.
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 23).

Each of the coding systems that appear in this list—except for no-conversion, which
means no conversion of any kind—specifies how and whether to convert printing characters,
but leaves the choice of end-of-line conversion to be decided based on the contents of each
file. For example, if the file appears to use the sequence carriage-return linefeed to separate
lines, DOS end-of-line conversion will be used.

Each of the listed coding systems has three variants which specify exactly what to do
for end-of-line conversion:

...-unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems.)

...-dos Assume the file uses carriage-return linefeed to separate lines, and do the appro-
priate conversion. (This is the convention normally used on Microsoft systems.3)

...-mac Assume the file uses carriage-return to separate lines, and do the appropriate
conversion. (This is the convention normally used on the Macintosh system.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-latin-1
has variants iso-latin-1-unix, iso-latin-1-dos and iso-latin-1-mac.

The coding system raw-text is good for a file which is mainly ASCII text, but may con-
tain byte values above 127 which are not meant to encode non-ASCII characters. With raw-
text, Emacs copies those byte values unchanged, and sets enable-multibyte-characters

3 It is also specified for MIME ‘text/*’ bodies and in other network transport contexts. It is different
from the SGML reference syntax record-start/record-end format which Emacs doesn’t support directly.

Chapter 18: International Character Set Support 183

to nil in the current buffer so that they will be interpreted properly. raw-text handles
end-of-line conversion in the usual way, based on the data encountered, and has the usual
three variants to specify the kind of end-of-line conversion to use.

In contrast, the coding system no-conversion specifies no character code conversion at
all—none for non-ASCII byte values and none for end of line. This is useful for reading or
writing binary files, tar files, and other files that must be examined verbatim. It, too, sets
enable-multibyte-characters to nil.

The easiest way to edit a file with no conversion of any kind is with the M-x
find-file-literally command. This uses no-conversion, and also suppresses other
Emacs features that might convert the file contents before you see them. See Section 14.2
[Visiting], page 110.

The coding system emacs-mule means that the file contains non-ASCII characters stored
with the internal Emacs encoding. It handles end-of-line conversion based on the data
encountered, and has the usual three variants to specify the kind of end-of-line conversion.

18.8 Recognizing Coding Systems

Emacs tries to recognize which coding system to use for a given text as an integral part
of reading that text. (This applies to files being read, output from subprocesses, text from
X selections, etc.) Emacs can select the right coding system automatically most of the
time—once you have specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

Emacs handles this situation by means of a priority list of coding systems. Whenever
Emacs reads a file, if you do not specify the coding system to use, Emacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 18.3 [Language Environments], page 177). For example, if you use French, you
probably want Emacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the priority list in detail with the command M-x
prefer-coding-system. This command reads the name of a coding system from the
minibuffer, and adds it to the front of the priority list, so that it is preferred to all others.
If you use this command several times, each use adds one element to the front of the
priority list.

If you use a coding system that specifies the end-of-line conversion type, such as iso-
8859-1-dos, what this means is that Emacs should attempt to recognize iso-8859-1 with
priority, and should use DOS end-of-line conversion when it does recognize iso-8859-1.

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For example, to read and

184 GNU Emacs Manual

write all ‘.txt’ files using the coding system china-iso-8bit, you can execute this Lisp
expression:

(modify-coding-system-alist ’file "\\.txt\\’" ’china-iso-8bit)

The first argument should be file, the second argument should be a regular expression that
determines which files this applies to, and the third argument says which coding system to
use for these files.

Emacs recognizes which kind of end-of-line conversion to use based on the contents of
the file: if it sees only carriage-returns, or only carriage-return linefeed sequences, then it
chooses the end-of-line conversion accordingly. You can inhibit the automatic use of end-
of-line conversion by setting the variable inhibit-eol-conversion to non-nil. If you do
that, DOS-style files will be displayed with the ‘^M’ characters visible in the buffer; some
people prefer this to the more subtle ‘(DOS)’ end-of-line type indication near the left edge
of the mode line (see Section 1.3 [Mode Line], page 23).

By default, the automatic detection of coding system is sensitive to escape sequences. If
Emacs sees a sequence of characters that begin with an escape character, and the sequence
is valid as an ISO-2022 code, that tells Emacs to use one of the ISO-2022 encodings to
decode the file.

However, there may be cases that you want to read escape sequences in a file as is. In
such a case, you can set the variable inhibit-iso-escape-detection to non-nil. Then
the code detection ignores any escape sequences, and never uses an ISO-2022 encoding. The
result is that all escape sequences become visible in the buffer.

The default value of inhibit-iso-escape-detection is nil. We recommend that you
not change it permanently, only for one specific operation. That’s because many Emacs
Lisp source files in the Emacs distribution contain non-ASCII characters encoded in the
coding system iso-2022-7bit, and they won’t be decoded correctly when you visit those
files if you suppress the escape sequence detection.

You can specify the coding system for a particular file using the ‘-*-...-*-’ construct at
the beginning of a file, or a local variables list at the end (see Section 32.2.5 [File Variables],
page 388). You do this by defining a value for the “variable” named coding. Emacs does
not really have a variable coding; instead of setting a variable, this uses the specified coding
system for the file. For example, ‘-*-mode: C; coding: latin-1;-*-’ specifies use of the
Latin-1 coding system, as well as C mode. When you specify the coding explicitly in the
file, that overrides file-coding-system-alist.

The variables auto-coding-alist and auto-coding-regexp-alist are the strongest
way to specify the coding system for certain patterns of file names, or for files containing
certain patterns; these variables even override ‘-*-coding:-*-’ tags in the file itself. Emacs
uses auto-coding-alist for tar and archive files, to prevent it from being confused by a
‘-*-coding:-*-’ tag in a member of the archive and thinking it applies to the archive file
as a whole. Likewise, Emacs uses auto-coding-regexp-alist to ensure that RMAIL files,
whose names in general don’t match any particular pattern, are decoded correctly.

If Emacs recognizes the encoding of a file incorrectly, you can reread the file using
the correct coding system by typing C-x 〈RET〉 c coding-system 〈RET〉 M-x revert-buffer
〈RET〉. To see what coding system Emacs actually used to decode the file, look at the coding
system mnemonic letter near the left edge of the mode line (see Section 1.3 [Mode Line],
page 23), or type C-h C 〈RET〉.

Chapter 18: International Character Set Support 185

Once Emacs has chosen a coding system for a buffer, it stores that coding system in
buffer-file-coding-system and uses that coding system, by default, for operations that
write from this buffer into a file. This includes the commands save-buffer and write-
region. If you want to write files from this buffer using a different coding system, you can
specify a different coding system for the buffer using set-buffer-file-coding-system
(see Section 18.9 [Specify Coding], page 185).

You can insert any possible character into any Emacs buffer, but most coding systems
can only handle some of the possible characters. This means that it is possible for you
to insert characters that cannot be encoded with the coding system that will be used to
save the buffer. For example, you could start with an ASCII file and insert a few Latin-1
characters into it, or you could edit a text file in Polish encoded in iso-8859-2 and add
some Russian words to it. When you save the buffer, Emacs cannot use the current value
of buffer-file-coding-system, because the characters you added cannot be encoded by
that coding system.

When that happens, Emacs tries the most-preferred coding system (set by M-x
prefer-coding-system or M-x set-language-environment), and if that coding system
can safely encode all of the characters in the buffer, Emacs uses it, and stores its value in
buffer-file-coding-system. Otherwise, Emacs displays a list of coding systems suitable
for encoding the buffer’s contents, and asks you to choose one of those coding systems.

If you insert the unsuitable characters in a mail message, Emacs behaves a bit differently.
It additionally checks whether the most-preferred coding system is recommended for use in
MIME messages; if not, Emacs tells you that the most-preferred coding system is not rec-
ommended and prompts you for another coding system. This is so you won’t inadvertently
send a message encoded in a way that your recipient’s mail software will have difficulty
decoding. (If you do want to use the most-preferred coding system, you can still type its
name in response to the question.)

When you send a message with Mail mode (see Chapter 27 [Sending Mail], page 293),
Emacs has four different ways to determine the coding system to use for encoding the
message text. It tries the buffer’s own value of buffer-file-coding-system, if that is
non-nil. Otherwise, it uses the value of sendmail-coding-system, if that is non-nil. The
third way is to use the default coding system for new files, which is controlled by your
choice of language environment, if that is non-nil. If all of these three values are nil,
Emacs encodes outgoing mail using the Latin-1 coding system.

When you get new mail in Rmail, each message is translated automatically from the
coding system it is written in, as if it were a separate file. This uses the priority list of
coding systems that you have specified. If a MIME message specifies a character set, Rmail
obeys that specification, unless rmail-decode-mime-charset is nil.

For reading and saving Rmail files themselves, Emacs uses the coding system specified
by the variable rmail-file-coding-system. The default value is nil, which means that
Rmail files are not translated (they are read and written in the Emacs internal character
code).

18.9 Specifying a Coding System

In cases where Emacs does not automatically choose the right coding system, you can
use these commands to specify one:

186 GNU Emacs Manual

C-x 〈RET〉 f coding 〈RET〉
Use coding system coding for the visited file in the current buffer.

C-x 〈RET〉 c coding 〈RET〉
Specify coding system coding for the immediately following command.

C-x 〈RET〉 k coding 〈RET〉
Use coding system coding for keyboard input.

C-x 〈RET〉 t coding 〈RET〉
Use coding system coding for terminal output.

C-x 〈RET〉 p input-coding 〈RET〉 output-coding 〈RET〉
Use coding systems input-coding and output-coding for subprocess input and
output in the current buffer.

C-x 〈RET〉 x coding 〈RET〉
Use coding system coding for transferring selections to and from other programs
through the window system.

C-x 〈RET〉 X coding 〈RET〉
Use coding system coding for transferring one selection—the next one—to or
from the window system.

The command C-x 〈RET〉 f (set-buffer-file-coding-system) specifies the file coding
system for the current buffer—in other words, which coding system to use when saving or
rereading the visited file. You specify which coding system using the minibuffer. Since this
command applies to a file you have already visited, it affects only the way the file is saved.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-x 〈RET〉 c (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

So if the immediately following command is C-x C-f, for example, it reads the file using
that coding system (and records the coding system for when the file is saved). Or if the
immediately following command is C-x C-w, it writes the file using that coding system.
Other file commands affected by a specified coding system include C-x C-i and C-x C-v, as
well as the other-window variants of C-x C-f.

C-x 〈RET〉 c also affects commands that start subprocesses, including M-x shell (see
Section 31.2 [Shell], page 351).

However, if the immediately following command does not use the coding system, then
C-x 〈RET〉 c ultimately has no effect.

An easy way to visit a file with no conversion is with the M-x find-file-literally
command. See Section 14.2 [Visiting], page 110.

The variable default-buffer-file-coding-system specifies the choice of coding sys-
tem to use when you create a new file. It applies when you find a new file, and when you
create a buffer and then save it in a file. Selecting a language environment typically sets
this variable to a good choice of default coding system for that language environment.

The command C-x 〈RET〉 t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

Chapter 18: International Character Set Support 187

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets. You need to specify the terminal coding system when using multibyte
text, so that Emacs knows which characters the terminal can actually handle.

By default, output to the terminal is not translated at all, unless Emacs can deduce the
proper coding system from your terminal type or your locale specification (see Section 18.3
[Language Environments], page 177).

The command C-x 〈RET〉 k (set-keyboard-coding-system) or the Custom option
keyboard-coding-system specifies the coding system for keyboard input. Character-code
translation of keyboard input is useful for terminals with keys that send non-ASCII
graphic characters—for example, some terminals designed for ISO Latin-1 or subsets of it.

By default, keyboard input is not translated at all.

There is a similarity between using a coding system translation for keyboard input, and
using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

The command C-x 〈RET〉 x (set-selection-coding-system) specifies the coding system
for sending selected text to the window system, and for receiving the text of selections made
in other applications. This command applies to all subsequent selections, until you override
it by using the command again. The command C-x 〈RET〉 X (set-next-selection-coding-
system) specifies the coding system for the next selection made in Emacs or read by Emacs.

The command C-x 〈RET〉 p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding
buffer.

The default for translation of process input and output depends on the current language
environment.

The variable file-name-coding-system specifies a coding system to use for encoding
file names. If you set the variable to a coding system name (as a Lisp symbol or a string),
Emacs encodes file names using that coding system for all file operations. This makes it
possible to use non-ASCII characters in file names—or, at least, those non-ASCII characters
which the specified coding system can encode.

If file-name-coding-system is nil, Emacs uses a default coding system determined by
the selected language environment. In the default language environment, any non-ASCII
characters in file names are not encoded specially; they appear in the file system using the
internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and cannot be encoded (or are encoded
differently) under the new coding system. If you try to save one of these buffers under the
visited file name, saving may use the wrong file name, or it may get an error. If such a
problem happens, use C-x C-w to specify a new file name for that buffer.

188 GNU Emacs Manual

The variable locale-coding-system specifies a coding system to use when encoding
and decoding system strings such as system error messages and format-time-string for-
mats and time stamps. That coding system is also used for decoding non-ASCII keyboard
input on X Window systems. You should choose a coding system that is compatible with
the underlying system’s text representation, which is normally specified by one of the envi-
ronment variables LC_ALL, LC_CTYPE, and LANG. (The first one, in the order specified above,
whose value is nonempty is the one that determines the text representation.)

18.10 Fontsets

A font for X typically defines shapes for a single alphabet or script. Therefore, displaying
the entire range of scripts that Emacs supports requires a collection of many fonts. In Emacs,
such a collection is called a fontset. A fontset is defined by a list of fonts, each assigned to
handle a range of character codes.

Each fontset has a name, like a font. The available X fonts are defined by the X server;
fontsets, however, are defined within Emacs itself. Once you have defined a fontset, you
can use it within Emacs by specifying its name, anywhere that you could use a single font.
Of course, Emacs fontsets can use only the fonts that the X server supports; if certain
characters appear on the screen as hollow boxes, this means that the fontset in use for them
has no font for those characters.4

Emacs creates two fontsets automatically: the standard fontset and the startup fontset.
The standard fontset is most likely to have fonts for a wide variety of non-ASCII characters;
however, this is not the default for Emacs to use. (By default, Emacs tries to find a font
that has bold and italic variants.) You can specify use of the standard fontset with the ‘-fn’
option, or with the ‘Font’ X resource (see Section B.7 [Font X], page 430). For example,

emacs -fn fontset-standard

A fontset does not necessarily specify a font for every character code. If a fontset specifies
no font for a certain character, or if it specifies a font that does not exist on your system,
then it cannot display that character properly. It will display that character as an empty
box instead.

The fontset height and width are determined by the ASCII characters (that is, by the
font used for ASCII characters in that fontset). If another font in the fontset has a different
height, or a different width, then characters assigned to that font are clipped to the fontset’s
size. If highlight-wrong-size-font is non-nil, a box is displayed around these wrong-size
characters as well.

18.11 Defining fontsets

Emacs creates a standard fontset automatically according to the value of standard-
fontset-spec. This fontset’s name is

-*-fixed-medium-r-normal-*-16-*-*-*-*-*-fontset-standard

or just ‘fontset-standard’ for short.
Bold, italic, and bold-italic variants of the standard fontset are created automatically.

Their names have ‘bold’ instead of ‘medium’, or ‘i’ instead of ‘r’, or both.

4 The Emacs installation instructions have information on additional font support.

Chapter 18: International Character Set Support 189

If you specify a default ASCII font with the ‘Font’ resource or the ‘-fn’ argument,
Emacs generates a fontset from it automatically. This is the startup fontset and its name
is fontset-startup. It does this by replacing the foundry, family, add style, and aver-
age width fields of the font name with ‘*’, replacing charset registry field with ‘fontset’,
and replacing charset encoding field with ‘startup’, then using the resulting string to spec-
ify a fontset.

For instance, if you start Emacs this way,
emacs -fn "*courier-medium-r-normal--14-140-*-iso8859-1"

Emacs generates the following fontset and uses it for the initial X window frame:
-*-*-medium-r-normal-*-14-140-*-*-*-*-fontset-startup

With the X resource ‘Emacs.Font’, you can specify a fontset name just like an ac-
tual font name. But be careful not to specify a fontset name in a wildcard resource
like ‘Emacs*Font’—that wildcard specification matches various other resources, such as
for menus, and menus cannot handle fontsets.

You can specify additional fontsets using X resources named ‘Fontset-n’, where n is an
integer starting from 0. The resource value should have this form:

fontpattern, [charsetname:fontname]. . .

fontpattern should have the form of a standard X font name, except for the last two fields.
They should have the form ‘fontset-alias’.

The fontset has two names, one long and one short. The long name is fontpattern. The
short name is ‘fontset-alias’. You can refer to the fontset by either name.

The construct ‘charset:font’ specifies which font to use (in this fontset) for one particular
character set. Here, charset is the name of a character set, and font is the font to use for
that character set. You can use this construct any number of times in defining one fontset.

For the other character sets, Emacs chooses a font based on fontpattern. It replaces
‘fontset-alias’ with values that describe the character set. For the ASCII character font,
‘fontset-alias’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not useful because it is better
to use the smaller font in its own size, which is what Emacs does.

Thus if fontpattern is this,
-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:
-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:
-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in family
field. In such a case, ‘Fontset-n’ can be specified as below:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\
chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

190 GNU Emacs Manual

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

The function that processes the fontset resource value to create the fontset is called
create-fontset-from-fontset-spec. You can also call this function explicitly to create
a fontset.

See Section B.7 [Font X], page 430, for more information about font naming in X.

18.12 Undisplayable Characters

Your terminal may be unable to display some non-ASCII characters. Most
non-windowing terminals can only use a single character set (use the variable
default-terminal-coding-system (see Section 18.9 [Specify Coding], page 185) to tell
Emacs which one); characters which can’t be encoded in that coding system are displayed
as ‘?’ by default.

Windowing terminals can display a broader range of characters, but you may not have
fonts installed for all of them; characters that have no font appear as a hollow box.

If you use Latin-1 characters but your terminal can’t display Latin-1, you can arrange
to display mnemonic ASCII sequences instead, e.g. ‘"o’ for o-umlaut. Load the library
‘iso-ascii’ to do this.

If your terminal can display Latin-1, you can display characters from other European
character sets using a mixture of equivalent Latin-1 characters and ASCII mnemonics. Use
the Custom option latin1-display to enable this. The mnemonic ASCII sequences mostly
correspond to those of the prefix input methods.

18.13 Single-byte Character Set Support

The ISO 8859 Latin-n character sets define character codes in the range 0240 to 0377
octal (160 to 255 decimal) to handle the accented letters and punctuation needed by various
European languages (and some non-European ones). If you disable multibyte characters,
Emacs can still handle one of these character codes at a time. To specify which of these codes
to use, invoke M-x set-language-environment and specify a suitable language environment
such as ‘Latin-n’.

For more information about unibyte operation, see Section 18.2 [Enabling Multibyte],
page 176. Note particularly that you probably want to ensure that your initialization files
are read as unibyte if they contain non-ASCII characters.

Emacs can also display those characters, provided the terminal or font in use supports
them. This works automatically. Alternatively, if you are using a window system, Emacs
can also display single-byte characters through fontsets, in effect by displaying the equivalent
multibyte characters according to the current language environment. To request this, set
the variable unibyte-display-via-language-environment to a non-nil value.

If your terminal does not support display of the Latin-1 character set, Emacs can dis-
play these characters as ASCII sequences which at least give you a clear idea of what the
characters are. To do this, load the library iso-ascii. Similar libraries for other Latin-n
character sets could be implemented, but we don’t have them yet.

Chapter 18: International Character Set Support 191

Normally non-ISO-8859 characters (decimal codes between 128 and 159 inclusive) are
displayed as octal escapes. You can change this for non-standard “extended” versions of
ISO-8859 character sets by using the function standard-display-8bit in the disp-table
library.

There are several ways you can input single-byte non-ASCII characters:

• If your keyboard can generate character codes 128 (decimal) and up, representing non-
ASCII characters, you can type those character codes directly.
On a windowing terminal, you should not need to do anything special to use these
keys; they should simply work. On a text-only terminal, you should use the command
M-x set-keyboard-coding-system or the Custom option keyboard-coding-system
to specify which coding system your keyboard uses (see Section 18.9 [Specify Coding],
page 185). Enabling this feature will probably require you to use ESC to type Meta
characters; however, on a Linux console or in xterm, you can arrange for Meta to be
converted to ESC and still be able type 8-bit characters present directly on the keyboard
or using Compose or AltGr keys. See Section 2.1 [User Input], page 27.

• You can use an input method for the selected language environment. See Section 18.4
[Input Methods], page 178. When you use an input method in a unibyte buffer, the
non-ASCII character you specify with it is converted to unibyte.

• For Latin-1 only, you can use the key C-x 8 as a “compose character” prefix for entry
of non-ASCII Latin-1 printing characters. C-x 8 is good for insertion (in the minibuffer
as well as other buffers), for searching, and in any other context where a key sequence
is allowed.
C-x 8 works by loading the iso-transl library. Once that library is loaded, the 〈ALT〉
modifier key, if you have one, serves the same purpose as C-x 8; use 〈ALT〉 together with
an accent character to modify the following letter. In addition, if you have keys for the
Latin-1 “dead accent characters,” they too are defined to compose with the following
character, once iso-transl is loaded. Use C-x 8 C-h to list the available translations
as mnemonic command names.

• For Latin-1, Latin-2 and Latin-3, M-x iso-accents-mode enables a minor mode that
works much like the latin-1-prefix input method, but does not depend on having
the input methods installed. This mode is buffer-local. It can be customized for various
languages with M-x iso-accents-customize.

192 GNU Emacs Manual

Chapter 19: Major Modes 193

19 Major Modes

Emacs provides many alternative major modes, each of which customizes Emacs for
editing text of a particular sort. The major modes are mutually exclusive, and each buffer
has one major mode at any time. The mode line normally shows the name of the current
major mode, in parentheses (see Section 1.3 [Mode Line], page 23).

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific redefinitions or variable settings, so that each Emacs command behaves in its most
general manner, and each option is in its default state. For editing text of a specific type
that Emacs knows about, such as Lisp code or English text, you should switch to the
appropriate major mode, such as Lisp mode or Text mode.

Selecting a major mode changes the meanings of a few keys to become more specifically
adapted to the language being edited. The ones that are changed frequently are 〈TAB〉, 〈DEL〉,
and C-j. The prefix key C-c normally contains mode-specific commands. In addition, the
commands which handle comments use the mode to determine how comments are to be
delimited. Many major modes redefine the syntactical properties of characters appearing
in the buffer. See Section 32.6 [Syntax], page 403.

The major modes fall into three major groups. The first group contains modes for normal
text, either plain or with mark-up. It includes Text mode, HTML mode, SGML mode,
TEX mode and Outline mode. The second group contains modes for specific programming
languages. These include Lisp mode (which has several variants), C mode, Fortran mode,
and others. The remaining major modes are not intended for use on users’ files; they are
used in buffers created for specific purposes by Emacs, such as Dired mode for buffers made
by Dired (see Chapter 29 [Dired], page 319), Mail mode for buffers made by C-x m (see
Chapter 27 [Sending Mail], page 293), and Shell mode for buffers used for communicating
with an inferior shell process (see Section 31.2.2 [Interactive Shell], page 352).

Most programming-language major modes specify that only blank lines separate para-
graphs. This is to make the paragraph commands useful. (See Section 21.3 [Paragraphs],
page 201.) They also cause Auto Fill mode to use the definition of 〈TAB〉 to indent the new
lines it creates. This is because most lines in a program are usually indented (see Chapter 20
[Indentation], page 195).

19.1 How Major Modes are Chosen

You can select a major mode explicitly for the current buffer, but most of the time
Emacs determines which mode to use based on the file name or on special text in the file.

Explicit selection of a new major mode is done with a M-x command. From the name of
a major mode, add -mode to get the name of a command to select that mode. Thus, you
can enter Lisp mode by executing M-x lisp-mode.

When you visit a file, Emacs usually chooses the right major mode based on the file’s
name. For example, files whose names end in ‘.c’ are edited in C mode. The correspondence
between file names and major modes is controlled by the variable auto-mode-alist. Its
value is a list in which each element has this form,

(regexp . mode-function)

or this form,

194 GNU Emacs Manual

(regexp mode-function flag)

For example, one element normally found in the list has the form ("\\.c\\’" . c-mode),
and it is responsible for selecting C mode for files whose names end in ‘.c’. (Note that
‘\\’ is needed in Lisp syntax to include a ‘\’ in the string, which must be used to suppress
the special meaning of ‘.’ in regexps.) If the element has the form (regexp mode-function
flag) and flag is non-nil, then after calling mode-function, the suffix that matched regexp
is discarded and the list is searched again for another match.

You can specify which major mode should be used for editing a certain file by a special
sort of text in the first nonblank line of the file. The mode name should appear in this
line both preceded and followed by ‘-*-’. Other text may appear on the line as well. For
example,

;-*-Lisp-*-

tells Emacs to use Lisp mode. Such an explicit specification overrides any defaults based on
the file name. Note how the semicolon is used to make Lisp treat this line as a comment.

Another format of mode specification is
-*- mode: modename;-*-

which allows you to specify local variables as well, like this:
-*- mode: modename; var: value; ... -*-

See Section 32.2.5 [File Variables], page 388, for more information about this.
When a file’s contents begin with ‘#!’, it can serve as an executable shell command,

which works by running an interpreter named on the file’s first line. The rest of the file is
used as input to the interpreter.

When you visit such a file in Emacs, if the file’s name does not specify a major mode,
Emacs uses the interpreter name on the first line to choose a mode. If the first line is the
name of a recognized interpreter program, such as ‘perl’ or ‘tcl’, Emacs uses a mode appro-
priate for programs for that interpreter. The variable interpreter-mode-alist specifies
the correspondence between interpreter program names and major modes.

When the first line starts with ‘#!’, you cannot (on many systems) use the ‘-*-’ feature
on the first line, because the system would get confused when running the interpreter. So
Emacs looks for ‘-*-’ on the second line in such files as well as on the first line.

When you visit a file that does not specify a major mode to use, or when you create
a new buffer with C-x b, the variable default-major-mode specifies which major mode
to use. Normally its value is the symbol fundamental-mode, which specifies Fundamental
mode. If default-major-mode is nil, the major mode is taken from the previously current
buffer.

If you change the major mode of a buffer, you can go back to the major mode Emacs
would choose automatically: use the command M-x normal-mode to do this. This is the
same function that find-file calls to choose the major mode. It also processes the file’s
local variables list (if any).

The commands C-x C-w and set-visited-file-name change to a new major mode if
the new file name implies a mode (see Section 14.3 [Saving], page 113). However, this does
not happen if the buffer contents specify a major mode, and certain “special” major modes
do not allow the mode to change. You can turn off this mode-changing feature by setting
change-major-mode-with-file-name to nil.

Chapter 20: Indentation 195

20 Indentation

This chapter describes the Emacs commands that add, remove, or adjust indentation.

〈TAB〉 Indent the current line “appropriately” in a mode-dependent fashion.

C-j Perform 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

M-^ Merge the previous and the current line (delete-indentation). This would
cancel out the effect of C-j.

C-M-o Split the current line at point; text on the line after point becomes a new line
indented to the same column where point is located (split-line).

M-m Move (forward or back) to the first nonblank character on the current line
(back-to-indentation).

C-M-\ Indent several lines to the same column (indent-region).

C-x 〈TAB〉 Shift a block of lines rigidly right or left (indent-rigidly).

M-i Indent from point to the next prespecified tab stop column (tab-to-tab-stop).

M-x indent-relative
Indent from point to under an indentation point in the previous line.

Most programming languages have some indentation convention. For Lisp code, lines
are indented according to their nesting in parentheses. The same general idea is used for C
code, though many details are different.

Whatever the language, to indent a line, use the 〈TAB〉 command. Each major mode
defines this command to perform the sort of indentation appropriate for the particular
language. In Lisp mode, 〈TAB〉 aligns the line according to its depth in parentheses. No
matter where in the line you are when you type 〈TAB〉, it aligns the line as a whole. In
C mode, 〈TAB〉 implements a subtle and sophisticated indentation style that knows about
many aspects of C syntax.

In Text mode, 〈TAB〉 runs the command tab-to-tab-stop, which indents to the next
tab stop column. You can set the tab stops with M-x edit-tab-stops.

Normally, 〈TAB〉 inserts an optimal mix of tabs and spaces for the intended indentation.
See Section 20.3 [Just Spaces], page 197, for how to prevent use of tabs.

20.1 Indentation Commands and Techniques

To move over the indentation on a line, do M-m (back-to-indentation). This command,
given anywhere on a line, positions point at the first nonblank character on the line.

To insert an indented line before the current line, do C-a C-o 〈TAB〉. To make an indented
line after the current line, use C-e C-j.

If you just want to insert a tab character in the buffer, you can type C-q 〈TAB〉.
C-M-o (split-line) moves the text from point to the end of the line vertically down, so

that the current line becomes two lines. C-M-o first moves point forward over any spaces and
tabs. Then it inserts after point a newline and enough indentation to reach the same column
point is on. Point remains before the inserted newline; in this regard, C-M-o resembles C-o.

196 GNU Emacs Manual

To join two lines cleanly, use the M-^ (delete-indentation) command. It deletes the
indentation at the front of the current line, and the line boundary as well, replacing them
with a single space. As a special case (useful for Lisp code) the single space is omitted if
the characters to be joined are consecutive open parentheses or closing parentheses, or if
the junction follows another newline. To delete just the indentation of a line, go to the
beginning of the line and use M-\ (delete-horizontal-space), which deletes all spaces
and tabs around the cursor.

If you have a fill prefix, M-^ deletes the fill prefix if it appears after the newline that is
deleted. See Section 21.5.4 [Fill Prefix], page 205.

There are also commands for changing the indentation of several lines at once. C-M-\
(indent-region) applies to all the lines that begin in the region; it indents each line in the
“usual” way, as if you had typed 〈TAB〉 at the beginning of the line. A numeric argument
specifies the column to indent to, and each line is shifted left or right so that its first
nonblank character appears in that column. C-x 〈TAB〉 (indent-rigidly) moves all of the
lines in the region right by its argument (left, for negative arguments). The whole group of
lines moves rigidly sideways, which is how the command gets its name.

M-x indent-relative indents at point based on the previous line (actually, the last
nonempty line). It inserts whitespace at point, moving point, until it is underneath an
indentation point in the previous line. An indentation point is the end of a sequence of
whitespace or the end of the line. If point is farther right than any indentation point in the
previous line, the whitespace before point is deleted and the first indentation point then
applicable is used. If no indentation point is applicable even then, indent-relative runs
tab-to-tab-stop (see next section), unless it is called with a numeric argument, in which
case it does nothing.

indent-relative is the definition of 〈TAB〉 in Indented Text mode. See Chapter 21
[Text], page 199.

See Section 21.11.6 [Format Indentation], page 221, for another way of specifying the
indentation for part of your text.

20.2 Tab Stops

For typing in tables, you can use Text mode’s definition of 〈TAB〉, tab-to-tab-stop.
This command inserts indentation before point, enough to reach the next tab stop column.
If you are not in Text mode, this command can be found on the key M-i.

You can specify the tab stops used by M-i. They are stored in a variable called tab-
stop-list, as a list of column-numbers in increasing order.

The convenient way to set the tab stops is with M-x edit-tab-stops, which creates and
selects a buffer containing a description of the tab stop settings. You can edit this buffer to
specify different tab stops, and then type C-c C-c to make those new tab stops take effect.
edit-tab-stops records which buffer was current when you invoked it, and stores the tab
stops back in that buffer; normally all buffers share the same tab stops and changing them
in one buffer affects all, but if you happen to make tab-stop-list local in one buffer then
edit-tab-stops in that buffer will edit the local settings.

Here is what the text representing the tab stops looks like for ordinary tab stops every
eight columns.

Chapter 20: Indentation 197

: : : : : :
0 1 2 3 4
0123456789012345678901234567890123456789012345678
To install changes, type C-c C-c

The first line contains a colon at each tab stop. The remaining lines are present just to
help you see where the colons are and know what to do.

Note that the tab stops that control tab-to-tab-stop have nothing to do with display-
ing tab characters in the buffer. See Section 11.12 [Display Custom], page 89, for more
information on that.

20.3 Tabs vs. Spaces

Emacs normally uses both tabs and spaces to indent lines. If you prefer, all indentation
can be made from spaces only. To request this, set indent-tabs-mode to nil. This is a
per-buffer variable, so altering the variable affects only the current buffer, but there is a
default value which you can change as well. See Section 32.2.4 [Locals], page 387.

There are also commands to convert tabs to spaces or vice versa, always preserving the
columns of all nonblank text. M-x tabify scans the region for sequences of spaces, and
converts sequences of at least three spaces to tabs if that can be done without changing
indentation. M-x untabify changes all tabs in the region to appropriate numbers of spaces.

198 GNU Emacs Manual

Chapter 21: Commands for Human Languages 199

21 Commands for Human Languages

The term text has two widespread meanings in our area of the computer field. One is
data that is a sequence of characters. Any file that you edit with Emacs is text, in this sense
of the word. The other meaning is more restrictive: a sequence of characters in a human
language for humans to read (possibly after processing by a text formatter), as opposed to
a program or commands for a program.

Human languages have syntactic/stylistic conventions that can be supported or used to
advantage by editor commands: conventions involving words, sentences, paragraphs, and
capital letters. This chapter describes Emacs commands for all of these things. There
are also commands for filling, which means rearranging the lines of a paragraph to be
approximately equal in length. The commands for moving over and killing words, sentences
and paragraphs, while intended primarily for editing text, are also often useful for editing
programs.

Emacs has several major modes for editing human-language text. If the file contains text
pure and simple, use Text mode, which customizes Emacs in small ways for the syntactic
conventions of text. Outline mode provides special commands for operating on text with
an outline structure. See Section 21.8 [Outline Mode], page 208.

For text which contains embedded commands for text formatters, Emacs has other major
modes, each for a particular text formatter. Thus, for input to TEX, you would use TEX
mode (see Section 21.9 [TeX Mode], page 213). For input to nroff, use Nroff mode.

Instead of using a text formatter, you can edit formatted text in WYSIWYG style (“what
you see is what you get”), with Enriched mode. Then the formatting appears on the screen
in Emacs while you edit. See Section 21.11 [Formatted Text], page 218.

The “automatic typing” features may be useful when writing text. See section “Auto-
typing” in Features for Automatic Typing.

21.1 Words

Emacs has commands for moving over or operating on words. By convention, the keys
for them are all Meta characters.

M-f Move forward over a word (forward-word).

M-b Move backward over a word (backward-word).

M-d Kill up to the end of a word (kill-word).

M-〈DEL〉 Kill back to the beginning of a word (backward-kill-word).

M-@ Mark the end of the next word (mark-word).

M-t Transpose two words or drag a word across other words (transpose-words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d,
〈DEL〉 and C-t. M-@ is cognate to C-@, which is an alias for C-〈SPC〉.

The commands M-f (forward-word) and M-b (backward-word) move forward and back-
ward over words. These Meta characters are thus analogous to the corresponding control
characters, C-f and C-b, which move over single characters in the text. The analogy extends

200 GNU Emacs Manual

to numeric arguments, which serve as repeat counts. M-f with a negative argument moves
backward, and M-b with a negative argument moves forward. Forward motion stops right
after the last letter of the word, while backward motion stops right before the first letter.

M-d (kill-word) kills the word after point. To be precise, it kills everything from point
to the place M-f would move to. Thus, if point is in the middle of a word, M-d kills just the
part after point. If some punctuation comes between point and the next word, it is killed
along with the word. (If you wish to kill only the next word but not the punctuation before
it, simply do M-f to get the end, and kill the word backwards with M-〈DEL〉.) M-d takes
arguments just like M-f.

M-〈DEL〉 (backward-kill-word) kills the word before point. It kills everything from point
back to where M-b would move to. If point is after the space in ‘FOO, BAR’, then ‘FOO, ’ is
killed. (If you wish to kill just ‘FOO’, and not the comma and the space, use M-b M-d instead
of M-〈DEL〉.)

M-t (transpose-words) exchanges the word before or containing point with the following
word. The delimiter characters between the words do not move. For example, ‘FOO, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’. See Section 13.2 [Transpose], page 105,
for more on transposition and on arguments to transposition commands.

To operate on the next n words with an operation which applies between point and
mark, you can either set the mark at point and then move over the words, or you can use
the command M-@ (mark-word) which does not move point, but sets the mark where M-f
would move to. M-@ accepts a numeric argument that says how many words to scan for the
place to put the mark. In Transient Mark mode, this command activates the mark.

The word commands’ understanding of syntax is completely controlled by the syntax
table. Any character can, for example, be declared to be a word delimiter. See Section 32.6
[Syntax], page 403.

21.2 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta
keys, so as to be like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).

M-e Move forward to the end of the sentence (forward-sentence).

M-k Kill forward to the end of the sentence (kill-sentence).

C-x 〈DEL〉 Kill back to the beginning of the sentence (backward-kill-sentence).

The commands M-a and M-e (backward-sentence and forward-sentence) move to the
beginning and end of the current sentence, respectively. They were chosen to resemble C-a
and C-e, which move to the beginning and end of a line. Unlike them, M-a and M-e if
repeated or given numeric arguments move over successive sentences.

Moving backward over a sentence places point just before the first character of the
sentence; moving forward places point right after the punctuation that ends the sentence.
Neither one moves over the whitespace at the sentence boundary.

Just as C-a and C-e have a kill command, C-k, to go with them, so M-a and M-e have a
corresponding kill command M-k (kill-sentence) which kills from point to the end of the

Chapter 21: Commands for Human Languages 201

sentence. With minus one as an argument it kills back to the beginning of the sentence.
Larger arguments serve as a repeat count. There is also a command, C-x 〈DEL〉 (backward-
kill-sentence), for killing back to the beginning of a sentence. This command is useful
when you change your mind in the middle of composing text.

The sentence commands assume that you follow the American typist’s convention of
putting two spaces at the end of a sentence; they consider a sentence to end wherever there
is a ‘.’, ‘?’ or ‘!’ followed by the end of a line or two spaces, with any number of ‘)’, ‘]’, ‘’’,
or ‘"’ characters allowed in between. A sentence also begins or ends wherever a paragraph
begins or ends.

The variable sentence-end controls recognition of the end of a sentence. It is a regexp
that matches the last few characters of a sentence, together with the whitespace following
the sentence. Its normal value is

"[.?!][]\"’)]*\\($\\| $\\|\t\\| \\)[\t\n]*"

This example is explained in the section on regexps. See Section 12.5 [Regexps], page 95.
If you want to use just one space between sentences, you should set sentence-end to

this value:
"[.?!][]\"’)]*\\($\\|\t\\| \\)[\t\n]*"

You should also set the variable sentence-end-double-space to nil so that the fill com-
mands expect and leave just one space at the end of a sentence. Note that this makes
it impossible to distinguish between periods that end sentences and those that indicate
abbreviations.

21.3 Paragraphs

The Emacs commands for manipulating paragraphs are also Meta keys.

M-{ Move back to previous paragraph beginning (backward-paragraph).

M-} Move forward to next paragraph end (forward-paragraph).

M-h Put point and mark around this or next paragraph (mark-paragraph).

M-{ moves to the beginning of the current or previous paragraph, while M-} moves to
the end of the current or next paragraph. Blank lines and text-formatter command lines
separate paragraphs and are not considered part of any paragraph. In Fundamental mode,
but not in Text mode, an indented line also starts a new paragraph. (If a paragraph is
preceded by a blank line, these commands treat that blank line as the beginning of the
paragraph.)

In major modes for programs, paragraphs begin and end only at blank lines. This makes
the paragraph commands continue to be useful even though there are no paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines which don’t start
with the fill prefix. See Section 21.5 [Filling], page 203.

When you wish to operate on a paragraph, you can use the command M-h (mark-
paragraph) to set the region around it. Thus, for example, M-h C-w kills the paragraph
around or after point. The M-h command puts point at the beginning and mark at the end
of the paragraph point was in. In Transient Mark mode, it activates the mark. If point is
between paragraphs (in a run of blank lines, or at a boundary), the paragraph following

202 GNU Emacs Manual

point is surrounded by point and mark. If there are blank lines preceding the first line of
the paragraph, one of these blank lines is included in the region.

The precise definition of a paragraph boundary is controlled by the variables paragraph-
separate and paragraph-start. The value of paragraph-start is a regexp that should
match any line that either starts or separates paragraphs. The value of paragraph-
separate is another regexp that should match only lines that separate paragraphs without
being part of any paragraph (for example, blank lines). Lines that start a new paragraph and
are contained in it must match only paragraph-start, not paragraph-separate. For ex-
ample, in Fundamental mode, paragraph-start is "[\t\n\f]", and paragraph-separate
is "[\t\f]*$".

Normally it is desirable for page boundaries to separate paragraphs. The default values
of these variables recognize the usual separator for pages.

21.4 Pages

Files are often thought of as divided into pages by the formfeed character (ASCII control-
L, octal code 014). When you print hardcopy for a file, this character forces a page break;
thus, each page of the file goes on a separate page on paper. Most Emacs commands treat
the page-separator character just like any other character: you can insert it with C-q C-l,
and delete it with 〈DEL〉. Thus, you are free to paginate your file or not. However, since
pages are often meaningful divisions of the file, Emacs provides commands to move over
them and operate on them.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).

C-x l Count the lines in this page (count-lines-page).

The C-x [(backward-page) command moves point to immediately after the previous
page delimiter. If point is already right after a page delimiter, it skips that one and stops at
the previous one. A numeric argument serves as a repeat count. The C-x] (forward-page)
command moves forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page and
the mark at the end. The page delimiter at the end is included (the mark follows it). The
page delimiter at the front is excluded (point follows it). In Transient Mark mode, this
command activates the mark.

C-x C-p C-w is a handy way to kill a page to move it elsewhere. If you move to another
page delimiter with C-x [and C-x], then yank the killed page, all the pages will be properly
delimited once again. The reason C-x C-p includes only the following page delimiter in the
region is to ensure that.

A numeric argument to C-x C-p is used to specify which page to go to, relative to the
current one. Zero means the current page. One means the next page, and −1 means the
previous one.

The C-x l command (count-lines-page) is good for deciding where to break a page
in two. It displays in the echo area the total number of lines in the current page, and then
divides it up into those preceding the current line and those following, as in

Chapter 21: Commands for Human Languages 203

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the beginning of a line.
The variable page-delimiter controls where pages begin. Its value is a regexp that

matches the beginning of a line that separates pages. The normal value of this variable is
"^\f", which matches a formfeed character at the beginning of a line.

21.5 Filling Text

Filling text means breaking it up into lines that fit a specified width. Emacs does
filling in two ways. In Auto Fill mode, inserting text with self-inserting characters also
automatically fills it. There are also explicit fill commands that you can use when editing
text leaves it unfilled. When you edit formatted text, you can specify a style of filling for
each portion of the text (see Section 21.11 [Formatted Text], page 218).

21.5.1 Auto Fill Mode

Auto Fill mode is a minor mode in which lines are broken automatically when they
become too wide. Breaking happens only when you type a 〈SPC〉 or 〈RET〉.

M-x auto-fill-mode
Enable or disable Auto Fill mode.

〈SPC〉
〈RET〉 In Auto Fill mode, break lines when appropriate.

M-x auto-fill-mode turns Auto Fill mode on if it was off, or off if it was on. With a
positive numeric argument it always turns Auto Fill mode on, and with a negative argument
always turns it off. You can see when Auto Fill mode is in effect by the presence of the word
‘Fill’ in the mode line, inside the parentheses. Auto Fill mode is a minor mode which is
enabled or disabled for each buffer individually. See Section 32.1 [Minor Modes], page 377.

In Auto Fill mode, lines are broken automatically at spaces when they get longer than
the desired width. Line breaking and rearrangement takes place only when you type 〈SPC〉
or 〈RET〉. If you wish to insert a space or newline without permitting line-breaking, type
C-q 〈SPC〉 or C-q C-j (recall that a newline is really a control-J). Also, C-o inserts a newline
without line breaking.

Auto Fill mode works well with programming-language modes, because it indents new
lines with 〈TAB〉. If a line ending in a comment gets too long, the text of the comment is
split into two comment lines. Optionally, new comment delimiters are inserted at the end
of the first line and the beginning of the second so that each line is a separate comment; the
variable comment-multi-line controls the choice (see Section 22.5 [Comments], page 235).

Adaptive filling (see Section 21.5.5 [Adaptive Fill], page 206) works for Auto Filling as
well as for explicit fill commands. It takes a fill prefix automatically from the second or
first line of a paragraph.

Auto Fill mode does not refill entire paragraphs; it can break lines but cannot merge
lines. So editing in the middle of a paragraph can result in a paragraph that is not correctly
filled. The easiest way to make the paragraph properly filled again is usually with the
explicit fill commands.

204 GNU Emacs Manual

Many users like Auto Fill mode and want to use it in all text files. The section on init
files says how to arrange this permanently for yourself. See Section 32.7 [Init File], page 403.

21.5.2 Refill Mode

Refill minor mode provides support for keeping paragraphs filled as you type or modify
them in other ways. It provides an effect similar to typical word processor behavior. This
works by running a paragraph-filling command at suitable times.

When you are typing text, only characters which normally trigger auto filling, like the
space character, will trigger refilling. This is to avoid making it too slow. Apart from
self-inserting characters, other commands which modify the text cause refilling.

The current implementation is preliminary and probably not robust. We expect to
improve on it.

To toggle the use of Refill mode in the current buffer, type M-x refill-mode.

21.5.3 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).

C-x f Set the fill column (set-fill-column).

M-x fill-region
Fill each paragraph in the region (fill-region).

M-x fill-region-as-paragraph
Fill the region, considering it as one paragraph.

M-s Center a line.

To refill a paragraph, use the command M-q (fill-paragraph). This operates on the
paragraph that point is inside, or the one after point if point is between paragraphs. Refilling
works by removing all the line-breaks, then inserting new ones where necessary.

To refill many paragraphs, use M-x fill-region, which divides the region into para-
graphs and fills each of them.

M-q and fill-region use the same criteria as M-h for finding paragraph boundaries
(see Section 21.3 [Paragraphs], page 201). For more control, you can use M-x
fill-region-as-paragraph, which refills everything between point and mark. This
command deletes any blank lines within the region, so separate blocks of text end up
combined into one block.

A numeric argument to M-q causes it to justify the text as well as filling it. This means
that extra spaces are inserted to make the right margin line up exactly at the fill column. To
remove the extra spaces, use M-q with no argument. (Likewise for fill-region.) Another
way to control justification, and choose other styles of filling, is with the justification
text property; see Section 21.11.7 [Format Justification], page 222.

The command M-s (center-line) centers the current line within the current fill column.
With an argument n, it centers n lines individually and moves past them.

The maximum line width for filling is in the variable fill-column. Altering the value
of fill-column makes it local to the current buffer; until that time, the default value is in

Chapter 21: Commands for Human Languages 205

effect. The default is initially 70. See Section 32.2.4 [Locals], page 387. The easiest way
to set fill-column is to use the command C-x f (set-fill-column). With a numeric
argument, it uses that as the new fill column. With just C-u as argument, it sets fill-
column to the current horizontal position of point.

Emacs commands normally consider a period followed by two spaces or by a newline as
the end of a sentence; a period followed by just one space indicates an abbreviation and
not the end of a sentence. To preserve the distinction between these two ways of using a
period, the fill commands do not break a line after a period followed by just one space.

If the variable sentence-end-double-space is nil, the fill commands expect and leave
just one space at the end of a sentence. Ordinarily this variable is t, so the fill commands in-
sist on two spaces for the end of a sentence, as explained above. See Section 21.2 [Sentences],
page 200.

If the variable colon-double-space is non-nil, the fill commands put two spaces after
a colon.

Some languages do not use period to indicate end of sentence. For example, a sentence
in Thai text ends with double space but without a period. Set the variable sentence-end-
without-period to t to tell the sentence commands that a period is not necessary.

21.5.4 The Fill Prefix

To fill a paragraph in which each line starts with a special marker (which might be a few
spaces, giving an indented paragraph), you can use the fill prefix feature. The fill prefix is
a string that Emacs expects every line to start with, and which is not included in filling.
You can specify a fill prefix explicitly; Emacs can also deduce the fill prefix automatically
(see Section 21.5.5 [Adaptive Fill], page 206).

C-x . Set the fill prefix (set-fill-prefix).

M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs
Fill the region, considering each change of indentation as starting a new para-
graph.

M-x fill-nonuniform-paragraphs
Fill the region, considering only paragraph-separator lines as starting a new
paragraph.

To specify a fill prefix, move to a line that starts with the desired prefix, put point at
the end of the prefix, and give the command C-x . (set-fill-prefix). That’s a period
after the C-x. To turn off the fill prefix, specify an empty prefix: type C-x . with point at
the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line
before filling and insert it on each line after filling. Auto Fill mode also inserts the fill prefix
automatically when it makes a new line. The C-o command inserts the fill prefix on new
lines it creates, when you use it at the beginning of a line (see Section 4.7 [Blank Lines],
page 38). Conversely, the command M-^ deletes the prefix (if it occurs) after the newline
that it deletes (see Chapter 20 [Indentation], page 195).

206 GNU Emacs Manual

For example, if fill-column is 40 and you set the fill prefix to ‘;; ’, then M-q in the
following text

;; This is an
;; example of a paragraph
;; inside a Lisp-style comment.

produces this:
;; This is an example of a paragraph
;; inside a Lisp-style comment.

Lines that do not start with the fill prefix are considered to start paragraphs, both in
M-q and the paragraph commands; this gives good results for paragraphs with hanging
indentation (every line indented except the first one). Lines which are blank or indented
once the prefix is removed also separate or start paragraphs; this is what you want if you
are writing multi-paragraph comments with a comment delimiter on each line.

You can use M-x fill-individual-paragraphs to set the fill prefix for each paragraph
automatically. This command divides the region into paragraphs, treating every change in
the amount of indentation as the start of a new paragraph, and fills each of these para-
graphs. Thus, all the lines in one “paragraph” have the same amount of indentation. That
indentation serves as the fill prefix for that paragraph.

M-x fill-nonuniform-paragraphs is a similar command that divides the region into
paragraphs in a different way. It considers only paragraph-separating lines (as defined by
paragraph-separate) as starting a new paragraph. Since this means that the lines of one
paragraph may have different amounts of indentation, the fill prefix used is the smallest
amount of indentation of any of the lines of the paragraph. This gives good results with
styles that indent a paragraph’s first line more or less that the rest of the paragraph.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when
there is no fill prefix. This is a per-buffer variable; altering the variable affects only the
current buffer, but there is a default value which you can change as well. See Section 32.2.4
[Locals], page 387.

The indentation text property provides another way to control the amount of inden-
tation paragraphs receive. See Section 21.11.6 [Format Indentation], page 221.

21.5.5 Adaptive Filling

The fill commands can deduce the proper fill prefix for a paragraph automatically in
certain cases: either whitespace or certain punctuation characters at the beginning of a line
are propagated to all lines of the paragraph.

If the paragraph has two or more lines, the fill prefix is taken from the paragraph’s
second line, but only if it appears on the first line as well.

If a paragraph has just one line, fill commands may take a prefix from that line. The
decision is complicated because there are three reasonable things to do in such a case:
• Use the first line’s prefix on all the lines of the paragraph.
• Indent subsequent lines with whitespace, so that they line up under the text that follows

the prefix on the first line, but don’t actually copy the prefix from the first line.
• Don’t do anything special with the second and following lines.

Chapter 21: Commands for Human Languages 207

All three of these styles of formatting are commonly used. So the fill commands try to
determine what you would like, based on the prefix that appears and on the major mode.
Here is how.

If the prefix found on the first line matches adaptive-fill-first-line-regexp, or if
it appears to be a comment-starting sequence (this depends on the major mode), then the
prefix found is used for filling the paragraph, provided it would not act as a paragraph
starter on subsequent lines.

Otherwise, the prefix found is converted to an equivalent number of spaces, and those
spaces are used as the fill prefix for the rest of the lines, provided they would not act as a
paragraph starter on subsequent lines.

In Text mode, and other modes where only blank lines and page delimiters separate
paragraphs, the prefix chosen by adaptive filling never acts as a paragraph starter, so it can
always be used for filling.

The variable adaptive-fill-regexp determines what kinds of line beginnings can serve
as a fill prefix: any characters at the start of the line that match this regular expression
are used. If you set the variable adaptive-fill-mode to nil, the fill prefix is never chosen
automatically.

You can specify more complex ways of choosing a fill prefix automatically by setting the
variable adaptive-fill-function to a function. This function is called with point after
the left margin of a line, and it should return the appropriate fill prefix based on that line.
If it returns nil, that means it sees no fill prefix in that line.

21.6 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text
to upper case or to lower case.

M-l Convert following word to lower case (downcase-word).

M-u Convert following word to upper case (upcase-word).

M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

The word conversion commands are the most useful. M-l (downcase-word) converts the
word after point to lower case, moving past it. Thus, repeating M-l converts successive
words. M-u (upcase-word) converts to all capitals instead, while M-c (capitalize-word)
puts the first letter of the word into upper case and the rest into lower case. All these com-
mands convert several words at once if given an argument. They are especially convenient
for converting a large amount of text from all upper case to mixed case, because you can
move through the text using M-l, M-u or M-c on each word as appropriate, occasionally
using M-f instead to skip a word.

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient when
you have just typed a word in the wrong case: you can give the case conversion command
and continue typing.

208 GNU Emacs Manual

If a word case conversion command is given in the middle of a word, it applies only to
the part of the word which follows point. This is just like what M-d (kill-word) does. With
a negative argument, case conversion applies only to the part of the word before point.

The other case conversion commands are C-x C-u (upcase-region) and C-x C-l
(downcase-region), which convert everything between point and mark to the specified
case. Point and mark do not move.

The region case conversion commands upcase-region and downcase-region are nor-
mally disabled. This means that they ask for confirmation if you try to use them. When
you confirm, you may enable the command, which means it will not ask for confirmation
again. See Section 32.4.11 [Disabling], page 402.

21.7 Text Mode

When you edit files of text in a human language, it’s more convenient to use Text mode
rather than Fundamental mode. To enter Text mode, type M-x text-mode.

In Text mode, only blank lines and page delimiters separate paragraphs. As a result,
paragraphs can be indented, and adaptive filling determines what indentation to use when
filling a paragraph. See Section 21.5.5 [Adaptive Fill], page 206.

Text mode defines 〈TAB〉 to run indent-relative (see Chapter 20 [Indentation],
page 195), so that you can conveniently indent a line like the previous line. When the
previous line is not indented, indent-relative runs tab-to-tab-stop, which uses Emacs
tab stops that you can set (see Section 20.2 [Tab Stops], page 196).

Text mode turns off the features concerned with comments except when you explicitly
invoke them. It changes the syntax table so that periods are not considered part of a word,
while apostrophes, backspaces and underlines are considered part of words.

If you indent the first lines of paragraphs, then you should use Paragraph-Indent
Text mode rather than Text mode. In this mode, you do not need to have
blank lines between paragraphs, because the first-line indentation is sufficient to
start a paragraph; however paragraphs in which every line is indented are not
supported. Use M-x paragraph-indent-text-mode to enter this mode. Use M-x
paragraph-indent-minor-mode to enter an equivalent minor mode, for instance during
mail composition.

Text mode, and all the modes based on it, define M-〈TAB〉 as the command ispell-
complete-word, which performs completion of the partial word in the buffer before point,
using the spelling dictionary as the space of possible words. See Section 13.4 [Spelling],
page 106.

Entering Text mode runs the hook text-mode-hook. Other major modes related to
Text mode also run this hook, followed by hooks of their own; this includes Paragraph-
Indent Text mode, Nroff mode, TEX mode, Outline mode, and Mail mode. Hook functions
on text-mode-hook can look at the value of major-mode to see which of these modes is
actually being entered. See Section 32.2.3 [Hooks], page 386.

21.8 Outline Mode

Outline mode is a major mode much like Text mode but intended for editing outlines.
It allows you to make parts of the text temporarily invisible so that you can see the outline

Chapter 21: Commands for Human Languages 209

structure. Type M-x outline-mode to switch to Outline mode as the major mode of the
current buffer.

When Outline mode makes a line invisible, the line does not appear on the screen. The
screen appears exactly as if the invisible line were deleted, except that an ellipsis (three
periods in a row) appears at the end of the previous visible line (only one ellipsis no matter
how many invisible lines follow).

Editing commands that operate on lines, such as C-n and C-p, treat the text of the
invisible line as part of the previous visible line. Killing an entire visible line, including its
terminating newline, really kills all the following invisible lines along with it.

Outline minor mode provides the same commands as the major mode, Outline mode,
but you can use it in conjunction with other major modes. Type M-x outline-minor-mode
to enable the Outline minor mode in the current buffer. You can also specify this in the text
of a file, with a file local variable of the form ‘mode: outline-minor’ (see Section 32.2.5
[File Variables], page 388).

The major mode, Outline mode, provides special key bindings on the C-c prefix. Outline
minor mode provides similar bindings with C-c @ as the prefix; this is to reduce the conflicts
with the major mode’s special commands. (The variable outline-minor-mode-prefix
controls the prefix used.)

Entering Outline mode runs the hook text-mode-hook followed by the hook outline-
mode-hook (see Section 32.2.3 [Hooks], page 386).

21.8.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading lines and
body lines. A heading line represents a topic in the outline. Heading lines start with one or
more stars; the number of stars determines the depth of the heading in the outline structure.
Thus, a heading line with one star is a major topic; all the heading lines with two stars
between it and the next one-star heading are its subtopics; and so on. Any line that is not
a heading line is a body line. Body lines belong with the preceding heading line. Here is
an example:

* Food
This is the body,
which says something about the topic of food.

** Delicious Food
This is the body of the second-level header.

** Distasteful Food
This could have
a body too, with
several lines.

*** Dormitory Food

* Shelter
Another first-level topic with its header line.

210 GNU Emacs Manual

A heading line together with all following body lines is called collectively an entry. A
heading line together with all following deeper heading lines and their body lines is called
a subtree.

You can customize the criterion for distinguishing heading lines by setting the vari-
able outline-regexp. Any line whose beginning has a match for this regexp is consid-
ered a heading line. Matches that start within a line (not at the left margin) do not
count. The length of the matching text determines the level of the heading; longer matches
make a more deeply nested level. Thus, for example, if a text formatter has commands
‘@chapter’, ‘@section’ and ‘@subsection’ to divide the document into chapters and sec-
tions, you could make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\(sub\\)*section"’. Note the trick: the two words ‘chapter’ and ‘section’
are equally long, but by defining the regexp to match only ‘chap’ we ensure that the length
of the text matched on a chapter heading is shorter, so that Outline mode will know that
sections are contained in chapters. This works as long as no other command starts with
‘@chap’.

You can change the rule for calculating the level of a heading line by setting the variable
outline-level. The value of outline-level should be a function that takes no arguments
and returns the level of the current heading. Some major modes such as C, Nroff, and Emacs
Lisp mode set this variable and outline-regexp in order to work with Outline minor mode.

21.8.2 Outline Motion Commands

Outline mode provides special motion commands that move backward and forward to
heading lines.

C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-c C-p Move point to the previous visible heading line (outline-previous-visible-
heading).

C-c C-f Move point to the next visible heading line at the same level as the one point
is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-
backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-
up-heading).

C-c C-n (outline-next-visible-heading) moves down to the next heading line. C-c
C-p (outline-previous-visible-heading) moves similarly backward. Both accept nu-
meric arguments as repeat counts. The names emphasize that invisible headings are skipped,
but this is not really a special feature. All editing commands that look for lines ignore the
invisible lines automatically.

More powerful motion commands understand the level structure of headings. C-c
C-f (outline-forward-same-level) and C-c C-b (outline-backward-same-level) move
from one heading line to another visible heading at the same depth in the outline. C-c C-u
(outline-up-heading) moves backward to another heading that is less deeply nested.

Chapter 21: Commands for Human Languages 211

21.8.3 Outline Visibility Commands

The other special commands of outline mode are used to make lines visible or invisible.
Their names all start with hide or show. Most of them fall into pairs of opposites. They
are not undoable; instead, you can undo right past them. Making lines visible or invisible
is simply not recorded by the undo mechanism.

C-c C-t Make all body lines in the buffer invisible (hide-body).

C-c C-a Make all lines in the buffer visible (show-all).

C-c C-d Make everything under this heading invisible, not including this heading itself
(hide-subtree).

C-c C-s Make everything under this heading visible, including body, subheadings, and
their bodies (show-subtree).

C-c C-l Make the body of this heading line, and of all its subheadings, invisible (hide-
leaves).

C-c C-k Make all subheadings of this heading line, at all levels, visible (show-branches).

C-c C-i Make immediate subheadings (one level down) of this heading line visible (show-
children).

C-c C-c Make this heading line’s body invisible (hide-entry).

C-c C-e Make this heading line’s body visible (show-entry).

C-c C-q Hide everything except the top n levels of heading lines (hide-sublevels).

C-c C-o Hide everything except for the heading or body that point is in, plus the head-
ings leading up from there to the top level of the outline (hide-other).

Two commands that are exact opposites are C-c C-c (hide-entry) and C-c C-e (show-
entry). They are used with point on a heading line, and apply only to the body lines of
that heading. Subheadings and their bodies are not affected.

Two more powerful opposites are C-c C-d (hide-subtree) and C-c C-s (show-subtree).
Both expect to be used when point is on a heading line, and both apply to all the lines of
that heading’s subtree: its body, all its subheadings, both direct and indirect, and all of
their bodies. In other words, the subtree contains everything following this heading line,
up to and not including the next heading of the same or higher rank.

Intermediate between a visible subtree and an invisible one is having all the subheadings
visible but none of the body. There are two commands for doing this, depending on whether
you want to hide the bodies or make the subheadings visible. They are C-c C-l (hide-
leaves) and C-c C-k (show-branches).

A little weaker than show-branches is C-c C-i (show-children). It makes just the
direct subheadings visible—those one level down. Deeper subheadings remain invisible, if
they were invisible.

Two commands have a blanket effect on the whole file. C-c C-t (hide-body) makes all
body lines invisible, so that you see just the outline structure. C-c C-a (show-all) makes
all lines visible. These commands can be thought of as a pair of opposites even though C-c
C-a applies to more than just body lines.

212 GNU Emacs Manual

The command C-c C-q (hide-sublevels) hides all but the top level headings. With a
numeric argument n, it hides everything except the top n levels of heading lines.

The command C-c C-o (hide-other) hides everything except the heading or body text
that point is in, plus its parents (the headers leading up from there to top level in the
outline).

You can turn off the use of ellipses at the ends of visible lines by setting selective-
display-ellipses to nil. Then there is no visible indication of the presence of invisible
lines.

When incremental search finds text that is hidden by Outline mode, it makes that part
of the buffer visible. If you exit the search at that position, the text remains visible.

21.8.4 Viewing One Outline in Multiple Views

You can display two views of a single outline at the same time, in different windows.
To do this, you must create an indirect buffer using M-x make-indirect-buffer. The first
argument of this command is the existing outline buffer name, and its second argument is
the name to use for the new indirect buffer. See Section 15.6 [Indirect Buffers], page 154.

Once the indirect buffer exists, you can display it in a window in the normal fashion,
with C-x 4 b or other Emacs commands. The Outline mode commands to show and hide
parts of the text operate on each buffer independently; as a result, each buffer can have its
own view. If you want more than two views on the same outline, create additional indirect
buffers.

21.8.5 Folding Editing

The Foldout package extends Outline mode and Outline minor mode with “folding”
commands. The idea of folding is that you zoom in on a nested portion of the outline, while
hiding its relatives at higher levels.

Consider an Outline mode buffer all the text and subheadings under level-1 headings
hidden. To look at what is hidden under one of these headings, you could use C-c C-e (M-x
show-entry) to expose the body, or C-c C-i to expose the child (level-2) headings.

With Foldout, you use C-c C-z (M-x foldout-zoom-subtree). This exposes the body
and child subheadings, and narrows the buffer so that only the level-1 heading, the body
and the level-2 headings are visible. Now to look under one of the level-2 headings, position
the cursor on it and use C-c C-z again. This exposes the level-2 body and its level-3 child
subheadings and narrows the buffer again. Zooming in on successive subheadings can be
done as much as you like. A string in the mode line shows how deep you’ve gone.

When zooming in on a heading, to see only the child subheadings specify a numeric
argument: C-u C-c C-z. The number of levels of children can be specified too (compare M-x
show-children), e.g. M-2 C-c C-z exposes two levels of child subheadings. Alternatively,
the body can be specified with a negative argument: M-- C-c C-z. The whole subtree can
be expanded, similarly to C-c C-s (M-x show-subtree), by specifying a zero argument: M-0
C-c C-z.

While you’re zoomed in, you can still use Outline mode’s exposure and hiding functions
without disturbing Foldout. Also, since the buffer is narrowed, “global” editing actions will

Chapter 21: Commands for Human Languages 213

only affect text under the zoomed-in heading. This is useful for restricting changes to a
particular chapter or section of your document.

To unzoom (exit) a fold, use C-c C-x (M-x foldout-exit-fold). This hides all the text
and subheadings under the top-level heading and returns you to the previous view of the
buffer. Specifying a numeric argument exits that many levels of folds. Specifying a zero
argument exits all folds.

To cancel the narrowing of a fold without hiding the text and subheadings, specify a
negative argument. For example, M--2 C-c C-x exits two folds and leaves the text and
subheadings exposed.

Foldout mode also provides mouse commands for entering and exiting folds, and for
showing and hiding text:

M-C-Mouse-1 zooms in on the heading clicked on
single click: expose body.
double click: expose subheadings.
triple click: expose body and subheadings.
quad click: expose entire subtree.

M-C-Mouse-2 exposes text under the heading clicked on
single click: expose body.
double click: expose subheadings.
triple click: expose body and subheadings.
quad click: expose entire subtree.

M-C-Mouse-3 hides text under the heading clicked on or exits fold
single click: hide subtree.
double click: exit fold and hide text.
triple click: exit fold without hiding text.
quad click: exit all folds and hide text.

You can specify different modifier keys (instead of Control-Meta-) by setting foldout-
mouse-modifiers; but if you have already loaded the ‘foldout.el’ library, you must reload
it in order for this to take effect.

To use the Foldout package, you can type M-x load-library 〈RET〉 foldout 〈RET〉; or
you can arrange for to do that automatically by putting this in your ‘.emacs’ file:

(eval-after-load "outline" ’(require ’foldout))

21.9 TEX Mode

TEX is a powerful text formatter written by Donald Knuth; it is also free, like GNU
Emacs. LaTEX is a simplified input format for TEX, implemented by TEX macros; it comes
with TEX. SliTEX is a special form of LaTEX.1

Emacs has a special TEX mode for editing TEX input files. It provides facilities for
checking the balance of delimiters and for invoking TEX on all or part of the file.

1 SliTEX is obsoleted by the ‘slides’ document class in recent LaTEX versions.

214 GNU Emacs Manual

TEX mode has three variants, Plain TEX mode, LaTEX mode, and SliTEX mode (these
three distinct major modes differ only slightly). They are designed for editing the three
different formats. The command M-x tex-mode looks at the contents of the buffer to de-
termine whether the contents appear to be either LaTEX input or SliTEX input; if so, it
selects the appropriate mode. If the file contents do not appear to be LaTEX or SliTEX,
it selects Plain TEX mode. If the contents are insufficient to determine this, the variable
tex-default-mode controls which mode is used.

When M-x tex-mode does not guess right, you can use the commands M-x
plain-tex-mode, M-x latex-mode, and M-x slitex-mode to select explicitly the particular
variants of TEX mode.

21.9.1 TEX Editing Commands

Here are the special commands provided in TEX mode for editing the text of the file.

" Insert, according to context, either ‘‘‘’ or ‘"’ or ‘’’’ (tex-insert-quote).

C-j Insert a paragraph break (two newlines) and check the previous paragraph for
unbalanced braces or dollar signs (tex-terminate-paragraph).

M-x tex-validate-region
Check each paragraph in the region for unbalanced braces or dollar signs.

C-c { Insert ‘{}’ and position point between them (tex-insert-braces).

C-c } Move forward past the next unmatched close brace (up-list).

In TEX, the character ‘"’ is not normally used; we use ‘‘‘’ to start a quotation and ‘’’’
to end one. To make editing easier under this formatting convention, TEX mode overrides
the normal meaning of the key " with a command that inserts a pair of single-quotes or
backquotes (tex-insert-quote). To be precise, this command inserts ‘‘‘’ after whitespace
or an open brace, ‘"’ after a backslash, and ‘’’’ after any other character.

If you need the character ‘"’ itself in unusual contexts, use C-q to insert it. Also, "
with a numeric argument always inserts that number of ‘"’ characters. You can turn off the
feature of " expansion by eliminating that binding in the local map (see Section 32.4 [Key
Bindings], page 393).

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX
math mode delimiters match. When you insert a ‘$’ that is meant to exit math mode,
the position of the matching ‘$’ that entered math mode is displayed for a second. This is
the same feature that displays the open brace that matches a close brace that is inserted.
However, there is no way to tell whether a ‘$’ enters math mode or leaves it; so when you
insert a ‘$’ that enters math mode, the previous ‘$’ position is shown as if it were a match,
even though they are actually unrelated.

TEX uses braces as delimiters that must match. Some users prefer to keep braces bal-
anced at all times, rather than inserting them singly. Use C-c { (tex-insert-braces) to
insert a pair of braces. It leaves point between the two braces so you can insert the text
that belongs inside. Afterward, use the command C-c } (up-list) to move forward past
the close brace.

There are two commands for checking the matching of braces. C-j (tex-terminate-
paragraph) checks the paragraph before point, and inserts two newlines to start a

Chapter 21: Commands for Human Languages 215

new paragraph. It outputs a message in the echo area if any mismatch is found. M-x
tex-validate-region checks a region, paragraph by paragraph. The errors are listed
in the ‘*Occur*’ buffer, and you can use C-c C-c or Mouse-2 in that buffer to go to a
particular mismatch.

Note that Emacs commands count square brackets and parentheses in TEX mode, not
just braces. This is not strictly correct for the purpose of checking TEX syntax. However,
parentheses and square brackets are likely to be used in text as matching delimiters and
it is useful for the various motion commands and automatic match display to work with
them.

21.9.2 LaTEX Editing Commands

LaTEX mode, and its variant, SliTEX mode, provide a few extra features not applicable
to plain TEX.

C-c C-o Insert ‘\begin’ and ‘\end’ for LaTEX block and position point on a line between
them (tex-latex-block).

C-c C-e Close the innermost LaTEX block not yet closed (tex-close-latex-block).

In LaTEX input, ‘\begin’ and ‘\end’ commands are used to group blocks of text. To
insert a ‘\begin’ and a matching ‘\end’ (on a new line following the ‘\begin’), use C-c C-o
(tex-latex-block). A blank line is inserted between the two, and point is left there. You
can use completion when you enter the block type; to specify additional block type names
beyond the standard list, set the variable latex-block-names. For example, here’s how to
add ‘theorem’, ‘corollary’, and ‘proof’:

(setq latex-block-names ’("theorem" "corollary" "proof"))

In LaTEX input, ‘\begin’ and ‘\end’ commands must balance. You can use C-c C-e
(tex-close-latex-block) to insert automatically a matching ‘\end’ to match the last
unmatched ‘\begin’. It indents the ‘\end’ to match the corresponding ‘\begin’. It inserts
a newline after ‘\end’ if point is at the beginning of a line.

21.9.3 TEX Printing Commands

You can invoke TEX as an inferior of Emacs on either the entire contents of the buffer
or just a region at a time. Running TEX in this way on just one chapter is a good way to
see what your changes look like without taking the time to format the entire file.

C-c C-r Invoke TEX on the current region, together with the buffer’s header (tex-
region).

C-c C-b Invoke TEX on the entire current buffer (tex-buffer).

C-c 〈TAB〉 Invoke BibTEX on the current file (tex-bibtex-file).

C-c C-f Invoke TEX on the current file (tex-file).

C-c C-l Recenter the window showing output from the inferior TEX so that the last line
can be seen (tex-recenter-output-buffer).

C-c C-k Kill the TEX subprocess (tex-kill-job).

216 GNU Emacs Manual

C-c C-p Print the output from the last C-c C-r, C-c C-b, or C-c C-f command (tex-
print).

C-c C-v Preview the output from the last C-c C-r, C-c C-b, or C-c C-f command (tex-
view).

C-c C-q Show the printer queue (tex-show-print-queue).

You can pass the current buffer through an inferior TEX by means of C-c C-b (tex-
buffer). The formatted output appears in a temporary file; to print it, type C-c C-p (tex-
print). Afterward, you can use C-c C-q (tex-show-print-queue) to view the progress of
your output towards being printed. If your terminal has the ability to display TEX output
files, you can preview the output on the terminal with C-c C-v (tex-view).

You can specify the directory to use for running TEX by setting the variable tex-
directory. "." is the default value. If your environment variable TEXINPUTS contains
relative directory names, or if your files contains ‘\input’ commands with relative file
names, then tex-directory must be "." or you will get the wrong results. Otherwise, it
is safe to specify some other directory, such as "/tmp".

If you want to specify which shell commands are used in the inferior TEX, you can do
so by setting the values of the variables tex-run-command, latex-run-command, slitex-
run-command, tex-dvi-print-command, tex-dvi-view-command, and tex-show-queue-
command. You must set the value of tex-dvi-view-command for your particular terminal;
this variable has no default value. The other variables have default values that may (or
may not) be appropriate for your system.

Normally, the file name given to these commands comes at the end of the command
string; for example, ‘latex filename’. In some cases, however, the file name needs to be
embedded in the command; an example is when you need to provide the file name as an
argument to one command whose output is piped to another. You can specify where to put
the file name with ‘*’ in the command string. For example,

(setq tex-dvi-print-command "dvips -f * | lpr")

The terminal output from TEX, including any error messages, appears in a buffer called
‘*tex-shell*’. If TEX gets an error, you can switch to this buffer and feed it input (this
works as in Shell mode; see Section 31.2.2 [Interactive Shell], page 352). Without switching
to this buffer you can scroll it so that its last line is visible by typing C-c C-l.

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its output is no
longer useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can also pass an arbitrary region through an inferior TEX by typing C-c C-r (tex-
region). This is tricky, however, because most files of TEX input contain commands at the
beginning to set parameters and define macros, without which no later part of the file will
format correctly. To solve this problem, C-c C-r allows you to designate a part of the file
as containing essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header.

To indicate the bounds of the header in Plain TEX mode, you insert two special strings
in the file. Insert ‘%**start of header’ before the header, and ‘%**end of header’ after it.
Each string must appear entirely on one line, but there may be other text on the line before
or after. The lines containing the two strings are included in the header. If ‘%**start of

Chapter 21: Commands for Human Languages 217

header’ does not appear within the first 100 lines of the buffer, C-c C-r assumes that there
is no header.

In LaTEX mode, the header begins with ‘\documentclass’ or ‘\documentstyle’ and
ends with ‘\begin{document}’. These are commands that LaTEX requires you to use in
any case, so nothing special needs to be done to identify the header.

The commands (tex-buffer) and (tex-region) do all of their work in a temporary
directory, and do not have available any of the auxiliary files needed by TEX for cross-
references; these commands are generally not suitable for running the final copy in which
all of the cross-references need to be correct.

When you want the auxiliary files for cross references, use C-c C-f (tex-file) which
runs TEX on the current buffer’s file, in that file’s directory. Before running TEX, it offers
to save any modified buffers. Generally, you need to use (tex-file) twice to get the cross-
references right.

The value of the variable tex-start-options-string specifies options for the TEX run.
The default value causes TEX to run in nonstop mode. To run TEX interactively, set the
variable to "".

Large TEX documents are often split into several files—one main file, plus subfiles.
Running TEX on a subfile typically does not work; you have to run it on the main file.
In order to make tex-file useful when you are editing a subfile, you can set the variable
tex-main-file to the name of the main file. Then tex-file runs TEX on that file.

The most convenient way to use tex-main-file is to specify it in a local variable list in
each of the subfiles. See Section 32.2.5 [File Variables], page 388.

For LaTEX files, you can use BibTEX to process the auxiliary file for the current buffer’s
file. BibTEX looks up bibliographic citations in a data base and prepares the cited refer-
ences for the bibliography section. The command C-c TAB (tex-bibtex-file) runs the
shell command (tex-bibtex-command) to produce a ‘.bbl’ file for the current buffer’s file.
Generally, you need to do C-c C-f (tex-file) once to generate the ‘.aux’ file, then do
C-c TAB (tex-bibtex-file), and then repeat C-c C-f (tex-file) twice more to get the
cross-references correct.

21.9.4 TEX Mode Miscellany

Entering any variant of TEX mode runs the hooks text-mode-hook and tex-mode-
hook. Then it runs either plain-tex-mode-hook, latex-mode-hook, or slitex-mode-
hook, whichever is appropriate. Starting the TEX shell runs the hook tex-shell-hook. See
Section 32.2.3 [Hooks], page 386.

TEX encoding The commands M-x iso-iso2tex, M-x iso-tex2iso, M-x iso-iso2gtex
and M-x iso-gtex2iso can be used to convert between Latin-1 encoded files and TEX-
encoded equivalents.

For managing all kinds of references for LaTEX, you can use RefTEX. See [RefTeX],
page 463.

21.10 Nroff Mode

Nroff mode is a mode like Text mode but modified to handle nroff commands present
in the text. Invoke M-x nroff-mode to enter this mode. It differs from Text mode in only

218 GNU Emacs Manual

a few ways. All nroff command lines are considered paragraph separators, so that filling
will never garble the nroff commands. Pages are separated by ‘.bp’ commands. Comments
start with backslash-doublequote. Also, three special commands are provided that are not
in Text mode:

M-n Move to the beginning of the next line that isn’t an nroff command (forward-
text-line). An argument is a repeat count.

M-p Like M-n but move up (backward-text-line).

M-? Displays in the echo area the number of text lines (lines that are not nroff
commands) in the region (count-text-lines).

The other feature of Nroff mode is that you can turn on Electric Nroff mode. This is a
minor mode that you can turn on or off with M-x electric-nroff-mode (see Section 32.1
[Minor Modes], page 377). When the mode is on, each time you use 〈RET〉 to end a line that
contains an nroff command that opens a kind of grouping, the matching nroff command to
close that grouping is automatically inserted on the following line. For example, if you are
at the beginning of a line and type . (b 〈RET〉, this inserts the matching command ‘.)b’
on a new line following point.

If you use Outline minor mode with Nroff mode (see Section 21.8 [Outline Mode],
page 208), heading lines are lines of the form ‘.H’ followed by a number (the header level).

Entering Nroff mode runs the hook text-mode-hook, followed by the hook nroff-mode-
hook (see Section 32.2.3 [Hooks], page 386).

21.11 Editing Formatted Text

Enriched mode is a minor mode for editing files that contain formatted text in WYSI-
WYG fashion, as in a word processor. Currently, formatted text in Enriched mode can
specify fonts, colors, underlining, margins, and types of filling and justification. In the
future, we plan to implement other formatting features as well.

Enriched mode is a minor mode (see Section 32.1 [Minor Modes], page 377). It is typically
used in conjunction with Text mode (see Section 21.7 [Text Mode], page 208), but you can
also use it with other major modes such as Outline mode and Paragraph-Indent Text mode.

Potentially, Emacs can store formatted text files in various file formats. Currently, only
one format is implemented: text/enriched format, which is defined by the MIME protocol.
See section “Format Conversion” in the Emacs Lisp Reference Manual, for details of how
Emacs recognizes and converts file formats.

The Emacs distribution contains a formatted text file that can serve as an example. Its
name is ‘etc/enriched.doc’. It contains samples illustrating all the features described in
this section. It also contains a list of ideas for future enhancements.

21.11.1 Requesting to Edit Formatted Text

Whenever you visit a file that Emacs saved in the text/enriched format, Emacs auto-
matically converts the formatting information in the file into Emacs’s own internal format
(text properties), and turns on Enriched mode.

Chapter 21: Commands for Human Languages 219

To create a new file of formatted text, first visit the nonexistent file, then type M-x
enriched-mode before you start inserting text. This command turns on Enriched mode.
Do this before you begin inserting text, to ensure that the text you insert is handled properly.

More generally, the command enriched-mode turns Enriched mode on if it was off, and
off if it was on. With a prefix argument, this command turns Enriched mode on if the
argument is positive, and turns the mode off otherwise.

When you save a buffer while Enriched mode is enabled in it, Emacs automatically
converts the text to text/enriched format while writing it into the file. When you visit the
file again, Emacs will automatically recognize the format, reconvert the text, and turn on
Enriched mode again.

Normally, after visiting a file in text/enriched format, Emacs refills each paragraph to
fit the specified right margin. You can turn off this refilling, to save time, by setting the
variable enriched-fill-after-visiting to nil or to ask.

However, when visiting a file that was saved from Enriched mode, there is no need for
refilling, because Emacs saves the right margin settings along with the text.

You can add annotations for saving additional text properties, which Emacs normally
does not save, by adding to enriched-translations. Note that the text/enriched
standard requires any non-standard annotations to have names starting with ‘x-’, as in
‘x-read-only’. This ensures that they will not conflict with standard annotations that
may be added later.

21.11.2 Hard and Soft Newlines

In formatted text, Emacs distinguishes between two different kinds of newlines, hard
newlines and soft newlines.

Hard newlines are used to separate paragraphs, or items in a list, or anywhere that there
should always be a line break regardless of the margins. The 〈RET〉 command (newline)
and C-o (open-line) insert hard newlines.

Soft newlines are used to make text fit between the margins. All the fill commands,
including Auto Fill, insert soft newlines—and they delete only soft newlines.

Although hard and soft newlines look the same, it is important to bear the difference
in mind. Do not use 〈RET〉 to break lines in the middle of filled paragraphs, or else you
will get hard newlines that are barriers to further filling. Instead, let Auto Fill mode break
lines, so that if the text or the margins change, Emacs can refill the lines properly. See
Section 21.5.1 [Auto Fill], page 203.

On the other hand, in tables and lists, where the lines should always remain as you
type them, you can use 〈RET〉 to end lines. For these lines, you may also want to set the
justification style to unfilled. See Section 21.11.7 [Format Justification], page 222.

21.11.3 Editing Format Information

There are two ways to alter the formatting information for a formatted text file: with
keyboard commands, and with the mouse.

The easiest way to add properties to your document is with the Text Properties menu.
You can get to this menu in two ways: from the Edit menu in the menu bar (use 〈F10〉 e t if

220 GNU Emacs Manual

you have no mouse), or with C-Mouse-2 (hold the 〈CTRL〉 key and press the middle mouse
button). There are also keyboard commands described in the following section.

Most of the items in the Text Properties menu lead to other submenus. These are
described in the sections that follow. Some items run commands directly:

Remove Face Properties
Delete from the region all the text properties that the Text Properties menu
works with (facemenu-remove-face-props).

Remove All
Delete all text properties from the region (facemenu-remove-all).

List Properties
List all the text properties of the character following point (list-text-
properties-at).

Display Faces
Display a list of all the defined faces (list-faces-display).

Display Colors
Display a list of all the defined colors (list-colors-display).

21.11.4 Faces in Formatted Text

The Faces submenu lists various Emacs faces including bold, italic, and underline.
Selecting one of these adds the chosen face to the region. See Section 11.1 [Faces], page 79.
You can also specify a face with these keyboard commands:

M-g d Set the region, or the next inserted character, to the default face (facemenu-
set-default).

M-g b Set the region, or the next inserted character, to the bold face (facemenu-set-
bold).

M-g i Set the region, or the next inserted character, to the italic face (facemenu-
set-italic).

M-g l Set the region, or the next inserted character, to the bold-italic face
(facemenu-set-bold-italic).

M-g u Set the region, or the next inserted character, to the underline face (facemenu-
set-underline).

M-g o face 〈RET〉
Set the region, or the next inserted character, to the face face (facemenu-set-
face).

If you use these commands with a prefix argument—or, in Transient Mark mode, if the
region is not active—then these commands specify a face to use for your next self-inserting
input. See Section 8.2 [Transient Mark], page 62. This applies to both the keyboard
commands and the menu commands.

Enriched mode defines two additional faces: excerpt and fixed. These correspond to
codes used in the text/enriched file format.

Chapter 21: Commands for Human Languages 221

The excerpt face is intended for quotations. This face is the same as italic unless you
customize it (see Section 32.2.2.3 [Face Customization], page 384).

The fixed face means, “Use a fixed-width font for this part of the text.” This makes a
visible difference only if you have specified a variable-width font in the default face; however,
even if the default font is fixed-width, applying the fixed face to a part of the text will
cause that part of the text to appear in a fixed-width font, if the file is ever displayed with
a variable-width default font. This applies to Emacs and to other systems that display
text/enriched format. So if you specifically want a certain part of the text to use a fixed-
width font, you should specify the fixed face for that part.

The fixed face is normally set up to use a different font from the default, even if the
default face is also fixed-width. Different systems have different fonts installed, so you may
need to customize this. See Section 32.2.2.3 [Face Customization], page 384.

If your terminal cannot display different faces, you will not be able to see them, but you
can still edit documents containing faces, and even add faces and colors to documents. The
faces you specify will be visible when the file is viewed on a terminal that can display them.

21.11.5 Colors in Formatted Text

You can specify foreground and background colors for portions of the text. There is a
menu for specifying the foreground color and a menu for specifying the background color.
Each color menu lists all the colors that you have used in Enriched mode in the current
Emacs session.

If you specify a color with a prefix argument—or, in Transient Mark mode, if the region
is not active—then it applies to your next self-inserting input. See Section 8.2 [Transient
Mark], page 62. Otherwise, the command applies to the region.

Each color menu contains one additional item: ‘Other’. You can use this item to specify
a color that is not listed in the menu; it reads the color name with the minibuffer. To
display list of available colors and their names, use the ‘Display Colors’ menu item in the
Text Properties menu (see Section 21.11.3 [Editing Format Info], page 219).

Any color that you specify in this way, or that is mentioned in a formatted text file that
you read in, is added to both color menus for the duration of the Emacs session.

There are no key bindings for specifying colors, but you can do so with the extended
commands M-x facemenu-set-foreground and M-x facemenu-set-background. Both of
these commands read the name of the color with the minibuffer.

21.11.6 Indentation in Formatted Text

When editing formatted text, you can specify different amounts of indentation for the
right or left margin of an entire paragraph or a part of a paragraph. The margins you
specify automatically affect the Emacs fill commands (see Section 21.5 [Filling], page 203)
and line-breaking commands.

The Indentation submenu provides a convenient interface for specifying these properties.
The submenu contains four items:

222 GNU Emacs Manual

Indent More
Indent the region by 4 columns (increase-left-margin). In Enriched mode,
this command is also available on C-x 〈TAB〉; if you supply a numeric argument,
that says how many columns to add to the margin (a negative argument reduces
the number of columns).

Indent Less
Remove 4 columns of indentation from the region.

Indent Right More
Make the text narrower by indenting 4 columns at the right margin.

Indent Right Less
Remove 4 columns of indentation from the right margin.

You can use these commands repeatedly to increase or decrease the indentation.
The most common way to use these commands is to change the indentation of an entire

paragraph. However, that is not the only use. You can change the margins at any point;
the new values take effect at the end of the line (for right margins) or the beginning of the
next line (for left margins).

This makes it possible to format paragraphs with hanging indents, which means that
the first line is indented less than subsequent lines. To set up a hanging indent, increase the
indentation of the region starting after the first word of the paragraph and running until
the end of the paragraph.

Indenting the first line of a paragraph is easier. Set the margin for the whole paragraph
where you want it to be for the body of the paragraph, then indent the first line by inserting
extra spaces or tabs.

Sometimes, as a result of editing, the filling of a paragraph becomes messed up—parts
of the paragraph may extend past the left or right margins. When this happens, use M-q
(fill-paragraph) to refill the paragraph.

The variable standard-indent specifies how many columns these commands should add
to or subtract from the indentation. The default value is 4. The overall default right margin
for Enriched mode is controlled by the variable fill-column, as usual.

The fill prefix, if any, works in addition to the specified paragraph indentation: C-x . does
not include the specified indentation’s whitespace in the new value for the fill prefix, and the
fill commands look for the fill prefix after the indentation on each line. See Section 21.5.4
[Fill Prefix], page 205.

21.11.7 Justification in Formatted Text

When editing formatted text, you can specify various styles of justification for a para-
graph. The style you specify automatically affects the Emacs fill commands.

The Justification submenu provides a convenient interface for specifying the style. The
submenu contains five items:

Flush Left
This is the most common style of justification (at least for English). Lines are
aligned at the left margin but left uneven at the right.

Chapter 21: Commands for Human Languages 223

Flush Right
This aligns each line with the right margin. Spaces and tabs are added on the
left, if necessary, to make lines line up on the right.

Full This justifies the text, aligning both edges of each line. Justified text looks very
nice in a printed book, where the spaces can all be adjusted equally, but it does
not look as nice with a fixed-width font on the screen. Perhaps a future version
of Emacs will be able to adjust the width of spaces in a line to achieve elegant
justification.

Center This centers every line between the current margins.

None This turns off filling entirely. Each line will remain as you wrote it; the fill and
auto-fill functions will have no effect on text which has this setting. You can,
however, still indent the left margin. In unfilled regions, all newlines are treated
as hard newlines (see Section 21.11.2 [Hard and Soft Newlines], page 219) .

In Enriched mode, you can also specify justification from the keyboard using the M-j
prefix character:

M-j l Make the region left-filled (set-justification-left).

M-j r Make the region right-filled (set-justification-right).

M-j f Make the region fully-justified (set-justification-full).

M-j c
M-S Make the region centered (set-justification-center).

M-j u Make the region unfilled (set-justification-none).

Justification styles apply to entire paragraphs. All the justification-changing commands
operate on the paragraph containing point, or, if the region is active, on all paragraphs
which overlap the region.

The default justification style is specified by the variable default-justification. Its
value should be one of the symbols left, right, full, center, or none.

21.11.8 Setting Other Text Properties

The Other Properties menu lets you add or remove three other useful text properties:
read-only, invisible and intangible. The intangible property disallows moving point
within the text, the invisible text property hides text from display, and the read-only
property disallows alteration of the text.

Each of these special properties has a menu item to add it to the region. The last menu
item, ‘Remove Special’, removes all of these special properties from the text in the region.

Currently, the invisible and intangible properties are not saved in the text/enriched
format. The read-only property is saved, but it is not a standard part of the text/enriched
format, so other editors may not respect it.

224 GNU Emacs Manual

21.11.9 Forcing Enriched Mode

Normally, Emacs knows when you are editing formatted text because it recognizes the
special annotations used in the file that you visited. However, there are situations in which
you must take special actions to convert file contents or turn on Enriched mode:
• When you visit a file that was created with some other editor, Emacs may not recognize

the file as being in the text/enriched format. In this case, when you visit the file
you will see the formatting commands rather than the formatted text. Type M-x
format-decode-buffer to translate it.

• When you insert a file into a buffer, rather than visiting it. Emacs does the necessary
conversions on the text which you insert, but it does not enable Enriched mode. If you
wish to do that, type M-x enriched-mode.

The command format-decode-buffer translates text in various formats into Emacs’s
internal format. It asks you to specify the format to translate from; however, normally you
can type just 〈RET〉, which tells Emacs to guess the format.

If you wish to look at text/enriched file in its raw form, as a sequence of characters
rather than as formatted text, use the M-x find-file-literally command. This visits
a file, like find-file, but does not do format conversion. It also inhibits character code
conversion (see Section 18.7 [Coding Systems], page 181) and automatic uncompression
(see Section 14.11 [Compressed Files], page 144). To disable format conversion but allow
character code conversion and/or automatic uncompression if appropriate, use format-
find-file with suitable arguments.

Chapter 22: Editing Programs 225

22 Editing Programs

Emacs provides many features to facilitate editing programs. Some of these features can
• Find or move over top-level definitions (see Section 22.2 [Defuns], page 226).
• Apply the usual indentation conventions of the language (see Section 22.3 [Program

Indent], page 228).
• Insert, kill or align comments (see Section 22.5 [Comments], page 235).
• Balance parentheses (see Section 22.4 [Parentheses], page 232).
• Highlight program syntax (see Section 11.2 [Font Lock], page 81).

This chapter describes these features and many more.

22.1 Major Modes for Programming Languages

Emacs has specialized major modes for various programming languages. See Chapter 19
[Major Modes], page 193. A programming language major mode typically specifies the
syntax of expressions, the customary rules for indentation, how to do syntax highlighting
for the language, and how to find the beginning of a function definition. It often customizes
or provides facilities for compiling and debugging programs as well.

Ideally, Emacs should provide a major mode for each programming language that you
might want to edit; if it doesn’t have a mode for your favorite language, you can contribute
one. But often the mode for one language can serve for other syntactically similar languages.
The major mode for language l is called l-mode, and you can select it by typing M-x l-mode
〈RET〉. See Section 19.1 [Choosing Modes], page 193.

The existing programming language major modes include Lisp, Scheme (a variant of
Lisp) and the Scheme-based DSSSL expression language, Ada, Awk, C, C++, Delphi (Object
Pascal), Fortran (free format and fixed format), Icon, IDL (CORBA), IDLWAVE, Java,
Metafont (TEX’s companion for font creation), Modula2, Objective-C, Octave, Pascal, Perl,
Pike, PostScript, Prolog, Simula, Tcl, and VHDL. There is also a major mode for makefiles,
called Makefile mode. An alternative mode for Perl is called CPerl mode. Modes are
available for the scripting languages of the common GNU and Unix shells, VMS DCL, and
MS-DOS/MS-Windows ‘BAT’ files. There are also major modes for editing various sorts of
configuration files.

In most programming languages, indentation should vary from line to line to illustrate
the structure of the program. So the major modes for programming languages arrange for
〈TAB〉 to update the indentation of the current line. They also rebind 〈DEL〉 to treat a tab
as if it were the equivalent number of spaces; this lets you delete one column of indentation
without worrying whether the whitespace consists of spaces or tabs. Use C-b C-d to delete
a tab character before point, in these modes.

Separate manuals are available for the modes for Ada (see section “Ada Mode” in Ada
Mode), C/C++/Objective C/Java/Corba IDL (see section “CC Mode” in CC Mode) and
the IDLWAVE modes (see section “IDLWAVE” in IDLWAVE User Manual).

Turning on a major mode runs a normal hook called the mode hook, which is the value
of a Lisp variable. Each major mode has a mode hook, and the hook’s name is always made
from the mode command’s name by adding ‘-hook’. For example, turning on C mode runs

226 GNU Emacs Manual

the hook c-mode-hook, while turning on Lisp mode runs the hook lisp-mode-hook. The
purpose of the mode hook is to give you a place to set up customizations for that major
mode. See Section 32.2.3 [Hooks], page 386.

22.2 Top-Level Definitions, or Defuns

In Emacs, a major definition at the top level in the buffer is called a defun. The name
comes from Lisp, but in Emacs we use it for all languages.

In most programming language modes, Emacs assumes that a defun is any pair of paren-
theses (or braces, if the language uses braces this way) that starts at the left margin. For
example, in C, the body of a function definition is normally a defun, because the open-brace
that begins it is normally at the left margin. A variable’s initializer can also count as a
defun, if the open-brace that begins the initializer is at the left margin.

However, some language modes provide their own code for recognizing defuns in a way
that suits the language syntax and conventions better.

22.2.1 Left Margin Convention

In most major modes, Emacs assumes that any opening delimiter found at the left
margin is the start of a top-level definition, or defun. Therefore, never put an opening
delimiter at the left margin unless it should have that significance. For instance, never put
an open-parenthesis at the left margin in a Lisp file unless it is the start of a top-level list.
Never put an open-brace or other opening delimiter at the beginning of a line of C code
unless it is at top level.

If you don’t follow this convention, not only will you have trouble when you explicitly use
the commands for motion by defuns; other features that use them will also give you trouble.
This includes the indentation commands (see Section 22.3 [Program Indent], page 228) and
Font Lock mode (see Section 11.2 [Font Lock], page 81).

The most likely problem case is when you want an opening delimiter at the start of a line
inside a string. To avoid trouble, put an escape character (‘\’, in C and Emacs Lisp, ‘/’ in
some other Lisp dialects) before the opening delimiter. This will not affect the contents of
the string, but will prevent that opening delimiter from starting a defun. Here’s an example:

(insert "Foo:
\(bar)
")

In the earliest days, the original Emacs found defuns by moving upward a level of paren-
theses or braces until there were no more levels to go up. This always required scanning
all the way back to the beginning of the buffer, even for a small function. To speed up the
operation, we changed Emacs to assume that any opening delimiter at the left margin is
the start of a defun. This heuristic is nearly always right, and avoids the need to scan back
to the beginning of the buffer. However, it mandates following the convention described
above.

22.2.2 Moving by Defuns

These commands move point or set up the region based on top-level major definitions,
also called defuns.

Chapter 22: Editing Programs 227

C-M-a Move to beginning of current or preceding defun (beginning-of-defun).

C-M-e Move to end of current or following defun (end-of-defun).

C-M-h Put region around whole current or following defun (mark-defun).

The commands to move to the beginning and end of the current defun are C-M-a
(beginning-of-defun) and C-M-e (end-of-defun). If you repeat one of these commands,
or use a positive numeric argument, each repetition moves to the next defun in the direction
of motion.

C-M-a with a negative argument −n moves forward n times to the next beginning of a
defun. This is not exactly the same place that C-M-e with argument n would move to; the
end of this defun is not usually exactly the same place as the beginning of the following
defun. (Whitespace, comments, and perhaps declarations can separate them.) Likewise,
C-M-e with a negative argument moves back to an end of a defun, which is not quite the
same as C-M-a with a positive argument.

To operate on the current defun, use C-M-h (mark-defun) which puts point at the
beginning and mark at the end of the current defun. This is the easiest way to get ready
to kill the defun in order to move it to a different place in the file. If you use the command
while point is between defuns, it uses the following defun.

In C mode, C-M-h runs the function c-mark-function, which is almost the same as
mark-defun; the difference is that it backs up over the argument declarations, function
name and returned data type so that the entire C function is inside the region. This is
an example of how major modes adjust the standard key bindings so that they do their
standard jobs in a way better fitting a particular language. Other major modes may replace
any or all of these key bindings for that purpose.

22.2.3 Imenu

The Imenu facility offers a way to find the the major definitions in a file by name. It
is also useful in text formatter major modes, where it treats each chapter, section, etc., as
a definition. (See Section 24.2 [Tags], page 268, for a more powerful feature that handles
multiple files together.)

If you type M-x imenu, it reads the name of a definition using the minibuffer, then moves
point to that definition. You can use completion to specify the name; the command always
displays the whole list of valid names.

Alternatively, you can bind the command imenu to a mouse click. Then it displays
mouse menus for you to select a definition name. You can also add the buffer’s index to the
menu bar by calling imenu-add-menubar-index. If you want to have this menu bar item
available for all buffers in a certain major mode, you can do this by adding imenu-add-
menubar-index to its mode hook. But if you have done that, you will have to wait each
time you visit a file in that mode, while Emacs finds all the definitions in that buffer.

When you change the contents of a buffer, if you add or delete definitions, you can
update the buffer’s index based on the new contents by invoking the ‘*Rescan*’ item in
the menu. Rescanning happens automatically if you set imenu-auto-rescan to a non-nil
value. There is no need to rescan because of small changes in the text.

228 GNU Emacs Manual

You can customize the way the menus are sorted by setting the variable imenu-sort-
function. By default, names are ordered as they occur in the buffer; if you want alphabetic
sorting, use the symbol imenu--sort-by-name as the value. You can also define your own
comparison function by writing Lisp code.

Imenu provides the information to guide Which Function mode (see below). The Speed-
bar can also use it (see Section 17.9 [Speedbar], page 169).

22.2.4 Which Function Mode

Which Function mode is a minor mode that displays the current function name in the
mode line, updating it as you move around in a buffer.

To enable (or disable) Which Function mode, use the command M-x
which-function-mode. This command is global; it applies to all buffers, both
existing ones and those yet to be created. However, it only takes effect in certain major
modes, those listed in the value of which-func-modes. If the value is t, then Which
Function mode applies to all major modes that know how to support it—in other words,
all the major modes that support Imenu.

22.3 Indentation for Programs

The best way to keep a program properly indented is to use Emacs to reindent it as you
change it. Emacs has commands to indent properly either a single line, a specified number
of lines, or all of the lines inside a single parenthetical grouping.

Emacs also provides a Lisp pretty-printer in the library pp. This program reformats a
Lisp object with indentation chosen to look nice.

22.3.1 Basic Program Indentation Commands

The basic indentation commands indent a single line according to the usual conventions
of the language you are editing.

〈TAB〉 Adjust indentation of current line.

C-j Equivalent to 〈RET〉 followed by 〈TAB〉 (newline-and-indent).

〈LINEFEED〉 This key, if the keyboard has it, is another way to enter C-j.

The basic indentation command is 〈TAB〉, which gives the current line the correct inden-
tation as determined from the previous lines. The function that 〈TAB〉 runs depends on the
major mode; it is indent-for-tab-command in Lisp mode, c-indent-command in C mode,
etc. These functions understand the syntax and conventions of different languages, but they
all do conceptually the same job: 〈TAB〉 in any programming-language major mode inserts
or deletes whitespace at the beginning of the current line, independent of where point is in
the line. If point was inside the whitespace at the beginning of the line, 〈TAB〉 puts it at the
end of that whitespace; otherwise, 〈TAB〉 keeps point fixed with respect to the characters
around it.

Use C-q 〈TAB〉 to insert a tab at point.

Chapter 22: Editing Programs 229

When entering lines of new code, use C-j (newline-and-indent), which is equivalent
to a 〈RET〉 followed by a 〈TAB〉. C-j at the end of a line creates a blank line and then gives
it the appropriate indentation.

〈TAB〉 indents lines that start within a parenthetical grouping each under the preceding
line (or the text after the parenthesis). Therefore, if you manually give one of these lines a
nonstandard indentation, the lines below will tend to follow it. This behavior is convenient in
cases where you have overridden the standard result of 〈TAB〉 because you find it unaesthetic
for a particular line.

Remember that an open-parenthesis, open-brace or other opening delimiter at the left
margin is assumed by Emacs (including the indentation routines) to be the start of a
function. Therefore, you must never have an opening delimiter in column zero that is not
the beginning of a function, not even inside a string. This restriction is vital for making
the indentation commands fast; you must simply accept it. See Section 22.2.1 [Left Margin
Paren], page 226, for more information on this.

Normally, lines are indented with tabs and spaces. If you want Emacs to use spaces only,
see Section 20.3 [Just Spaces], page 197.

22.3.2 Indenting Several Lines

When you wish to reindent several lines of code which have been altered or moved to a
different level in the parenthesis structure, you have several commands available.

C-M-q Reindent all the lines within one parenthetical grouping(indent-sexp).

C-M-\ Reindent all lines in the region (indent-region).

C-u 〈TAB〉 Shift an entire parenthetical grouping rigidly sideways so that its first line is
properly indented.

M-x indent-code-rigidly
Shift all the lines in the region rigidly sideways, but do not alter lines that start
inside comments and strings.

You can reindent the contents of a single parenthetical grouping by positioning point
before the beginning of it and typing C-M-q (indent-sexp in Lisp mode, c-indent-exp
in C mode; also bound to other suitable commands in other modes). The indentation of
the line where the grouping starts is not changed; therefore, this changes only the relative
indentation within the grouping, not its overall indentation. To correct that as well, type
〈TAB〉 first.

Another way to specify the range to be reindented is with the region. The command
C-M-\ (indent-region) applies 〈TAB〉 to every line whose first character is between point
and mark.

If you like the relative indentation within a grouping, but not the indentation of its first
line, you can type C-u 〈TAB〉 to reindent the whole grouping as a rigid unit. (This works in
Lisp modes and C and related modes.) 〈TAB〉 with a numeric argument reindents the current
line as usual, then reindents by the same amount all the lines in the parenthetical grouping
starting on the current line. It is clever, though, and does not alter lines that start inside
strings, or C preprocessor lines when in C mode.

230 GNU Emacs Manual

You can also perform this operation on the region, using the command M-x
indent-code-rigidly. It rigidly shifts all the lines in the region sideways, like
indent-rigidly does (see Section 20.1 [Indentation Commands], page 195). It doesn’t
alter the indentation of lines that start inside a comment or a string, unless the region
starts inside that comment or string.

22.3.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function called by the
expression. For each Lisp function, you can choose among several predefined patterns of
indentation, or define an arbitrary one with a Lisp program.

The standard pattern of indentation is as follows: the second line of the expression
is indented under the first argument, if that is on the same line as the beginning of the
expression; otherwise, the second line is indented underneath the function name. Each
following line is indented under the previous line whose nesting depth is the same.

If the variable lisp-indent-offset is non-nil, it overrides the usual indentation pat-
tern for the second line of an expression, so that such lines are always indented lisp-
indent-offset more columns than the containing list.

Certain functions override the standard pattern. Functions whose names start with def
treat the the second lines as the start of a body, by indenting the second line lisp-body-
indent additional columns beyond the open-parenthesis that starts the expression.

You can override the standard pattern in various ways for individual functions, according
to the lisp-indent-function property of the function name. There are four possibilities
for this property:

nil This is the same as no property—use the standard indentation pattern.

defun Handle this function like a ‘def’ construct: treat the second line as the start of
a body.

a number, number
The first number arguments of the function are distinguished arguments; the
rest are considered the body of the expression. A line in the expression is
indented according to whether the first argument on it is distinguished or not.
If the argument is part of the body, the line is indented lisp-body-indent
more columns than the open-parenthesis starting the containing expression. If
the argument is distinguished and is either the first or second argument, it is
indented twice that many extra columns. If the argument is distinguished and
not the first or second argument, the line uses the standard pattern.

a symbol, symbol
symbol should be a function name; that function is called to calculate the in-
dentation of a line within this expression. The function receives two arguments:

state The value returned by parse-partial-sexp (a Lisp primitive for
indentation and nesting computation) when it parses up to the
beginning of this line.

pos The position at which the line being indented begins.

Chapter 22: Editing Programs 231

It should return either a number, which is the number of columns of indentation
for that line, or a list whose car is such a number. The difference between
returning a number and returning a list is that a number says that all following
lines at the same nesting level should be indented just like this one; a list says
that following lines might call for different indentations. This makes a difference
when the indentation is being computed by C-M-q; if the value is a number,
C-M-q need not recalculate indentation for the following lines until the end of
the list.

22.3.4 Commands for C Indentation

Here are special features for indentation in C mode and related modes:

C-c C-q Reindent the current top-level function definition or aggregate type declaration
(c-indent-defun).

C-M-q Reindent each line in the balanced expression that follows point (c-indent-
exp). A prefix argument inhibits error checking and warning messages about
invalid syntax.

〈TAB〉 Reindent the current line, and/or in some cases insert a tab character (c-
indent-command).
If c-tab-always-indent is t, this command always reindents the current line
and does nothing else. This is the default.
If that variable is nil, this command reindents the current line only if point is
at the left margin or in the line’s indentation; otherwise, it inserts a tab (or the
equivalent number of spaces, if indent-tabs-mode is nil).
Any other value (not nil or t) means always reindent the line, and also insert
a tab if within a comment, a string, or a preprocessor directive.

To reindent the whole current buffer, type C-x h C-M-\. This first selects the whole
buffer as the region, then reindents that region.

To reindent the current block, use C-M-u C-M-q. This moves to the front of the block
and then reindents it all.

22.3.5 Customizing C Indentation

C mode and related modes use a simple yet flexible mechanism for customizing indenta-
tion. The mechanism works in two steps: first it classifies the line syntactically according
to its contents and context; second, it associates each kind of syntactic construct with an
indentation offset based on your selected style.

M-x c-set-style 〈RET〉 style 〈RET〉
Select predefined indentation style style.

A style is a named collection of indentation customizations that can be used in C mode
and the related modes. Emacs comes with several predefined styles, including gnu, k&r,
bsd, stroustrup, linux, python, java, whitesmith, ellemtel, cc-mode, and user. Some
of these styles are primarily intended for one language, but any of them can be used with

232 GNU Emacs Manual

any of the languages supported by these modes. To find out what a style looks like, select
it and reindent some code, e.g., by typing 〈C-M-q〉 at the start of a function definition.

To choose a style for the current buffer, use the command M-x c-set-style. Specify
a style name as an argument (case is not significant). This command affects the current
buffer only, and it affects only future invocations of the indentation commands; it does not
reindent the code in the buffer. To reindent the whole buffer in the new style, you can type
C-x h C-M-\.

You can also set the variable c-default-style to specify the default style for various
major modes. Its value should be an alist, in which each element specifies one major mode
and which indentation style to use for it. For example,

(setq c-default-style
’((java-mode . "java") (other . "gnu")))

specifies an explicit choice for Java mode, and the default ‘gnu’ style for the other C-like
modes. This variable takes effect when you select one of the C-like major modes; thus, if
you specify a new default style for Java mode, you can make it take effect in an existing
Java mode buffer by typing M-x java-mode there.

The gnu style specifies the formatting recommended by the GNU Project for C; it is the
default, so as to encourage use of our recommended style.

See section “Customizing Indentation” in the CC Mode Manual, for more information
on customizing indentation for C and related modes, including how to override parts of an
existing style and how to define your own styles.

22.4 Commands for Editing with Parentheses

This section describes the commands and features that take advantage of the parenthesis
structure in a program, or help you keep it balanced.

When talking about these facilities, the term “parenthesis” also includes braces, brackets,
or whatever delimiters are defined to match in pairs. The major mode controls which
delimiters are significant, through the syntax table (see Section 32.6 [Syntax], page 403).
In Lisp, only parentheses count; in C, these commands apply to braces and brackets too.

You can use M-x check-parens to find any unbalanced parentheses and unbalanced
string quotes in the buffer.

22.4.1 Expressions with Balanced Parentheses

These commands deal with balanced expressions, also called sexps1.

C-M-f Move forward over a balanced expression (forward-sexp).

C-M-b Move backward over a balanced expression(backward-sexp).

C-M-k Kill balanced expression forward (kill-sexp).

C-M-〈DEL〉 Kill balanced expression backward (backward-kill-sexp).

C-M-t Transpose expressions (transpose-sexps).

1 The word “sexp” is used to refer to an expression in Lisp.

Chapter 22: Editing Programs 233

C-M-@ Put mark after following expression (mark-sexp).

Each programming language major mode customizes the definition of balanced expres-
sions to suit that language. Balanced expressions typically include symbols, numbers, and
string constants, as well as any pair of matching delimiters and their contents. Some lan-
guages have obscure forms of expression syntax that nobody has bothered to implement in
Emacs.

By convention, the keys for these commands are all Control-Meta characters. They
usually act on expressions just as the corresponding Meta characters act on words. For
instance, the command C-M-b moves backward over a balanced expression, just as M-b
moves back over a word.

To move forward over a balanced expression, use C-M-f (forward-sexp). If the first
significant character after point is an opening delimiter (‘(’ in Lisp; ‘(’, ‘[’ or ‘{’ in C),
C-M-f moves past the matching closing delimiter. If the character begins a symbol, string,
or number, C-M-f moves over that.

The command C-M-b (backward-sexp) moves backward over a balanced expression. The
detailed rules are like those above for C-M-f, but with directions reversed. If there are prefix
characters (single-quote, backquote and comma, in Lisp) preceding the expression, C-M-b
moves back over them as well. The balanced expression commands move across comments
as if they were whitespace, in most modes.

C-M-f or C-M-b with an argument repeats that operation the specified number of times;
with a negative argument, it moves in the opposite direction.

Killing a whole balanced expression can be done with C-M-k (kill-sexp) or C-M-〈DEL〉
(backward-kill-sexp). C-M-k kills the characters that C-M-f would move over, and
C-M-〈DEL〉 kills the characters that C-M-b would move over. On some machines, C-M-〈DEL〉
typed on the console is a command to reboot; when that is so, you cannot use it as an
Emacs command. This conflict is rare, though: usually the 〈DEL〉 key for Emacs is really
〈BACKSPACE〉, and the reboot command is C-M-〈DELETE〉, so there is no conflict.

A somewhat random-sounding command which is nevertheless handy is C-M-t
(transpose-sexps), which drags the previous balanced expression across the next one. An
argument serves as a repeat count, and a negative argument drags the previous balanced
expression backwards across those before it (thus canceling out the effect of C-M-t with
a positive argument). An argument of zero, rather than doing nothing, transposes the
balanced expressions ending at or after point and the mark.

To set the region around the next balanced expression in the buffer, use C-M-@ (mark-
sexp), which sets mark at the same place that C-M-f would move to. C-M-@ takes arguments
like C-M-f. In particular, a negative argument is useful for putting the mark at the beginning
of the previous balanced expression.

In languages that use infix operators, such as C, it is not possible to recognize all balanced
expressions as such because there can be multiple possibilities at a given position. For
example, C mode does not treat ‘foo + bar’ as a single expression, even though it is one
C expression; instead, it recognizes ‘foo’ as one expression and ‘bar’ as another, with the
‘+’ as punctuation between them. Both ‘foo + bar’ and ‘foo’ are legitimate choices for
“the expression following point” when point is at the ‘f’, so the expression commands must
perforce choose one or the other to operate on. Note that ‘(foo + bar)’ is recognized as a
single expression in C mode, because of the parentheses.

234 GNU Emacs Manual

22.4.2 Moving in the Parenthesis Structure

The Emacs commands for handling parenthetical groupings see nothing except paren-
theses (or whatever characters must balance in the language you are working with), and the
escape characters that might be used to quote those. They are mainly intended for editing
programs, but can be useful for editing any text that has parentheses. They are sometimes
called “list” commands because in Lisp these groupings are lists.

C-M-n Move forward over a parenthetical group (forward-list).

C-M-p Move backward over a parenthetical group(backward-list).

C-M-u Move up in parenthesis structure (backward-up-list).

C-M-d Move down in parenthesis structure (down-list).

The “list” commands C-M-n (forward-list) and C-M-p (backward-list) move over
one (or n) parenthetical groupings, skipping blithely over any amount of text that doesn’t
include meaningful parentheses (symbols, strings, etc.).

C-M-n and C-M-p try to stay at the same level in the parenthesis structure. To move
up one (or n) levels, use C-M-u (backward-up-list). C-M-u moves backward up past one
unmatched opening delimiter. A positive argument serves as a repeat count; a negative
argument reverses the direction of motion, so that the command moves forward and up one
or more levels.

To move down in the parenthesis structure, use C-M-d (down-list). In Lisp mode, where
‘(’ is the only opening delimiter, this is nearly the same as searching for a ‘(’. An argument
specifies the number of levels to go down.

22.4.3 Automatic Display Of Matching Parentheses

The Emacs parenthesis-matching feature is designed to show automatically how paren-
theses (and other matching delimiters) match in the text. Whenever you type a self-inserting
character that is a closing delimiter, the cursor moves momentarily to the location of the
matching opening delimiter, provided that is on the screen. If it is not on the screen, Emacs
displays some of the text near it in the echo area. Either way, you can tell which grouping
you are closing off.

If the opening delimiter and closing delimiter are mismatched—such as in ‘[x)’—a warn-
ing message is displayed in the echo area.

Three variables control parenthesis match display. blink-matching-paren turns the
feature on or off: nil disables it, but the default is t to enable match display.

blink-matching-delay says how many seconds to leave the cursor on the matching
opening delimiter, before bringing it back to the real location of point; the default is 1, but
on some systems it is useful to specify a fraction of a second.

blink-matching-paren-distance specifies how many characters back to search to find
the matching opening delimiter. If the match is not found in that distance, scanning stops,
and nothing is displayed. This is to prevent the scan for the matching delimiter from wasting
lots of time when there is no match. The default is 25600.

Show Paren mode provides a more powerful kind of automatic matching. Whenever
point is after a closing delimiter, that delimiter and its matching opening delimiter are both

Chapter 22: Editing Programs 235

highlighted; otherwise, if point is before an opening delimiter, the matching closing delimiter
is highlighted. (There is no need to highlight the opening delimiter in that case, because
the cursor appears on top of that character.) Use the command M-x show-paren-mode to
enable or disable this mode.

By default, show-paren-mode uses colors to highlight the parentheses. However, if
your display doesn’t support colors, you can customize the faces show-paren-match-face
and show-paren-mismatch-face to use other attributes, such as bold or underline. See
Section 32.2.2.3 [Face Customization], page 384.

22.5 Manipulating Comments

Because comments are such an important part of programming, Emacs provides special
commands for editing and inserting comments.

22.5.1 Comment Commands

The comment commands in this table insert, kill and align comments. They are described
in this section and following sections.

M-; Insert or realign comment on current line; alternatively, comment or uncomment
the region (comment-dwim).

C-u M-; Kill comment on current line (comment-kill).

C-x ; Set comment column (comment-set-column).

C-M-j Like 〈RET〉 followed by inserting and aligning a comment (comment-indent-
new-line).

M-x comment-region
Add or remove comment delimiters on all the lines in the region.

The command to create or align a comment is M-; (comment-dwim). The word “dwim”
is an acronym for “Do What I Mean”; it indicates that this command can be used for many
different jobs relating to comments, depending on the situation where you use it.

If there is no comment already on the line, M-; inserts a new comment, aligned at a
specific column called the comment column. The new comment begins with the string
Emacs thinks comments should start with (the value of comment-start; see below). Point
is after that string, so you can insert the text of the comment right away. If the major mode
has specified a string to terminate comments, M-; inserts that too, to keep the syntax valid.

If the text of the line extends past the comment column, then the comment start string
is indented to a suitable boundary (usually, at least one space is inserted).

You can also use M-; to align an existing comment. If a line already contains the
comment-start string, M-; reindents it to the conventional alignment and moves point after
it. (Exception: comments starting in column 0 are not moved.) Even when an existing
comment is properly aligned, M-; is still useful for moving directly to the start of the text
inside the comment.

C-u M-; kills any comment on the current line, along with the whitespace before it. To
reinsert the comment on another line, move to the end of that line, do C-y, and then do
M-; to realign it.

236 GNU Emacs Manual

Note that C-u M-; is not a distinct key; it is M-; (comment-dwim) with a prefix argument.
That command is programmed so that when it receives a prefix argument it calls comment-
kill. However, comment-kill is a valid command in its own right, and you can bind it
directly to a key if you wish.

M-; does two other jobs when used with an active region in Transient Mark mode (see
Section 8.2 [Transient Mark], page 62). Then it either adds or removes comment delimiters
on each line of the region. (If every line is a comment, it removes comment delimiters from
each; otherwise, it adds comment delimiters to each.) If you are not using Transient Mark
mode, then you should use the commands comment-region and uncomment-region to do
these jobs (see Section 22.5.2 [Multi-Line Comments], page 236). A prefix argument used in
these circumstances specifies how many comment delimiters to add or how many to delete.

Some major modes have special rules for indenting certain kinds of comments in certain
contexts. For example, in Lisp code, comments which start with two semicolons are indented
as if they were lines of code, instead of at the comment column. Comments which start
with three semicolons are supposed to start at the left margin. Emacs understands these
conventions by indenting a double-semicolon comment using 〈TAB〉, and by not changing the
indentation of a triple-semicolon comment at all.

;; This function is just an example
;;; Here either two or three semicolons are appropriate.
(defun foo (x)
;;; And now, the first part of the function:
;; The following line adds one.
(1+ x)) ; This line adds one.

In C code, a comment preceded on its line by nothing but whitespace is indented like a
line of code.

22.5.2 Multiple Lines of Comments

If you are typing a comment and wish to continue it on another line, you can use
the command C-M-j (comment-indent-new-line). This terminates the comment you are
typing, creates a new blank line afterward, and begins a new comment indented under the
old one. When Auto Fill mode is on, going past the fill column while typing a comment
causes the comment to be continued in just this fashion. If point is not at the end of the
line when C-M-j is typed, the text on the rest of the line becomes part of the new comment
line.

To turn existing lines into comment lines, use the M-x comment-region command. It
adds comment delimiters to the lines that start in the region, thus commenting them out.
With a negative argument, it does the opposite—it deletes comment delimiters from the
lines in the region.

With a positive argument, comment-region duplicates the last character of the comment
start sequence it adds; the argument specifies how many copies of the character to insert.
Thus, in Lisp mode, C-u 2 M-x comment-region adds ‘;;’ to each line. Duplicating the
comment delimiter is a way of calling attention to the comment. It can also affect how the
comment is indented. In Lisp, for proper indentation, you should use an argument of two
or three, if between defuns; if within a defun, it must be three.

Chapter 22: Editing Programs 237

22.5.3 Options Controlling Comments

The comment column is stored in the variable comment-column. You can set it to
a number explicitly. Alternatively, the command C-x ; (comment-set-column) sets the
comment column to the column point is at. C-u C-x ; sets the comment column to match
the last comment before point in the buffer, and then does a M-; to align the current line’s
comment under the previous one.

The variable comment-column is per-buffer: setting the variable in the normal fashion
affects only the current buffer, but there is a default value which you can change with setq-
default. See Section 32.2.4 [Locals], page 387. Many major modes initialize this variable
for the current buffer.

The comment commands recognize comments based on the regular expression that is
the value of the variable comment-start-skip. Make sure this regexp does not match the
null string. It may match more than the comment starting delimiter in the strictest sense
of the word; for example, in C mode the value of the variable is "/*+ *\\|//+ *"", which
matches extra stars and spaces after the ‘/*’ itself, and accepts C++ style comments also.
(Note that ‘\\’ is needed in Lisp syntax to include a ‘\’ in the string, which is needed to deny
the first star its special meaning in regexp syntax. See Section 12.5 [Regexps], page 95.)

When a comment command makes a new comment, it inserts the value of comment-
start to begin it. The value of comment-end is inserted after point, so that it will follow
the text that you will insert into the comment. In C mode, comment-start has the value
"/* " and comment-end has the value " */".

The variable comment-padding specifies how many spaces comment-region should insert
on each line between the comment delimiter and the line’s original text. The default is 1,
to insert one space.

The variable comment-multi-line controls how C-M-j (indent-new-comment-line)
behaves when used inside a comment. If comment-multi-line is nil, as it normally is,
then the comment on the starting line is terminated and a new comment is started on
the new following line. If comment-multi-line is not nil, then the new following line is
set up as part of the same comment that was found on the starting line. This is done by
not inserting a terminator on the old line, and not inserting a starter on the new line. In
languages where multi-line comments work, the choice of value for this variable is a matter
of taste.

The variable comment-indent-function should contain a function that will be called to
compute the indentation for a newly inserted comment or for aligning an existing comment.
It is set differently by various major modes. The function is called with no arguments, but
with point at the beginning of the comment, or at the end of a line if a new comment is
to be inserted. It should return the column in which the comment ought to start. For
example, in Lisp mode, the indent hook function bases its decision on how many semicolons
begin an existing comment, and on the code in the preceding lines.

22.6 Documentation Lookup

Emacs provides several features you can use to look up the documentation of functions,
variables and commands that you plan to use in your program.

238 GNU Emacs Manual

22.6.1 Info Documentation Lookup

For C, Lisp, and other languages that have documentation in Info, you can use C-h
C-i (info-lookup-symbol) to view the Info documentation for a symbol. You specify the
symbol with the minibuffer; the default is the symbol appearing in the buffer at point.

The major mode determines where to look for documentation for the symbol—which
Info files to look in, and which indices to search. You can also use M-x info-lookup-file
to look for documentation for a file name.

This feature currently supports the modes Awk, Autoconf, Bison, C, Emacs Lisp, LaTeX,
M4, Makefile, Octave, Perl, Scheme, and Texinfo, provided you have installed the relevant
Info files, which are typically available with the appropriate GNU package.

22.6.2 Man Page Lookup

On Unix, the main form of on-line documentation was the manual page or man page. In
the GNU operating system, we hope to replace man pages with better-organized manuals
that you can browse with Info (see Section 7.7 [Misc Help], page 59). This process is not
finished, so it is still useful to read manual pages.

You can read the man page for an operating system command, library function, or
system call, with the M-x manual-entry command. It runs the man program to format
the man page; if the system permits, it runs man asynchronously, so that you can keep on
editing while the page is being formatted. (On MS-DOS and MS-Windows 3, you cannot
edit while Emacs waits for man to finish.) The result goes in a buffer named ‘*Man topic*’.
These buffers use a special major mode, Man mode, that facilitates scrolling and jumping
to other manual pages. For details, type C-h m while in a man page buffer.

Each man page belongs to one of ten or more sections, each named by a digit or by a
digit and a letter. Sometimes there are multiple man pages with the same name in different
sections. To read a man page from a specific section, type ‘topic(section)’ or ‘section topic’
when M-x manual-entry prompts for the topic. For example, to read the man page for
the C library function chmod (as opposed to a command of the same name), type M-x
manual-entry 〈RET〉 chmod(2) 〈RET〉 (chmod is a system call, so it is in section ‘2’).

If you do not specify a section, the results depend on how the man program works on
your system. Some of them display only the first man page they find. Others display all
man pages that have the specified name, so you can move between them with the M-n and
M-p keys2. The mode line shows how many manual pages are present in the Man buffer.

By default, Emacs highlights the text in man pages. For a long man page, highlighting
can take substantial time. You can turn off highlighting of man pages by setting the variable
Man-fontify-manpage-flag to nil.

If you insert the text of a man page into an Emacs buffer in some other fashion, you
can use the command M-x Man-fontify-manpage to perform the same conversions that M-x
manual-entry does.

2 On some systems, the man program accepts a ‘-a’ command-line option which tells it to display all the
man pages for the specified topic. If you want this behavior, you can add this option to the value of the
variable Man-switches.

Chapter 22: Editing Programs 239

An alternative way of reading manual pages is the M-x woman command3. Unlike M-x
man, it does not run any external programs to format and display the man pages; instead
it does the job in Emacs Lisp, so it works on systems such as MS-Windows, where the man
program (and the other programs it uses) are not generally available.

M-x woman prompts for a name of a manual page, and provides completion based on the
list of manual pages that are installed on your machine; the list of available manual pages is
computed automatically the first time you invoke woman. The word at point in the current
buffer is used to suggest the default for the name the manual page.

With a numeric argument, M-x woman recomputes the list of the manual pages used for
completion. This is useful if you add or delete manual pages.

If you type a name of a manual page and M-x woman finds that several manual pages
by the same name exist in different sections, it pops up a window with possible candidates
asking you to choose one of them.

By default, M-x woman looks for manual pages in the directories specified in the MANPATH
environment variable. (If MANPATH is not set, woman uses a suitable default value, which
can be customized.) More precisely, woman looks for subdirectories that match the shell
wildcard pattern ‘man*’ in each one of these directories, and tries to find the manual pages
in those subdirectories. When first invoked, M-x woman converts the value of MANPATH to a
list of directory names and stores that list in the woman-manpath variable. Changing the
value of this variable is another way to control the list of directories used.

You can also augment the list of directories searched by woman by setting the value
of the woman-path variable. This variable should hold a list of specific directories which
woman should search, in addition to those in woman-manpath. Unlike woman-manpath, the
directories in woman-path are searched for the manual pages, not for ‘man*’ subdirectories.

Occasionally, you might need to display manual pages that are not in any of the di-
rectories listed by woman-manpath and woman-path. The M-x woman-find-file command
prompts for a name of a manual page file, with completion, and then formats and displays
that file like M-x woman does.

The first time you invoke M-x woman, it defines the Dired W key to run the woman-
find-file command on the current line’s file. You can disable this by setting the variable
woman-dired-keys to nil. See Chapter 29 [Dired], page 319. In addition, the Tar-mode w
key is define to invoke woman-find-file on the current line’s archive member.

For more information about setting up and using M-x woman, see section “Browse UN*X
Manual Pages WithOut Man” in The WoMan Manual.

22.6.3 Emacs Lisp Documentation Lookup

As you edit Lisp code to be run in Emacs, you can use the commands C-h f (describe-
function) and C-h v (describe-variable) to view documentation of functions and vari-
ables that you want to use. These commands use the minibuffer to read the name of a
function or variable to document, and display the documentation in a window. Their de-
fault arguments are based on the code in the neighborhood of point. For C-h f, the default

3 The name of the command, woman, is an acronym for “w/o (without) man,” since it doesn’t use the man

program.

240 GNU Emacs Manual

is the function called in the innermost list containing point. C-h v uses the symbol name
around or adjacent to point as its default.

A more automatic but less powerful method is Eldoc mode. This minor mode constantly
displays in the echo area the argument list for the function being called at point. (In other
words, it finds the function call that point is contained in, and displays the argument list
of that function.) Eldoc mode applies in Emacs Lisp and Lisp Interaction modes only. Use
the command M-x eldoc-mode to enable or disable this feature.

22.7 Hideshow minor mode

Hideshow minor mode provides selective display of portions of a program, known as
blocks. You can use M-x hs-minor-mode to enable or disable this mode, or add hs-minor-
mode to the mode hook for certain major modes in order to enable it automatically for those
modes.

Just what constitutes a block depends on the major mode. In C mode or C++ mode,
they are delimited by braces, while in Lisp mode and similar modes they are delimited by
parentheses. Multi-line comments also count as blocks.

C-c @ C-h Hide the current block (hs-hide-block).

C-c @ C-s Show the current block (hs-show-block).

C-c @ C-c Either hide or show the current block (hs-toggle-hiding)

S-Mouse-2
Either hide or show the block you click on (hs-mouse-toggle-hiding)

C-c @ C-M-h
Hide all top-level blocks (hs-hide-all).

C-c @ C-M-s
Show everything in the buffer (hs-show-all).

C-c @ C-l Hide all blocks n levels below this block (hs-hide-level).

These user options exist for customizing Hideshow mode.

hs-hide-comments-when-hiding-all
Non-nil says that hs-hide-all should hide comments too.

hs-isearch-open
Specifies what kind of hidden blocks to open in Isearch mode. The value should
be one of these four symbols.

code Open only code blocks.

comment Open only comments.

t Open both code blocks and comments.

nil Open neither code blocks nor comments.

hs-special-modes-alist
A list of elements, each specifying how to initialize Hideshow variables for one
major mode. See the variable’s documentation string for more information.

Chapter 22: Editing Programs 241

22.8 Completion for Symbol Names

In Emacs, completion is something you normally do in the minibuffer. But one kind of
completion is available in all buffers: completion for symbol names.

The character M-〈TAB〉 runs a command to complete the partial symbol before point
against the set of meaningful symbol names. This command inserts at point any additional
characters that it can determine from the partial name.

If the partial name in the buffer has multiple possible completions that differ in the
very next character, so that it is impossible to complete even one more character, M-〈TAB〉
displays a list of all possible completions in another window.

In most programming language major modes, M-〈TAB〉 runs the command complete-
symbol, which provides two kinds of completion. Normally it does completion based on
a tags table (see Section 24.2 [Tags], page 268); with a numeric argument (regardless of
the value), it does completion based on the names listed in the Info file indexes for your
language. Thus, to complete the name of a symbol defined in your own program, use M-〈TAB〉
with no argument; to complete the name of a standard library function, use C-u M-〈TAB〉.
Of course, Info-based completion works only if there is an Info file for the standard library
functions of your language, and only if it is installed at your site.

In Emacs-Lisp mode, the name space for completion normally consists of nontrivial sym-
bols present in Emacs—those that have function definitions, values or properties. However,
if there is an open-parenthesis immediately before the beginning of the partial symbol,
only symbols with function definitions are considered as completions. The command which
implements this is lisp-complete-symbol.

In Text mode and related modes, M-〈TAB〉 completes words based on the spell-checker’s
dictionary. See Section 13.4 [Spelling], page 106.

22.9 Glasses minor mode

Glasses minor mode makes ‘unreadableIdentifiersLikeThis’ readable by altering the
way they display. It knows two different ways to do this: by displaying underscores between
a lower-case letter and the following capital letter, and by emboldening the capital letters.
It does not alter the buffer text, only the way they display, so you can use it even on read-
only buffers. You can use the command M-x glasses-mode to enable or disable the mode in
the current buffer; you can also add glasses-mode to the mode hook of the programming
language major modes in which you normally want to use Glasses mode.

22.10 Other Features Useful for Editing Programs

A number of Emacs commands that aren’t designed specifically for editing programs are
useful for that nonetheless.

The Emacs commands that operate on words, sentences and paragraphs are useful for
editing code. Most symbols names contain words (see Section 21.1 [Words], page 199);
sentences can be found in strings and comments (see Section 21.2 [Sentences], page 200).
Paragraphs in the strict sense can be found in program code (in long comments), but the
paragraph commands are useful in other places too, because programming language major
modes define paragraphs to begin and end at blank lines (see Section 21.3 [Paragraphs],

242 GNU Emacs Manual

page 201). Judicious use of blank lines to make the program clearer will also provide useful
chunks of text for the paragraph commands to work on. Auto Fill mode, if enabled in a
programming language major mode, indents the new lines which it creates.

The selective display feature is useful for looking at the overall structure of a function (see
Section 11.9 [Selective Display], page 87). This feature hides the lines that are indented
more than a specified amount. Programming modes often support Outline minor mode
(see Section 21.8 [Outline Mode], page 208). The Foldout package provides folding-editor
features (see Section 21.8.5 [Foldout], page 212).

The “automatic typing” features may be useful for writing programs. See section “Au-
totyping” in Autotyping .

22.11 C and Related Modes

This section gives a brief description of the special features available in C, C++, Objective-
C, Java, CORBA IDL, and Pike modes. (These are called “C mode and related modes.”)
See section “ccmode” in CC Mode, for a more extensive description of these modes and
their special features.

22.11.1 C Mode Motion Commands

This section describes commands for moving point, in C mode and related modes.

C-c C-u Move point back to the containing preprocessor conditional, leaving the mark
behind. A prefix argument acts as a repeat count. With a negative argument,
move point forward to the end of the containing preprocessor conditional. When
going backwards, #elif is treated like #else followed by #if. When going
forwards, #elif is ignored.

C-c C-p Move point back over a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
forward.

C-c C-n Move point forward across a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
backward.

M-a Move point to the beginning of the innermost C statement (c-beginning-of-
statement). If point is already at the beginning of a statement, move to the
beginning of the preceding statement. With prefix argument n, move back n −
1 statements.
If point is within a string or comment, or next to a comment (only whitespace
between them), this command moves by sentences instead of statements.
When called from a program, this function takes three optional arguments: the
numeric prefix argument, a buffer position limit (don’t move back before that
place), and a flag that controls whether to do sentence motion when inside of
a comment.

M-e Move point to the end of the innermost C statement; like M-a except that it
moves in the other direction (c-end-of-statement).

Chapter 22: Editing Programs 243

M-x c-backward-into-nomenclature
Move point backward to beginning of a C++ nomenclature section or word.
With prefix argument n, move n times. If n is negative, move forward. C++
nomenclature means a symbol name in the style of NamingSymbolsWithMixed-
CaseAndNoUnderlines; each capital letter begins a section or word.
In the GNU project, we recommend using underscores to separate words within
an identifier in C or C++, rather than using case distinctions.

M-x c-forward-into-nomenclature
Move point forward to end of a C++ nomenclature section or word. With prefix
argument n, move n times.

22.11.2 Electric C Characters

In C mode and related modes, certain printing characters are “electric”—in addition
to inserting themselves, they also reindent the current line and may insert newlines. This
feature is controlled by the variable c-auto-newline. The “electric” characters are {, }, :,
#, ;, ,, <, >, /, *, (, and).

Electric characters insert newlines only when the auto-newline feature is enabled (in-
dicated by ‘/a’ in the mode line after the mode name). This feature is controlled by the
variable c-auto-newline. You can turn this feature on or off with the command C-c C-a:

C-c C-a Toggle the auto-newline feature (c-toggle-auto-state). With a prefix ar-
gument, this command turns the auto-newline feature on if the argument is
positive, and off if it is negative.

The colon character is electric because that is appropriate for a single colon. But when
you want to insert a double colon in C++, the electric behavior of colon is inconvenient. You
can insert a double colon with no reindentation or newlines by typing C-c ::

C-c : Insert a double colon scope operator at point, without reindenting the line or
adding any newlines (c-scope-operator).

The electric # key reindents the line if it appears to be the beginning of a preprocessor
directive. This happens when the value of c-electric-pound-behavior is (alignleft).
You can turn this feature off by setting c-electric-pound-behavior to nil.

The variable c-hanging-braces-alist controls the insertion of newlines before and
after inserted braces. It is an association list with elements of the following form: (syntactic-
symbol . nl-list). Most of the syntactic symbols that appear in c-offsets-alist are
meaningful here as well.

The list nl-list may contain either of the symbols before or after, or both; or it may be
nil. When a brace is inserted, the syntactic context it defines is looked up in c-hanging-
braces-alist; if it is found, the nl-list is used to determine where newlines are inserted:
either before the brace, after, or both. If not found, the default is to insert a newline both
before and after braces.

The variable c-hanging-colons-alist controls the insertion of newlines before and
after inserted colons. It is an association list with elements of the following form: (syntactic-
symbol . nl-list). The list nl-list may contain either of the symbols before or after, or
both; or it may be nil.

244 GNU Emacs Manual

When a colon is inserted, the syntactic symbol it defines is looked up in this list, and if
found, the nl-list is used to determine where newlines are inserted: either before the brace,
after, or both. If the syntactic symbol is not found in this list, no newlines are inserted.

Electric characters can also delete newlines automatically when the auto-newline feature
is enabled. This feature makes auto-newline more acceptable, by deleting the newlines in
the most common cases where you do not want them. Emacs can recognize several cases
in which deleting a newline might be desirable; by setting the variable c-cleanup-list,
you can specify which of these cases that should happen. The variable’s value is a list of
symbols, each describing one case for possible deletion of a newline. Here are the meaningful
symbols, and their meanings:

brace-catch-brace
Clean up ‘} catch (condition) {’ constructs by placing the entire construct on
a single line. The clean-up occurs when you type the ‘{’, if there is nothing
between the braces aside from catch and condition.

brace-else-brace
Clean up ‘} else {’ constructs by placing the entire construct on a single line.
The clean-up occurs when you type the ‘{’ after the else, but only if there is
nothing but white space between the braces and the else.

brace-elseif-brace
Clean up ‘} else if (...) {’ constructs by placing the entire construct on a
single line. The clean-up occurs when you type the ‘{’, if there is nothing
but white space between the ‘}’ and ‘{’ aside from the keywords and the if-
condition.

empty-defun-braces
Clean up empty defun braces by placing the braces on the same line. Clean-up
occurs when you type the closing brace.

defun-close-semi
Clean up the semicolon after a struct or similar type declaration, by placing
the semicolon on the same line as the closing brace. Clean-up occurs when you
type the semicolon.

list-close-comma
Clean up commas following braces in array and aggregate initializers. Clean-up
occurs when you type the comma.

scope-operator
Clean up double colons which may designate a C++ scope operator, by placing
the colons together. Clean-up occurs when you type the second colon, but only
when the two colons are separated by nothing but whitespace.

22.11.3 Hungry Delete Feature in C

When the hungry-delete feature is enabled (indicated by ‘/h’ or ‘/ah’ in the mode line
after the mode name), a single 〈DEL〉 command deletes all preceding whitespace, not just
one space. To turn this feature on or off, use C-c C-d:

Chapter 22: Editing Programs 245

C-c C-d Toggle the hungry-delete feature (c-toggle-hungry-state). With a prefix
argument, this command turns the hungry-delete feature on if the argument is
positive, and off if it is negative.

C-c C-t Toggle the auto-newline and hungry-delete features, both at once (c-toggle-
auto-hungry-state).

The variable c-hungry-delete-key controls whether the hungry-delete feature is en-
abled.

22.11.4 Other Commands for C Mode

C-M-h Put mark at the end of a function definition, and put point at the beginning
(c-mark-function).

M-q Fill a paragraph, handling C and C++ comments (c-fill-paragraph). If any
part of the current line is a comment or within a comment, this command fills
the comment or the paragraph of it that point is in, preserving the comment
indentation and comment delimiters.

C-c C-e Run the C preprocessor on the text in the region, and show the result, which
includes the expansion of all the macro calls (c-macro-expand). The buffer
text before the region is also included in preprocessing, for the sake of macros
defined there, but the output from this part isn’t shown.
When you are debugging C code that uses macros, sometimes it is hard to figure
out precisely how the macros expand. With this command, you don’t have to
figure it out; you can see the expansions.

C-c C-\ Insert or align ‘\’ characters at the ends of the lines of the region (c-backslash-
region). This is useful after writing or editing a C macro definition.
If a line already ends in ‘\’, this command adjusts the amount of whitespace
before it. Otherwise, it inserts a new ‘\’. However, the last line in the region is
treated specially; no ‘\’ is inserted on that line, and any ‘\’ there is deleted.

M-x cpp-highlight-buffer
Highlight parts of the text according to its preprocessor conditionals. This
command displays another buffer named ‘*CPP Edit*’, which serves as a graphic
menu for selecting how to display particular kinds of conditionals and their
contents. After changing various settings, click on ‘[A]pply these settings’
(or go to that buffer and type a) to rehighlight the C mode buffer accordingly.

C-c C-s Display the syntactic information about the current source line (c-show-
syntactic-information). This is the information that directs how the line is
indented.

M-x cwarn-mode
M-x global-cwarn-mode

CWarn minor mode highlights certain suspicious C and C++ constructions:
• Assignments inside expressions.
• Semicolon following immediately after ‘if’, ‘for’, and ‘while’ (except after

a ‘do ... while’ statement);

246 GNU Emacs Manual

• C++ functions with reference parameters.

You can enable the mode for one buffer with the command M-x cwarn-mode,
or for all suitable buffers with the command M-x global-cwarn-mode or by
customizing the variable global-cwarn-mode. You must also enable Font Lock
mode to make it work.

M-x hide-ifdef-mode
Hide-ifdef minor mode hides selected code within ‘#if’ and ‘#ifdef’ prepro-
cessor blocks. See the documentation string of hide-ifdef-mode for more
information.

M-x ff-find-related-file
Find a file “related” in a special way to the file visited by the current buffer.
Typically this will be the header file corresponding to a C/C++ source file, or
vice versa. The variable ff-related-file-alist specifies how to compute
related file names.

22.11.5 Comments in C Modes

C mode and related modes use a number of variables for controlling comment format.

c-comment-only-line-offset
Extra offset for line which contains only the start of a comment. It can be
either an integer or a cons cell of the form (non-anchored-offset . anchored-
offset), where non-anchored-offset is the amount of offset given to non-column-
zero anchored comment-only lines, and anchored-offset is the amount of offset
to give column-zero anchored comment-only lines. Just an integer as value is
equivalent to (val . 0).

c-comment-start-regexp
This buffer-local variable specifies how to recognize the start of a comment.

c-hanging-comment-ender-p
If this variable is nil, c-fill-paragraph leaves the comment terminator of
a block comment on a line by itself. The default value is t, which puts the
comment-end delimiter ‘*/’ at the end of the last line of the comment text.

c-hanging-comment-starter-p
If this variable is nil, c-fill-paragraph leaves the starting delimiter of a
block comment on a line by itself. The default value is t, which puts the
comment-start delimiter ‘/*’ at the beginning of the first line of the comment
text.

22.12 Fortran Mode

Fortran mode provides special motion commands for Fortran statements and subpro-
grams, and indentation commands that understand Fortran conventions of nesting, line
numbers and continuation statements. Fortran mode has its own Auto Fill mode that
breaks long lines into proper Fortran continuation lines.

Chapter 22: Editing Programs 247

Special commands for comments are provided because Fortran comments are unlike
those of other languages. Built-in abbrevs optionally save typing when you insert Fortran
keywords.

Use M-x fortran-mode to switch to this major mode. This command runs the hook
fortran-mode-hook (see Section 32.2.3 [Hooks], page 386).

Fortran mode is meant for editing Fortran77 “fixed format” source code. For editing the
modern Fortran90 “free format” source code, use F90 mode (f90-mode). Emacs normally
uses Fortran mode for files with extension ‘.f’, ‘.F’ or ‘.for’, and F90 mode for the extension
‘.f90’. GNU Fortran supports both kinds of format.

22.12.1 Motion Commands

In addition to the normal commands for moving by and operating on “defuns” (For-
tran subprograms—functions and subroutines), Fortran mode provides special commands
to move by statements.

C-c C-n Move to beginning of current or next statement (fortran-next-statement).

C-c C-p Move to beginning of current or previous statement (fortran-previous-
statement).

22.12.2 Fortran Indentation

Special commands and features are needed for indenting Fortran code in order to make
sure various syntactic entities (line numbers, comment line indicators and continuation line
flags) appear in the columns that are required for standard Fortran.

22.12.2.1 Fortran Indentation and Filling Commands

C-M-j Break the current line and set up a continuation line (fortran-split-line).

M-^ Join this line to the previous line (fortran-join-line).

C-M-q Indent all the lines of the subprogram point is in (fortran-indent-
subprogram).

M-q Fill a comment block or statement.

The key C-M-q runs fortran-indent-subprogram, a command to reindent all the lines
of the Fortran subprogram (function or subroutine) containing point.

The key C-M-j runs fortran-split-line, which splits a line in the appropriate fashion
for Fortran. In a non-comment line, the second half becomes a continuation line and is
indented accordingly. In a comment line, both halves become separate comment lines.

M-^ or C-c C-d runs the command fortran-join-line, which joins a continuation line
back to the previous line, roughly as the inverse of fortran-split-line. The point must
be on a continuation line when this command is invoked.

M-q in Fortran mode fills the comment block or statement that point is in. This removes
any excess statement continuations.

248 GNU Emacs Manual

22.12.2.2 Continuation Lines

Most modern Fortran compilers allow two ways of writing continuation lines. If the first
non-space character on a line is in column 5, then that line is a continuation of the previous
line. We call this fixed format. (In GNU Emacs we always count columns from 0.) The
variable fortran-continuation-string specifies what character to put on column 5. A
line that starts with a tab character followed by any digit except ‘0’ is also a continuation
line. We call this style of continuation tab format.

Fortran mode can make either style of continuation line, but you must specify which one
you prefer. The value of the variable indent-tabs-mode controls the choice: nil for fixed
format, and non-nil for tab format. You can tell which style is presently in effect by the
presence or absence of the string ‘Tab’ in the mode line.

If the text on a line starts with the conventional Fortran continuation marker ‘$’, or
if it begins with any non-whitespace character in column 5, Fortran mode treats it as a
continuation line. When you indent a continuation line with 〈TAB〉, it converts the line
to the current continuation style. When you split a Fortran statement with C-M-j, the
continuation marker on the newline is created according to the continuation style.

The setting of continuation style affects several other aspects of editing in Fortran mode.
In fixed format mode, the minimum column number for the body of a statement is 6. Lines
inside of Fortran blocks that are indented to larger column numbers always use only the
space character for whitespace. In tab format mode, the minimum column number for the
statement body is 8, and the whitespace before column 8 must always consist of one tab
character.

When you enter Fortran mode for an existing file, it tries to deduce the proper contin-
uation style automatically from the file contents. The first line that begins with either a
tab character or six spaces determines the choice. The variable fortran-analyze-depth
specifies how many lines to consider (at the beginning of the file); if none of those lines
indicates a style, then the variable fortran-tab-mode-default specifies the style. If it is
nil, that specifies fixed format, and non-nil specifies tab format.

22.12.2.3 Line Numbers

If a number is the first non-whitespace in the line, Fortran indentation assumes it is a
line number and moves it to columns 0 through 4. (Columns always count from 0 in GNU
Emacs.)

Line numbers of four digits or less are normally indented one space. The variable
fortran-line-number-indent controls this; it specifies the maximum indentation a line
number can have. Line numbers are indented to right-justify them to end in column 4
unless that would require more than this maximum indentation. The default value of the
variable is 1.

Simply inserting a line number is enough to indent it according to these rules. As each
digit is inserted, the indentation is recomputed. To turn off this feature, set the variable
fortran-electric-line-number to nil. Then inserting line numbers is like inserting
anything else.

Chapter 22: Editing Programs 249

22.12.2.4 Syntactic Conventions

Fortran mode assumes that you follow certain conventions that simplify the task of
understanding a Fortran program well enough to indent it properly:

• Two nested ‘do’ loops never share a ‘continue’ statement.

• Fortran keywords such as ‘if’, ‘else’, ‘then’, ‘do’ and others are written without
embedded whitespace or line breaks.

Fortran compilers generally ignore whitespace outside of string constants, but Fortran
mode does not recognize these keywords if they are not contiguous. Constructs such as
‘else if’ or ‘end do’ are acceptable, but the second word should be on the same line
as the first and not on a continuation line.

If you fail to follow these conventions, the indentation commands may indent some lines
unaesthetically. However, a correct Fortran program retains its meaning when reindented
even if the conventions are not followed.

22.12.2.5 Variables for Fortran Indentation

Several additional variables control how Fortran indentation works:

fortran-do-indent
Extra indentation within each level of ‘do’ statement (default 3).

fortran-if-indent
Extra indentation within each level of ‘if’ statement (default 3). This value
is also used for extra indentation within each level of the Fortran 90 ‘where’
statement.

fortran-structure-indent
Extra indentation within each level of ‘structure’, ‘union’, or ‘map’ statements
(default 3).

fortran-continuation-indent
Extra indentation for bodies of continuation lines (default 5).

fortran-check-all-num-for-matching-do
If this is nil, indentation assumes that each ‘do’ statement ends on a ‘continue’
statement. Therefore, when computing indentation for a statement other than
‘continue’, it can save time by not checking for a ‘do’ statement ending there.
If this is non-nil, indenting any numbered statement must check for a ‘do’ that
ends there. The default is nil.

fortran-blink-matching-if
If this is t, indenting an ‘endif’ statement moves the cursor momentarily to
the matching ‘if’ statement to show where it is. The default is nil.

fortran-minimum-statement-indent-fixed
Minimum indentation for fortran statements when using fixed format continu-
ation line style. Statement bodies are never indented less than this much. The
default is 6.

250 GNU Emacs Manual

fortran-minimum-statement-indent-tab
Minimum indentation for fortran statements for tab format continuation line
style. Statement bodies are never indented less than this much. The default is
8.

22.12.3 Fortran Comments

The usual Emacs comment commands assume that a comment can follow a line of code.
In Fortran, the standard comment syntax requires an entire line to be just a comment.
Therefore, Fortran mode replaces the standard Emacs comment commands and defines
some new variables.

Fortran mode can also handle the Fortran90 comment syntax where comments start with
‘!’ and can follow other text. Because only some Fortran77 compilers accept this syntax,
Fortran mode will not insert such comments unless you have said in advance to do so. To
do this, set the variable comment-start to ‘"!"’ (see Section 32.2 [Variables], page 379).

M-; Align comment or insert new comment (fortran-comment-indent).

C-x ; Applies to nonstandard ‘!’ comments only.

C-c ; Turn all lines of the region into comments, or (with argument) turn them back
into real code (fortran-comment-region).

M-; in Fortran mode is redefined as the command fortran-comment-indent. Like
the usual M-; command, this recognizes any kind of existing comment and aligns its text
appropriately; if there is no existing comment, a comment is inserted and aligned. But
inserting and aligning comments are not the same in Fortran mode as in other modes.

When a new comment must be inserted, if the current line is blank, a full-line comment
is inserted. On a non-blank line, a nonstandard ‘!’ comment is inserted if you have said
you want to use them. Otherwise a full-line comment is inserted on a new line before the
current line.

Nonstandard ‘!’ comments are aligned like comments in other languages, but full-line
comments are different. In a standard full-line comment, the comment delimiter itself must
always appear in column zero. What can be aligned is the text within the comment. You
can choose from three styles of alignment by setting the variable fortran-comment-indent-
style to one of these values:

fixed Align the text at a fixed column, which is the sum of fortran-comment-line-
extra-indent and the minimum statement indentation. This is the default.
The minimum statement indentation is fortran-minimum-statement-
indent-fixed for fixed format continuation line style and fortran-minimum-
statement-indent-tab for tab format style.

relative Align the text as if it were a line of code, but with an additional fortran-
comment-line-extra-indent columns of indentation.

nil Don’t move text in full-line comments automatically at all.

In addition, you can specify the character to be used to indent within full-line comments
by setting the variable fortran-comment-indent-char to the single-character string you
want to use.

Chapter 22: Editing Programs 251

Fortran mode introduces two variables comment-line-start and comment-line-start-
skip, which play for full-line comments the same roles played by comment-start and
comment-start-skip for ordinary text-following comments. Normally these are set prop-
erly by Fortran mode, so you do not need to change them.

The normal Emacs comment command C-x ; has not been redefined. If you use ‘!’
comments, this command can be used with them. Otherwise it is useless in Fortran mode.

The command C-c ; (fortran-comment-region) turns all the lines of the region into
comments by inserting the string ‘C$$$’ at the front of each one. With a numeric argument,
it turns the region back into live code by deleting ‘C$$$’ from the front of each line in it.
The string used for these comments can be controlled by setting the variable fortran-
comment-region. Note that here we have an example of a command and a variable with
the same name; these two uses of the name never conflict because in Lisp and in Emacs it
is always clear from the context which one is meant.

22.12.4 Fortran Auto Fill Mode

Fortran Auto Fill mode is a minor mode which automatically splits Fortran statements
as you insert them when they become too wide. Splitting a statement involves making
continuation lines using fortran-continuation-string (see Section 22.12.2.2 [ForIndent
Cont], page 248). This splitting happens when you type 〈SPC〉, 〈RET〉, or 〈TAB〉, and also in
the Fortran indentation commands.

M-x fortran-auto-fill-mode turns Fortran Auto Fill mode on if it was off, or off if
it was on. This command works the same as M-x auto-fill-mode does for normal Auto
Fill mode (see Section 21.5 [Filling], page 203). A positive numeric argument turns Fortran
Auto Fill mode on, and a negative argument turns it off. You can see when Fortran Auto Fill
mode is in effect by the presence of the word ‘Fill’ in the mode line, inside the parentheses.
Fortran Auto Fill mode is a minor mode, turned on or off for each buffer individually. See
Section 32.1 [Minor Modes], page 377.

Fortran Auto Fill mode breaks lines at spaces or delimiters when the lines get longer
than the desired width (the value of fill-column). The delimiters that Fortran Auto Fill
mode may break at are ‘,’, ‘’’, ‘+’, ‘-’, ‘/’, ‘*’, ‘=’, and ‘)’. The line break comes after the
delimiter if the variable fortran-break-before-delimiters is nil. Otherwise (and by
default), the break comes before the delimiter.

By default, Fortran Auto Fill mode is not enabled. If you want this feature turned
on permanently, add a hook function to fortran-mode-hook to execute (fortran-auto-
fill-mode 1). See Section 32.2.3 [Hooks], page 386.

22.12.5 Checking Columns in Fortran

C-c C-r Display a “column ruler” momentarily above the current line (fortran-
column-ruler).

C-c C-w Split the current window horizontally temporarily so that it is 72 columns wide
(fortran-window-create-momentarily). This may help you avoid making
lines longer than the 72-character limit that some Fortran compilers impose.

252 GNU Emacs Manual

C-u C-c C-w
Split the current window horizontally so that it is 72 columns wide (fortran-
window-create). You can then continue editing.

M-x fortran-strip-sequence-nos
Delete all text in column 72 and beyond.

The command C-c C-r (fortran-column-ruler) shows a column ruler momentarily
above the current line. The comment ruler is two lines of text that show you the locations
of columns with special significance in Fortran programs. Square brackets show the limits
of the columns for line numbers, and curly brackets show the limits of the columns for the
statement body. Column numbers appear above them.

Note that the column numbers count from zero, as always in GNU Emacs. As a result,
the numbers may be one less than those you are familiar with; but the positions they
indicate in the line are standard for Fortran.

The text used to display the column ruler depends on the value of the variable indent-
tabs-mode. If indent-tabs-mode is nil, then the value of the variable fortran-column-
ruler-fixed is used as the column ruler. Otherwise, the variable fortran-column-ruler-
tab is displayed. By changing these variables, you can change the column ruler display.

C-c C-w (fortran-window-create-momentarily) temporarily splits the current window
horizontally, making a window 72 columns wide, so you can see which lines that is too long.
Type a space to restore the normal width.

You can also split the window horizontally and continue editing with the split in place.
To do this, use C-u C-c C-w (M-x fortran-window-create). By editing in this window you
can immediately see when you make a line too wide to be correct Fortran.

The command M-x fortran-strip-sequence-nos deletes all text in column 72 and
beyond, on all lines in the current buffer. This is the easiest way to get rid of old sequence
numbers.

22.12.6 Fortran Keyword Abbrevs

Fortran mode provides many built-in abbrevs for common keywords and declarations.
These are the same sort of abbrev that you can define yourself. To use them, you must turn
on Abbrev mode. See Chapter 25 [Abbrevs], page 283.

The built-in abbrevs are unusual in one way: they all start with a semicolon. You cannot
normally use semicolon in an abbrev, but Fortran mode makes this possible by changing
the syntax of semicolon to “word constituent.”

For example, one built-in Fortran abbrev is ‘;c’ for ‘continue’. If you insert ‘;c’ and then
insert a punctuation character such as a space or a newline, the ‘;c’ expands automatically
to ‘continue’, provided Abbrev mode is enabled.

Type ‘;?’ or ‘;C-h’ to display a list of all the built-in Fortran abbrevs and what they
stand for.

Chapter 22: Editing Programs 253

22.13 Asm Mode

Asm mode is a major mode for editing files of assembler code. It defines these commands:

〈TAB〉 tab-to-tab-stop.

C-j Insert a newline and then indent using tab-to-tab-stop.

: Insert a colon and then remove the indentation from before the label preceding
colon. Then do tab-to-tab-stop.

; Insert or align a comment.

The variable asm-comment-char specifies which character starts comments in assembler
syntax.

254 GNU Emacs Manual

Chapter 23: Compiling and Testing Programs 255

23 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for making changes
in programs. This chapter deals with commands that assist in the larger process of devel-
oping and maintaining programs.

23.1 Running Compilations under Emacs

Emacs can run compilers for noninteractive languages such as C and Fortran as inferior
processes, feeding the error log into an Emacs buffer. It can also parse the error messages
and show you the source lines where compilation errors occurred.

M-x compile
Run a compiler asynchronously under Emacs, with error messages going to the
‘*compilation*’ buffer.

M-x recompile
Invoke a compiler with the same command as in the last invocation of M-x
compile.

M-x grep Run grep asynchronously under Emacs, with matching lines listed in the buffer
named ‘*grep*’.

M-x grep-find
Run grep via find, with user-specified arguments, and collect output in the
buffer named ‘*grep*’.

M-x kill-compilation
M-x kill-grep

Kill the running compilation or grep subprocess.

To run make or another compilation command, do M-x compile. This command reads
a shell command line using the minibuffer, and then executes the command in an inferior
shell, putting output in the buffer named ‘*compilation*’. The current buffer’s default
directory is used as the working directory for the execution of the command; normally,
therefore, the compilation happens in this directory.

When the shell command line is read, the minibuffer appears containing a default com-
mand line, which is the command you used the last time you did M-x compile. If you type
just 〈RET〉, the same command line is used again. For the first M-x compile, the default is
‘make -k’. The default compilation command comes from the variable compile-command;
if the appropriate compilation command for a file is something other than ‘make -k’, it can
be useful for the file to specify a local value for compile-command (see Section 32.2.5 [File
Variables], page 388).

Starting a compilation displays the buffer ‘*compilation*’ in another window but does
not select it. The buffer’s mode line tells you whether compilation is finished, with the
word ‘run’ or ‘exit’ inside the parentheses. You do not have to keep this buffer visible;
compilation continues in any case. While a compilation is going on, the string ‘Compiling’
appears in the mode lines of all windows. When this string disappears, the compilation is
finished.

256 GNU Emacs Manual

If you want to watch the compilation transcript as it appears, switch to the
‘*compilation*’ buffer and move point to the end of the buffer. When point is at the end,
new compilation output is inserted above point, which remains at the end. If point is not
at the end of the buffer, it remains fixed while more compilation output is added at the
end of the buffer.

If you set the variable compilation-scroll-output to a non-nil value, then the com-
pilation buffer always scrolls to follow output as it comes in.

To kill the compilation process, do M-x kill-compilation. When the compiler process
terminates, the mode line of the ‘*compilation*’ buffer changes to say ‘signal’ instead
of ‘run’. Starting a new compilation also kills any running compilation, as only one can
exist at any time. However, M-x compile asks for confirmation before actually killing a
compilation that is running.

To rerun the last compilation with the same command, type M-x recompile. This
automatically reuses the compilation command from the last invocation of M-x compile.

23.2 Searching with Grep under Emacs

Just as you can run a compiler from Emacs and then visit the lines where there were
compilation errors, you can also run grep and then visit the lines on which matches were
found. This works by treating the matches reported by grep as if they were “errors.”

To do this, type M-x grep, then enter a command line that specifies how to run grep.
Use the same arguments you would give grep when running it normally: a grep-style regexp
(usually in single-quotes to quote the shell’s special characters) followed by file names, which
may use wildcards. The output from grep goes in the ‘*grep*’ buffer. You can find the
corresponding lines in the original files using C-x ‘ and 〈RET〉, as with compilation errors.

If you specify a prefix argument for M-x grep, it figures out the tag (see Section 24.2
[Tags], page 268) around point, and puts that into the default grep command.

The command M-x grep-find is similar to M-x grep, but it supplies a different initial
default for the command—one that runs both find and grep, so as to search every file in a
directory tree. See also the find-grep-dired command, in Section 29.15 [Dired and Find],
page 330.

23.3 Compilation Mode

The ‘*compilation*’ buffer uses a special major mode, Compilation mode, whose main
feature is to provide a convenient way to look at the source line where the error happened.

If you set the variable compilation-scroll-output to a non-nil value, then the com-
pilation buffer always scrolls to follow output as it comes in.

C-x ‘ Visit the locus of the next compiler error message or grep match.

〈RET〉 Visit the locus of the error message that point is on. This command is used in
the compilation buffer.

Mouse-2 Visit the locus of the error message that you click on.

Chapter 23: Compiling and Testing Programs 257

You can visit the source for any particular error message by moving point in the
‘*compilation*’ buffer to that error message and typing 〈RET〉 (compile-goto-error).
Alternatively, you can click Mouse-2 on the error message; you need not switch to the
‘*compilation*’ buffer first.

To parse the compiler error messages sequentially, type C-x ‘ (next-error). The char-
acter following the C-x is the backquote or “grave accent,” not the single-quote. This
command is available in all buffers, not just in ‘*compilation*’; it displays the next error
message at the top of one window and source location of the error in another window.

The first time C-x ‘ is used after the start of a compilation, it moves to the first error’s
location. Subsequent uses of C-x ‘ advance down to subsequent errors. If you visit a
specific error message with 〈RET〉 or Mouse-2, subsequent C-x ‘ commands advance from
there. When C-x ‘ gets to the end of the buffer and finds no more error messages to visit,
it fails and signals an Emacs error.

C-u C-x ‘ starts scanning from the beginning of the compilation buffer. This is one way
to process the same set of errors again.

To parse messages from the compiler, Compilation mode uses the variable compilation-
error-regexp-alist which lists various formats of error messages and tells Emacs how to
extract the source file and the line number from the text of a message. If your compiler
isn’t supported, you can tailor Compilation mode to it by adding elements to that list. A
similar variable grep-regexp-alist tells Emacs how to parse output of a grep command.

Compilation mode also redefines the keys 〈SPC〉 and 〈DEL〉 to scroll by screenfuls, and M-n
and M-p to move to the next or previous error message. You can also use M-{ and M-} to
move up or down to an error message for a different source file.

The features of Compilation mode are also available in a minor mode called Compilation
Minor mode. This lets you parse error messages in any buffer, not just a normal compilation
output buffer. Type M-x compilation-minor-mode to enable the minor mode. This defines
the keys 〈RET〉 and Mouse-2, as in the Compilation major mode.

Compilation minor mode works in any buffer, as long as the contents are in a format
that it understands. In an Rlogin buffer (see Section 31.2.10 [Remote Host], page 359),
Compilation minor mode automatically accesses remote source files by FTP (see Section 14.1
[File Names], page 109).

23.4 Subshells for Compilation

Emacs uses a shell to run the compilation command, but specifies the option for a
noninteractive shell. This means, in particular, that the shell should start with no prompt.
If you find your usual shell prompt making an unsightly appearance in the ‘*compilation*’
buffer, it means you have made a mistake in your shell’s init file by setting the prompt
unconditionally. (This init file’s name may be ‘.bashrc’, ‘.profile’, ‘.cshrc’, ‘.shrc’,
or various other things, depending on the shell you use.) The shell init file should set the
prompt only if there already is a prompt. In csh, here is how to do it:

if ($?prompt) set prompt = ...

And here’s how to do it in bash:
if ["${PS1+set}" = set]
then PS1=...

258 GNU Emacs Manual

fi

There may well be other things that your shell’s init file ought to do only for an interactive
shell. You can use the same method to conditionalize them.

The MS-DOS “operating system” does not support asynchronous subprocesses; to work
around this lack, M-x compile runs the compilation command synchronously on MS-DOS.
As a consequence, you must wait until the command finishes before you can do anything
else in Emacs. See Appendix E [MS-DOS], page 451.

23.5 Running Debuggers Under Emacs

The GUD (Grand Unified Debugger) library provides an interface to various symbolic
debuggers from within Emacs. We recommend the debugger GDB, which is free software,
but you can also run DBX, SDB or XDB if you have them. GUD can also serve as an
interface to the Perl’s debugging mode, the Python debugger PDB, and to JDB, the Java
Debugger. See section “The Lisp Debugger” in the Emacs Lisp Reference Manual, for
information on debugging Emacs Lisp programs.

23.5.1 Starting GUD

There are several commands for starting a debugger, each corresponding to a particular
debugger program.

M-x gdb 〈RET〉 file 〈RET〉
Run GDB as a subprocess of Emacs. This command creates a buffer for input
and output to GDB, and switches to it. If a GDB buffer already exists, it just
switches to that buffer.

M-x dbx 〈RET〉 file 〈RET〉
Similar, but run DBX instead of GDB.

M-x xdb 〈RET〉 file 〈RET〉
Similar, but run XDB instead of GDB. Use the variable gud-xdb-directories
to specify directories to search for source files.

M-x sdb 〈RET〉 file 〈RET〉
Similar, but run SDB instead of GDB.
Some versions of SDB do not mention source file names in their messages.
When you use them, you need to have a valid tags table (see Section 24.2
[Tags], page 268) in order for GUD to find functions in the source code. If you
have not visited a tags table or the tags table doesn’t list one of the functions,
you get a message saying ‘The sdb support requires a valid tags table to
work’. If this happens, generate a valid tags table in the working directory and
try again.

M-x perldb 〈RET〉 file 〈RET〉
Run the Perl interpreter in debug mode to debug file, a Perl program.

M-x jdb 〈RET〉 file 〈RET〉
Run the Java debugger to debug file.

Chapter 23: Compiling and Testing Programs 259

M-x pdb 〈RET〉 file 〈RET〉
Run the Python debugger to debug file.

Each of these commands takes one argument: a command line to invoke the debugger.
In the simplest case, specify just the name of the executable file you want to debug. You
may also use options that the debugger supports. However, shell wildcards and variables are
not allowed. GUD assumes that the first argument not starting with a ‘-’ is the executable
file name.

Emacs can only run one debugger process at a time.

23.5.2 Debugger Operation

When you run a debugger with GUD, the debugger uses an Emacs buffer for its ordinary
input and output. This is called the GUD buffer. The debugger displays the source files
of the program by visiting them in Emacs buffers. An arrow (‘=>’) in one of these buffers
indicates the current execution line.1 Moving point in this buffer does not move the arrow.

You can start editing these source files at any time in the buffers that display them. The
arrow is not part of the file’s text; it appears only on the screen. If you do modify a source
file, keep in mind that inserting or deleting lines will throw off the arrow’s positioning; GUD
has no way of figuring out which line corresponded before your changes to the line number
in a debugger message. Also, you’ll typically have to recompile and restart the program for
your changes to be reflected in the debugger’s tables.

If you wish, you can control your debugger process entirely through the debugger buffer,
which uses a variant of Shell mode. All the usual commands for your debugger are available,
and you can use the Shell mode history commands to repeat them. See Section 31.2.3 [Shell
Mode], page 353.

23.5.3 Commands of GUD

The GUD interaction buffer uses a variant of Shell mode, so the commands of Shell
mode are available (see Section 31.2.3 [Shell Mode], page 353). GUD mode also provides
commands for setting and clearing breakpoints, for selecting stack frames, and for stepping
through the program. These commands are available both in the GUD buffer and globally,
but with different key bindings.

The breakpoint commands are normally used in source file buffers, because that is the
easiest way to specify where to set or clear the breakpoint. Here’s the global command to
set a breakpoint:

C-x 〈SPC〉 Set a breakpoint on the source line that point is on.

Here are the other special commands provided by GUD. The keys starting with C-c are
available only in the GUD interaction buffer. The key bindings that start with C-x C-a are
available in the GUD interaction buffer and also in source files.

1 Under a window system the arrow is displayed in the marginal area of the Emacs window.

260 GNU Emacs Manual

C-c C-l
C-x C-a C-l

Display in another window the last line referred to in the GUD buffer (that
is, the line indicated in the last location message). This runs the command
gud-refresh.

C-c C-s
C-x C-a C-s

Execute a single line of code (gud-step). If the line contains a function call,
execution stops after entering the called function.

C-c C-n
C-x C-a C-n

Execute a single line of code, stepping across entire function calls at full speed
(gud-next).

C-c C-i
C-x C-a C-i

Execute a single machine instruction (gud-stepi).

C-c C-r
C-x C-a C-r

Continue execution without specifying any stopping point. The program will
run until it hits a breakpoint, terminates, or gets a signal that the debugger is
checking for (gud-cont).

C-c C-d
C-x C-a C-d

Delete the breakpoint(s) on the current source line, if any (gud-remove). If you
use this command in the GUD interaction buffer, it applies to the line where
the program last stopped.

C-c C-t
C-x C-a C-t

Set a temporary breakpoint on the current source line, if any. If you use this
command in the GUD interaction buffer, it applies to the line where the program
last stopped.

The above commands are common to all supported debuggers. If you are using GDB or
(some versions of) DBX, these additional commands are available:

C-c <
C-x C-a < Select the next enclosing stack frame (gud-up). This is equivalent to the ‘up’

command.

C-c >
C-x C-a > Select the next inner stack frame (gud-down). This is equivalent to the ‘down’

command.

If you are using GDB, these additional key bindings are available:

〈TAB〉 With GDB, complete a symbol name (gud-gdb-complete-command). This key
is available only in the GUD interaction buffer, and requires GDB versions 4.13
and later.

Chapter 23: Compiling and Testing Programs 261

C-c C-f
C-x C-a C-f

Run the program until the selected stack frame returns (or until it stops for
some other reason).

These commands interpret a numeric argument as a repeat count, when that makes
sense.

Because 〈TAB〉 serves as a completion command, you can’t use it to enter a tab as input
to the program you are debugging with GDB. Instead, type C-q 〈TAB〉 to enter a tab.

23.5.4 GUD Customization

On startup, GUD runs one of the following hooks: gdb-mode-hook, if you are using GDB;
dbx-mode-hook, if you are using DBX; sdb-mode-hook, if you are using SDB; xdb-mode-
hook, if you are using XDB; perldb-mode-hook, for Perl debugging mode; pdb-mode-hook,
for PDB; jdb-mode-hook, for JDB. You can use these hooks to define custom key bindings
for the debugger interaction buffer. See Section 32.2.3 [Hooks], page 386.

Here is a convenient way to define a command that sends a particular command string
to the debugger, and set up a key binding for it in the debugger interaction buffer:

(gud-def function cmdstring binding docstring)

This defines a command named function which sends cmdstring to the debugger process,
and gives it the documentation string docstring. You can then use the command function
in any buffer. If binding is non-nil, gud-def also binds the command to C-c binding in
the GUD buffer’s mode and to C-x C-a binding generally.

The command string cmdstring may contain certain ‘%’-sequences that stand for data
to be filled in at the time function is called:

‘%f’ The name of the current source file. If the current buffer is the GUD buffer,
then the “current source file” is the file that the program stopped in.

‘%l’ The number of the current source line. If the current buffer is the GUD buffer,
then the “current source line” is the line that the program stopped in.

‘%e’ The text of the C lvalue or function-call expression at or adjacent to point.

‘%a’ The text of the hexadecimal address at or adjacent to point.

‘%p’ The numeric argument of the called function, as a decimal number. If the
command is used without a numeric argument, ‘%p’ stands for the empty string.
If you don’t use ‘%p’ in the command string, the command you define ignores
any numeric argument.

23.5.5 GUD Tooltips

The Tooltip facility (see Section 17.18 [Tooltips], page 173) provides support for GUD.
If GUD support is activated by customizing the tooltip group, variable values can be
displayed in tooltips by pointing at them with the mouse in the GUD buffer or in source
buffers with major modes in the customizable list tooltip-gud-modes.

262 GNU Emacs Manual

23.6 Executing Lisp Expressions

Emacs has several different major modes for Lisp and Scheme. They are the same in
terms of editing commands, but differ in the commands for executing Lisp expressions.
Each mode has its own purpose.

Emacs-Lisp mode
The mode for editing source files of programs to run in Emacs Lisp. This mode
defines C-M-x to evaluate the current defun. See Section 23.7 [Lisp Libraries],
page 262.

Lisp Interaction mode
The mode for an interactive session with Emacs Lisp. It defines C-j to evaluate
the sexp before point and insert its value in the buffer. See Section 23.9 [Lisp
Interaction], page 264.

Lisp mode The mode for editing source files of programs that run in Lisps other than
Emacs Lisp. This mode defines C-M-x to send the current defun to an inferior
Lisp process. See Section 23.10 [External Lisp], page 265.

Inferior Lisp mode
The mode for an interactive session with an inferior Lisp process. This mode
combines the special features of Lisp mode and Shell mode (see Section 31.2.3
[Shell Mode], page 353).

Scheme mode
Like Lisp mode but for Scheme programs.

Inferior Scheme mode
The mode for an interactive session with an inferior Scheme process.

Most editing commands for working with Lisp programs are in fact available globally.
See Chapter 22 [Programs], page 225.

23.7 Libraries of Lisp Code for Emacs

Lisp code for Emacs editing commands is stored in files whose names conventionally
end in ‘.el’. This ending tells Emacs to edit them in Emacs-Lisp mode (see Section 23.6
[Executing Lisp], page 262).

To execute a file of Emacs Lisp code, use M-x load-file. This command reads a file
name using the minibuffer and then executes the contents of that file as Lisp code. It is not
necessary to visit the file first; in any case, this command reads the file as found on disk,
not text in an Emacs buffer.

Once a file of Lisp code is installed in the Emacs Lisp library directories, users can load
it using M-x load-library. Programs can load it by calling load-library, or with load,
a more primitive function that is similar but accepts some additional arguments.

M-x load-library differs from M-x load-file in that it searches a sequence of direc-
tories and tries three file names in each directory. Suppose your argument is lib; the three
names are ‘lib.elc’, ‘lib.el’, and lastly just ‘lib’. If ‘lib.elc’ exists, it is by convention the
result of compiling ‘lib.el’; it is better to load the compiled file, since it will load and run
faster.

Chapter 23: Compiling and Testing Programs 263

If load-library finds that ‘lib.el’ is newer than ‘lib.elc’ file, it issues a warning,
because it’s likely that somebody made changes to the ‘.el’ file and forgot to recompile it.

Because the argument to load-library is usually not in itself a valid file name, file
name completion is not available. Indeed, when using this command, you usually do not
know exactly what file name will be used.

The sequence of directories searched by M-x load-library is specified by the variable
load-path, a list of strings that are directory names. The default value of the list contains
the directory where the Lisp code for Emacs itself is stored. If you have libraries of your
own, put them in a single directory and add that directory to load-path. nil in this list
stands for the current default directory, but it is probably not a good idea to put nil in
the list. If you find yourself wishing that nil were in the list, most likely what you really
want to do is use M-x load-file this once.

Often you do not have to give any command to load a library, because the commands
defined in the library are set up to autoload that library. Trying to run any of those
commands calls load to load the library; this replaces the autoload definitions with the real
ones from the library.

Emacs Lisp code can be compiled into byte-code which loads faster, takes up less space
when loaded, and executes faster. See section “Byte Compilation” in the Emacs Lisp
Reference Manual. By convention, the compiled code for a library goes in a separate file
whose name consists of the library source file with ‘c’ appended. Thus, the compiled code
for ‘foo.el’ goes in ‘foo.elc’. That’s why load-library searches for ‘.elc’ files first.

By default, Emacs refuses to load compiled Lisp files which were compiled with XEmacs,
a modified versions of Emacs—they can cause Emacs to crash. Set the variable load-
dangerous-libraries to t if you want to try loading them.

23.8 Evaluating Emacs-Lisp Expressions

Lisp programs intended to be run in Emacs should be edited in Emacs-Lisp mode; this
happens automatically for file names ending in ‘.el’. By contrast, Lisp mode itself is used
for editing Lisp programs intended for other Lisp systems. To switch to Emacs-Lisp mode
explicitly, use the command M-x emacs-lisp-mode.

For testing of Lisp programs to run in Emacs, it is often useful to evaluate part of the
program as it is found in the Emacs buffer. For example, after changing the text of a
Lisp function definition, evaluating the definition installs the change for future calls to the
function. Evaluation of Lisp expressions is also useful in any kind of editing, for invoking
noninteractive functions (functions that are not commands).

M-: Read a single Lisp expression in the minibuffer, evaluate it, and print the value
in the echo area (eval-expression).

C-x C-e Evaluate the Lisp expression before point, and print the value in the echo area
(eval-last-sexp).

C-M-x Evaluate the defun containing or after point, and print the value in the echo
area (eval-defun).

M-x eval-region
Evaluate all the Lisp expressions in the region.

264 GNU Emacs Manual

M-x eval-current-buffer
Evaluate all the Lisp expressions in the buffer.

M-: (eval-expression) is the most basic command for evaluating a Lisp expression
interactively. It reads the expression using the minibuffer, so you can execute any expression
on a buffer regardless of what the buffer contains. When the expression is evaluated, the
current buffer is once again the buffer that was current when M-: was typed.

In Emacs-Lisp mode, the key C-M-x is bound to the command eval-defun, which parses
the defun containing or following point as a Lisp expression and evaluates it. The value is
printed in the echo area. This command is convenient for installing in the Lisp environment
changes that you have just made in the text of a function definition.

C-M-x treats defvar expressions specially. Normally, evaluating a defvar expression
does nothing if the variable it defines already has a value. But C-M-x unconditionally resets
the variable to the initial value specified in the defvar expression. defcustom expressions
are treated similarly. This special feature is convenient for debugging Lisp programs.

The command C-x C-e (eval-last-sexp) evaluates the Lisp expression preceding point
in the buffer, and displays the value in the echo area. It is available in all major modes, not
just Emacs-Lisp mode. It does not treat defvar specially.

If C-M-x, C-x C-e, or M-: is given a numeric argument, it inserts the value into the
current buffer at point, rather than displaying it in the echo area. The argument’s value
does not matter.

The most general command for evaluating Lisp expressions from a buffer is eval-region.
M-x eval-region parses the text of the region as one or more Lisp expressions, evaluating
them one by one. M-x eval-current-buffer is similar but evaluates the entire buffer. This
is a reasonable way to install the contents of a file of Lisp code that you are ready to test.
Later, as you find bugs and change individual functions, use C-M-x on each function that
you change. This keeps the Lisp world in step with the source file.

The customizable variables eval-expression-print-level and eval-expression-
print-length control the maximum depth and length of lists to print in the result of
the evaluation commands before abbreviating them. eval-expression-debug-on-error
controls whether evaluation errors invoke the debugger when these commands are used.

23.9 Lisp Interaction Buffers

The buffer ‘*scratch*’ which is selected when Emacs starts up is provided for evaluating
Lisp expressions interactively inside Emacs.

The simplest way to use the ‘*scratch*’ buffer is to insert Lisp expressions and type
C-j after each expression. This command reads the Lisp expression before point, evaluates
it, and inserts the value in printed representation before point. The result is a complete
typescript of the expressions you have evaluated and their values.

The ‘*scratch*’ buffer’s major mode is Lisp Interaction mode, which is the same as
Emacs-Lisp mode except for the binding of C-j.

The rationale for this feature is that Emacs must have a buffer when it starts up, but that
buffer is not useful for editing files since a new buffer is made for every file that you visit.

Chapter 23: Compiling and Testing Programs 265

The Lisp interpreter typescript is the most useful thing I can think of for the initial buffer to
do. Type M-x lisp-interaction-mode to put the current buffer in Lisp Interaction mode.

An alternative way of evaluating Emacs Lisp expressions interactively is to use Inferior
Emacs-Lisp mode, which provides an interface rather like Shell mode (see Section 31.2.3
[Shell Mode], page 353) for evaluating Emacs Lisp expressions. Type M-x ielm to create an
‘*ielm*’ buffer which uses this mode.

23.10 Running an External Lisp

Emacs has facilities for running programs in other Lisp systems. You can run a Lisp
process as an inferior of Emacs, and pass expressions to it to be evaluated. You can also
pass changed function definitions directly from the Emacs buffers in which you edit the Lisp
programs to the inferior Lisp process.

To run an inferior Lisp process, type M-x run-lisp. This runs the program named lisp,
the same program you would run by typing lisp as a shell command, with both input and
output going through an Emacs buffer named ‘*lisp*’. That is to say, any “terminal
output” from Lisp will go into the buffer, advancing point, and any “terminal input” for
Lisp comes from text in the buffer. (You can change the name of the Lisp executable file
by setting the variable inferior-lisp-program.)

To give input to Lisp, go to the end of the buffer and type the input, terminated by 〈RET〉.
The ‘*lisp*’ buffer is in Inferior Lisp mode, which combines the special characteristics
of Lisp mode with most of the features of Shell mode (see Section 31.2.3 [Shell Mode],
page 353). The definition of 〈RET〉 to send a line to a subprocess is one of the features of
Shell mode.

For the source files of programs to run in external Lisps, use Lisp mode. This mode
can be selected with M-x lisp-mode, and is used automatically for files whose names end
in ‘.l’, ‘.lsp’, or ‘.lisp’, as most Lisp systems usually expect.

When you edit a function in a Lisp program you are running, the easiest way to send
the changed definition to the inferior Lisp process is the key C-M-x. In Lisp mode, this runs
the function lisp-eval-defun, which finds the defun around or following point and sends
it as input to the Lisp process. (Emacs can send input to any inferior process regardless of
what buffer is current.)

Contrast the meanings of C-M-x in Lisp mode (for editing programs to be run in another
Lisp system) and Emacs-Lisp mode (for editing Lisp programs to be run in Emacs): in
both modes it has the effect of installing the function definition that point is in, but the
way of doing so is different according to where the relevant Lisp environment is found. See
Section 23.6 [Executing Lisp], page 262.

266 GNU Emacs Manual

Chapter 24: Maintaining Programs 267

24 Maintaining Programs

This chapter describes Emacs features for maintaining programs. The version control
features (see Section 14.7 [Version Control], page 122) are also particularly useful for this
purpose.

24.1 Change Logs

The Emacs command C-x 4 a adds a new entry to the change log file for the file you
are editing (add-change-log-entry-other-window). If that file is actually a backup file,
it makes an entry appropriate for the file’s parent—that is useful for making log entries for
functions that have been deleted in the current version.

A change log file contains a chronological record of when and why you have changed a
program, consisting of a sequence of entries describing individual changes. Normally it is
kept in a file called ‘ChangeLog’ in the same directory as the file you are editing, or one
of its parent directories. A single ‘ChangeLog’ file can record changes for all the files in its
directory and all its subdirectories.

You should put a copyright notice and permission notice at the end of the change log
file. Here is an example:

Copyright 1997, 1998 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification, are
permitted provided the copyright notice and this notice are preserved.

Of course, you should substitute the proper years and copyright holder.

A change log entry starts with a header line that contains the current date, your name,
and your email address (taken from the variable user-mail-address). Aside from these
header lines, every line in the change log starts with a space or a tab. The bulk of the entry
consists of items, each of which starts with a line starting with whitespace and a star. Here
are two entries, both dated in May 1993, each with two items:

1993-05-25 Richard Stallman <rms@gnu.org>

* man.el: Rename symbols ‘man-*’ to ‘Man-*’.
(manual-entry): Make prompt string clearer.

* simple.el (blink-matching-paren-distance):
Change default to 12,000.

1993-05-24 Richard Stallman <rms@gnu.org>

* vc.el (minor-mode-map-alist): Don’t use it if it’s void.
(vc-cancel-version): Doc fix.

One entry can describe several changes; each change should have its own item. Normally
there should be a blank line between items. When items are related (parts of the same
change, in different places), group them by leaving no blank line between them. The second
entry above contains two items grouped in this way.

268 GNU Emacs Manual

C-x 4 a visits the change log file and creates a new entry unless the most recent entry is
for today’s date and your name. It also creates a new item for the current file. For many
languages, it can even guess the name of the function or other object that was changed.

When the option add-log-keep-changes-together is non-nil, C-x 4 a adds to any
existing entry for the file rather than starting a new entry.

If the value of the variable change-log-version-info-enabled is non-nil, C-x 4 a adds
the file’s version number to the change log entry. It finds the version number by searching
the first ten percent of the file, using regular expressions from the variable change-log-
version-number-regexp-list.

The change log file is visited in Change Log mode. In this major mode, each bunch
of grouped items counts as one paragraph, and each entry is considered a page. This
facilitates editing the entries. C-j and auto-fill indent each new line like the previous line;
this is convenient for entering the contents of an entry.

You can use the command M-x change-log-merge to merge other log files into a buffer
in Change Log Mode, preserving the date ordering of entries.

Versions of Emacs before 20.1 used a different format for the time of the change log
entry:

Fri May 25 11:23:23 1993 Richard Stallman <rms@gnu.org>

The M-x change-log-redate command converts all the old-style date entries in the change
log file visited in the current buffer to the new format, to make the file uniform in style.
This is handy when entries are contributed by many different people, some of whom use old
versions of Emacs.

Version control systems are another way to keep track of changes in your program and
keep a change log. See Section 14.7.3.4 [Log Buffer], page 126.

24.2 Tags Tables

A tags table is a description of how a multi-file program is broken up into files. It lists
the names of the component files and the names and positions of the functions (or other
named subunits) in each file. Grouping the related files makes it possible to search or replace
through all the files with one command. Recording the function names and positions makes
possible the M-. command which finds the definition of a function by looking up which of
the files it is in.

Tags tables are stored in files called tags table files. The conventional name for a tags
table file is ‘TAGS’.

Each entry in the tags table records the name of one tag, the name of the file that the
tag is defined in (implicitly), and the position in that file of the tag’s definition.

Just what names from the described files are recorded in the tags table depends on
the programming language of the described file. They normally include all file names,
functions and subroutines, and may also include global variables, data types, and anything
else convenient. Each name recorded is called a tag.

See also the Ebrowse facility, which is tailored for C++. See section “Ebrowse” in Ebrowse
User’s Manual.

Chapter 24: Maintaining Programs 269

24.2.1 Source File Tag Syntax

Here is how tag syntax is defined for the most popular languages:
• In C code, any C function or typedef is a tag, and so are definitions of struct, union

and enum. #define macro definitions and enum constants are also tags, unless you
specify ‘--no-defines’ when making the tags table. Similarly, global variables are
tags, unless you specify ‘--no-globals’. Use of ‘--no-globals’ and ‘--no-defines’
can make the tags table file much smaller.
You can tag function declarations and external variables in addition to function defi-
nitions by giving the ‘--declarations’ option to etags.

• In C++ code, in addition to all the tag constructs of C code, member functions are also
recognized, and optionally member variables if you use the ‘--members’ option. Tags
for variables and functions in classes are named ‘class::variable’ and ‘class::function’.
operator definitions have tag names like ‘operator+’.

• In Java code, tags include all the constructs recognized in C++, plus the interface,
extends and implements constructs. Tags for variables and functions in classes are
named ‘class.variable’ and ‘class.function’.

• In LaTEX text, the argument of any of the commands \chapter, \section,
\subsection, \subsubsection, \eqno, \label, \ref, \cite, \bibitem, \part,
\appendix, \entry, or \index, is a tag.
Other commands can make tags as well, if you specify them in the environment variable
TEXTAGS before invoking etags. The value of this environment variable should be a
colon-separated list of command names. For example,

TEXTAGS="def:newcommand:newenvironment"
export TEXTAGS

specifies (using Bourne shell syntax) that the commands ‘\def’, ‘\newcommand’ and
‘\newenvironment’ also define tags.

• In Lisp code, any function defined with defun, any variable defined with defvar or
defconst, and in general the first argument of any expression that starts with ‘(def’
in column zero, is a tag.

• In Scheme code, tags include anything defined with def or with a construct whose
name starts with ‘def’. They also include variables set with set! at top level in the
file.

Several other languages are also supported:
• In Ada code, functions, procedures, packages, tasks, and types are tags. Use the

‘--packages-only’ option to create tags for packages only.
In Ada, the same name can be used for different kinds of entity (e.g., for a procedure
and for a function). Also, for things like packages, procedures and functions, there is
the spec (i.e. the interface) and the body (i.e. the implementation). To make it easier to
pick the definition you want, Ada tag name have suffixes indicating the type of entity:

‘/b’ package body.

‘/f’ function.

‘/k’ task.

270 GNU Emacs Manual

‘/p’ procedure.

‘/s’ package spec.

‘/t’ type.

Thus, M-x find-tag 〈RET〉 bidule/b 〈RET〉 will go directly to the body of the package
bidule, while M-x find-tag 〈RET〉 bidule 〈RET〉 will just search for any tag bidule.

• In assembler code, labels appearing at the beginning of a line, followed by a colon, are
tags.

• In Bison or Yacc input files, each rule defines as a tag the nonterminal it constructs.
The portions of the file that contain C code are parsed as C code.

• In Cobol code, tags are paragraph names; that is, any word starting in column 8 and
followed by a period.

• In Erlang code, the tags are the functions, records, and macros defined in the file.
• In Fortran code, functions, subroutines and block data are tags.
• In makefiles, targets are tags.
• In Objective C code, tags include Objective C definitions for classes, class categories,

methods, and protocols.
• In Pascal code, the tags are the functions and procedures defined in the file.
• In Perl code, the tags are the procedures defined by the sub, my and local keywords.

Use ‘--globals’ if you want to tag global variables.
• In PostScript code, the tags are the functions.
• In Prolog code, a tag name appears at the left margin.
• In Python code, def or class at the beginning of a line generate a tag.

You can also generate tags based on regexp matching (see Section 24.2.3 [Etags Regexps],
page 271) to handle other formats and languages.

24.2.2 Creating Tags Tables

The etags program is used to create a tags table file. It knows the syntax of several
languages, as described in the previous section. Here is how to run etags:

etags inputfiles...

The etags program reads the specified files, and writes a tags table named ‘TAGS’ in the
current working directory.

If the specified files don’t exist, etags looks for compressed versions of them and un-
compresses them to read them. Under MS-DOS, etags also looks for file names like
‘mycode.cgz’ if it is given ‘mycode.c’ on the command line and ‘mycode.c’ does not exist.

etags recognizes the language used in an input file based on its file name and contents.
You can specify the language with the ‘--language=name’ option, described below.

If the tags table data become outdated due to changes in the files described in the table,
the way to update the tags table is the same way it was made in the first place. If the
tags table fails to record a tag, or records it for the wrong file, then Emacs cannot possibly
find its definition until you update the tags table. However, if the position recorded in the
tags table becomes a little bit wrong (due to other editing), the only consequence is a slight

Chapter 24: Maintaining Programs 271

delay in finding the tag. Even if the stored position is very far wrong, Emacs will still find
the tag, after searching most of the file for it. Even that delay is hardly noticeable with
today’s computers.

So you should update a tags table when you define new tags that you want to have
listed, or when you move tag definitions from one file to another, or when changes become
substantial. Normally there is no need to update the tags table after each edit, or even
every day.

One tags table can virtually include another. Specify the included tags file name with
the ‘--include=file’ option when creating the file that is to include it. The latter file then
acts as if it covered all the source files specified in the included file, as well as the files it
directly contains.

If you specify the source files with relative file names when you run etags, the tags file
will contain file names relative to the directory where the tags file was initially written.
This way, you can move an entire directory tree containing both the tags file and the source
files, and the tags file will still refer correctly to the source files.

If you specify absolute file names as arguments to etags, then the tags file will contain
absolute file names. This way, the tags file will still refer to the same files even if you move
it, as long as the source files remain in the same place. Absolute file names start with ‘/’,
or with ‘device:/’ on MS-DOS and MS-Windows.

When you want to make a tags table from a great number of files, you may have problems
listing them on the command line, because some systems have a limit on its length. The
simplest way to circumvent this limit is to tell etags to read the file names from its standard
input, by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

Use the option ‘--language=name’ to specify the language explicitly. You can intermix
these options with file names; each one applies to the file names that follow it. Specify
‘--language=auto’ to tell etags to resume guessing the language from the file names and
file contents. Specify ‘--language=none’ to turn off language-specific processing entirely;
then etags recognizes tags by regexp matching alone (see Section 24.2.3 [Etags Regexps],
page 271).

‘etags --help’ prints the list of the languages etags knows, and the file name rules for
guessing the language. It also prints a list of all the available etags options, together with
a short explanation.

24.2.3 Etags Regexps

The ‘--regex’ option provides a general way of recognizing tags based on regexp match-
ing. You can freely intermix it with file names. Each ‘--regex’ option adds to the preceding
ones, and applies only to the following files. The syntax is:

--regex=/tagregexp[/nameregexp]/

where tagregexp is used to match the lines to tag. It is always anchored, that is, it behaves
as if preceded by ‘^’. If you want to account for indentation, just match any initial number
of blanks by beginning your regular expression with ‘[\t]*’. In the regular expressions,
‘\’ quotes the next character, and ‘\t’ stands for the tab character. Note that etags does
not handle the other C escape sequences for special characters.

272 GNU Emacs Manual

The syntax of regular expressions in etags is the same as in Emacs, augmented with
the interval operator, which works as in grep and ed. The syntax of an interval operator is
‘\{m,n\}’, and its meaning is to match the preceding expression at least m times and up
to n times.

You should not match more characters with tagregexp than that needed to recognize
what you want to tag. If the match is such that more characters than needed are unavoidably
matched by tagregexp (as will usually be the case), you should add a nameregexp, to pick
out just the tag. This will enable Emacs to find tags more accurately and to do completion
on tag names more reliably. You can find some examples below.

The option ‘--ignore-case-regex’ (or ‘-c’) works like ‘--regex’, except that matching
ignores case. This is appropriate for certain programming languages.

The ‘-R’ option deletes all the regexps defined with ‘--regex’ options. It applies to the
file names following it, as you can see from the following example:

etags --regex=/reg1/ voo.doo --regex=/reg2/ \
bar.ber -R --lang=lisp los.er

Here etags chooses the parsing language for ‘voo.doo’ and ‘bar.ber’ according to their
contents. etags also uses reg1 to recognize additional tags in ‘voo.doo’, and both reg1
and reg2 to recognize additional tags in ‘bar.ber’. etags uses the Lisp tags rules, and no
regexp matching, to recognize tags in ‘los.er’.

You can specify a regular expression for a particular language, by writing ‘{lang}’ in
front of it. Then etags will use the regular expression only for files of that language.
(‘etags --help’ prints the list of languages recognized by etags.) The following example
tags the DEFVAR macros in the Emacs source files, for the C language only:

--regex=’{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/’

This feature is particularly useful when you store a list of regular expressions in a file. The
following option syntax instructs etags to read two files of regular expressions. The regular
expressions contained in the second file are matched without regard to case.

--regex=@first-file --ignore-case-regex=@second-file

A regex file contains one regular expressions per line. Empty lines, and lines beginning
with space or tab are ignored. When the first character in a line is ‘@’, etags assumes
that the rest of the line is the name of a file of regular expressions; thus, one such file can
include another file. All the other lines are taken to be regular expressions. If the first
non-whitespace text on the line is ‘--’, that line is a comment.

For example, one can create a file called ‘emacs.tags’ with the following contents:
-- This is for GNU Emacs C source files

{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/

and then use it like this:
etags --regex=@emacs.tags *.[ch] */*.[ch]

Here are some more examples. The regexps are quoted to protect them from shell
interpretation.

• Tag Octave files:
etags --language=none \

--regex=’/[\t]*function.*=[\t]*\([^ \t]*\)[\t]*(/\1/’ \

Chapter 24: Maintaining Programs 273

--regex=’/###key \(.*\)/\1/’ \
--regex=’/[\t]*global[\t].*/’ \
*.m

Note that tags are not generated for scripts, so that you have to add a line by yourself
of the form ‘###key scriptname’ if you want to jump to it.

• Tag Tcl files:
etags --language=none --regex=’/proc[\t]+\([^ \t]+\)/\1/’ *.tcl

• Tag VHDL files:
etags --language=none \
--regex=’/[\t]*\(ARCHITECTURE\|CONFIGURATION\) +[^]* +OF/’ \
--regex=’/[\t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\
\(BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[\t]+\([^ \t(]+\)/\3/’

24.2.4 Selecting a Tags Table

Emacs has at any time one selected tags table, and all the commands for working with
tags tables use the selected one. To select a tags table, type M-x visit-tags-table, which
reads the tags table file name as an argument. The name ‘TAGS’ in the default directory is
used as the default file name.

All this command does is store the file name in the variable tags-file-name. Emacs
does not actually read in the tags table contents until you try to use them. Setting this
variable yourself is just as good as using visit-tags-table. The variable’s initial value is
nil; that value tells all the commands for working with tags tables that they must ask for
a tags table file name to use.

Using visit-tags-table when a tags table is already loaded gives you a choice: you
can add the new tags table to the current list of tags tables, or start a new list. The tags
commands use all the tags tables in the current list. If you start a new list, the new tags
table is used instead of others. If you add the new table to the current list, it is used as
well as the others. When the tags commands scan the list of tags tables, they don’t always
start at the beginning of the list; they start with the first tags table (if any) that describes
the current file, proceed from there to the end of the list, and then scan from the beginning
of the list until they have covered all the tables in the list.

You can specify a precise list of tags tables by setting the variable tags-table-list to
a list of strings, like this:

(setq tags-table-list
’("~/emacs" "/usr/local/lib/emacs/src"))

This tells the tags commands to look at the ‘TAGS’ files in your ‘~/emacs’ directory and in
the ‘/usr/local/lib/emacs/src’ directory. The order depends on which file you are in
and which tags table mentions that file, as explained above.

Do not set both tags-file-name and tags-table-list.

24.2.5 Finding a Tag

The most important thing that a tags table enables you to do is to find the definition of
a specific tag.

274 GNU Emacs Manual

M-. tag 〈RET〉
Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-u - M-. Go back to previous tag found.

C-M-. pattern 〈RET〉
Find a tag whose name matches pattern (find-tag-regexp).

C-u C-M-. Find the next tag whose name matches the last pattern used.

C-x 4 . tag 〈RET〉
Find first definition of tag, but display it in another window (find-tag-other-
window).

C-x 5 . tag 〈RET〉
Find first definition of tag, and create a new frame to select the buffer (find-
tag-other-frame).

M-* Pop back to where you previously invoked M-. and friends.

M-. (find-tag) is the command to find the definition of a specified tag. It searches
through the tags table for that tag, as a string, and then uses the tags table info to deter-
mine the file that the definition is in and the approximate character position in the file of
the definition. Then find-tag visits that file, moves point to the approximate character
position, and searches ever-increasing distances away to find the tag definition.

If an empty argument is given (just type 〈RET〉), the balanced expression in the buffer
before or around point is used as the tag argument. See Section 22.4.1 [Expressions],
page 232.

You don’t need to give M-. the full name of the tag; a part will do. This is because M-.
finds tags in the table which contain tag as a substring. However, it prefers an exact match
to a substring match. To find other tags that match the same substring, give find-tag a
numeric argument, as in C-u M-.; this does not read a tag name, but continues searching
the tags table’s text for another tag containing the same substring last used. If you have a
real 〈META〉 key, M-0 M-. is an easier alternative to C-u M-..

Like most commands that can switch buffers, find-tag has a variant that displays the
new buffer in another window, and one that makes a new frame for it. The former is C-x
4 ., which invokes the command find-tag-other-window. The latter is C-x 5 ., which
invokes find-tag-other-frame.

To move back to places you’ve found tags recently, use C-u - M-.; more generally, M-.
with a negative numeric argument. This command can take you to another buffer. C-x 4 .
with a negative argument finds the previous tag location in another window.

As well as going back to places you’ve found tags recently, you can go back to places
from where you found them. Use M-*, which invokes the command pop-tag-mark, for this.
Typically you would find and study the definition of something with M-. and then return
to where you were with M-*.

Both C-u - M-. and M-* allow you to retrace your steps to a depth determined by the
variable find-tag-marker-ring-length.

Chapter 24: Maintaining Programs 275

The command C-M-. (find-tag-regexp) visits the tags that match a specified regular
expression. It is just like M-. except that it does regexp matching instead of substring
matching.

24.2.6 Searching and Replacing with Tags Tables

The commands in this section visit and search all the files listed in the selected tags
table, one by one. For these commands, the tags table serves only to specify a sequence of
files to search.

M-x tags-search 〈RET〉 regexp 〈RET〉
Search for regexp through the files in the selected tags table.

M-x tags-query-replace 〈RET〉 regexp 〈RET〉 replacement 〈RET〉
Perform a query-replace-regexp on each file in the selected tags table.

M-, Restart one of the commands above, from the current location of point (tags-
loop-continue).

M-x tags-search reads a regexp using the minibuffer, then searches for matches in all
the files in the selected tags table, one file at a time. It displays the name of the file being
searched so you can follow its progress. As soon as it finds an occurrence, tags-search
returns.

Having found one match, you probably want to find all the rest. To find one more match,
type M-, (tags-loop-continue) to resume the tags-search. This searches the rest of the
current buffer, followed by the remaining files of the tags table.

M-x tags-query-replace performs a single query-replace-regexp through all the files
in the tags table. It reads a regexp to search for and a string to replace with, just like ordi-
nary M-x query-replace-regexp. It searches much like M-x tags-search, but repeatedly,
processing matches according to your input. See Section 12.7 [Replace], page 100, for more
information on query replace.

You can control the case-sensitivity of tags search commands by customizing the value
of the variable tags-case-fold-search. The default is to use the same setting as the value
of case-fold-search (see Section 12.6 [Search Case], page 100).

It is possible to get through all the files in the tags table with a single invocation of M-x
tags-query-replace. But often it is useful to exit temporarily, which you can do with any
input event that has no special query replace meaning. You can resume the query replace
subsequently by typing M-,; this command resumes the last tags search or replace command
that you did.

The commands in this section carry out much broader searches than the find-tag family.
The find-tag commands search only for definitions of tags that match your substring or
regexp. The commands tags-search and tags-query-replace find every occurrence of
the regexp, as ordinary search commands and replace commands do in the current buffer.

These commands create buffers only temporarily for the files that they have to search
(those which are not already visited in Emacs buffers). Buffers in which no match is found
are quickly killed; the others continue to exist.

It may have struck you that tags-search is a lot like grep. You can also run grep itself
as an inferior of Emacs and have Emacs show you the matching lines one by one. This

276 GNU Emacs Manual

works much like running a compilation; finding the source locations of the grep matches
works like finding the compilation errors. See Section 23.1 [Compilation], page 255.

24.2.7 Tags Table Inquiries

M-x list-tags 〈RET〉 file 〈RET〉
Display a list of the tags defined in the program file file.

M-x tags-apropos 〈RET〉 regexp 〈RET〉
Display a list of all tags matching regexp.

M-x list-tags reads the name of one of the files described by the selected tags table,
and displays a list of all the tags defined in that file. The “file name” argument is really
just a string to compare against the file names recorded in the tags table; it is read as a
string rather than as a file name. Therefore, completion and defaulting are not available,
and you must enter the file name the same way it appears in the tags table. Do not include
a directory as part of the file name unless the file name recorded in the tags table includes
a directory.

M-x tags-apropos is like apropos for tags (see Section 7.3 [Apropos], page 56). It finds
all the tags in the selected tags table whose entries match regexp, and displays them. If the
variable tags-apropos-verbose is non-nil, it displays the names of the tags files together
with the tag names.

You can customize the appearance of the output with the face tags-tag-face. You
can display additional output with M-x tags-apropos by customizing the variable tags-
apropos-additional-actions—see its documentation for details.

You can also use the collection of tag names to complete a symbol name in the buffer.
See Section 22.8 [Symbol Completion], page 241.

24.3 Merging Files with Emerge

It’s not unusual for programmers to get their signals crossed and modify the same pro-
gram in two different directions. To recover from this confusion, you need to merge the two
versions. Emerge makes this easier. See also Section 14.9 [Comparing Files], page 142, for
commands to compare in a more manual fashion, and section “Top” in The Ediff Manual.

24.3.1 Overview of Emerge

To start Emerge, run one of these four commands:

M-x emerge-files
Merge two specified files.

M-x emerge-files-with-ancestor
Merge two specified files, with reference to a common ancestor.

M-x emerge-buffers
Merge two buffers.

M-x emerge-buffers-with-ancestor
Merge two buffers with reference to a common ancestor in a third buffer.

Chapter 24: Maintaining Programs 277

The Emerge commands compare two files or buffers, and display the comparison in
three buffers: one for each input text (the A buffer and the B buffer), and one (the merge
buffer) where merging takes place. The merge buffer shows the full merged text, not just
the differences. Wherever the two input texts differ, you can choose which one of them to
include in the merge buffer.

The Emerge commands that take input from existing buffers use only the accessible
portions of those buffers, if they are narrowed (see Section 31.9 [Narrowing], page 366).

If a common ancestor version is available, from which the two texts to be merged were
both derived, Emerge can use it to guess which alternative is right. Wherever one current
version agrees with the ancestor, Emerge presumes that the other current version is a
deliberate change which should be kept in the merged version. Use the ‘with-ancestor’
commands if you want to specify a common ancestor text. These commands read three file
or buffer names—variant A, variant B, and the common ancestor.

After the comparison is done and the buffers are prepared, the interactive merging starts.
You control the merging by typing special merge commands in the merge buffer. The merge
buffer shows you a full merged text, not just differences. For each run of differences between
the input texts, you can choose which one of them to keep, or edit them both together.

The merge buffer uses a special major mode, Emerge mode, with commands for making
these choices. But you can also edit the buffer with ordinary Emacs commands.

At any given time, the attention of Emerge is focused on one particular difference, called
the selected difference. This difference is marked off in the three buffers like this:

vvvvvvvvvvvvvvvvvvvv
text that differs
^^^^^^^^^^^^^^^^^^^^

Emerge numbers all the differences sequentially and the mode line always shows the number
of the selected difference.

Normally, the merge buffer starts out with the A version of the text. But when the
A version of a difference agrees with the common ancestor, then the B version is initially
preferred for that difference.

Emerge leaves the merged text in the merge buffer when you exit. At that point, you
can save it in a file with C-x C-w. If you give a numeric argument to emerge-files or
emerge-files-with-ancestor, it reads the name of the output file using the minibuffer.
(This is the last file name those commands read.) Then exiting from Emerge saves the
merged text in the output file.

Normally, Emerge commands save the output buffer in its file when you exit. If you
abort Emerge with C-], the Emerge command does not save the output buffer, but you can
save it yourself if you wish.

24.3.2 Submodes of Emerge

You can choose between two modes for giving merge commands: Fast mode and Edit
mode. In Fast mode, basic merge commands are single characters, but ordinary Emacs
commands are disabled. This is convenient if you use only merge commands. In Edit mode,
all merge commands start with the prefix key C-c C-c, and the normal Emacs commands
are also available. This allows editing the merge buffer, but slows down Emerge operations.

278 GNU Emacs Manual

Use e to switch to Edit mode, and C-c C-c f to switch to Fast mode. The mode line
indicates Edit and Fast modes with ‘E’ and ‘F’.

Emerge has two additional submodes that affect how particular merge commands work:
Auto Advance mode and Skip Prefers mode.

If Auto Advance mode is in effect, the a and b commands advance to the next difference.
This lets you go through the merge faster as long as you simply choose one of the alternatives
from the input. The mode line indicates Auto Advance mode with ‘A’.

If Skip Prefers mode is in effect, the n and p commands skip over differences in states
prefer-A and prefer-B (see Section 24.3.3 [State of Difference], page 278). Thus you see only
differences for which neither version is presumed “correct.” The mode line indicates Skip
Prefers mode with ‘S’.

Use the command s a (emerge-auto-advance-mode) to set or clear Auto Advance mode.
Use s s (emerge-skip-prefers-mode) to set or clear Skip Prefers mode. These commands
turn on the mode with a positive argument, turns it off with a negative or zero argument,
and toggle the mode with no argument.

24.3.3 State of a Difference

In the merge buffer, a difference is marked with lines of ‘v’ and ‘^’ characters. Each
difference has one of these seven states:

A The difference is showing the A version. The a command always produces this
state; the mode line indicates it with ‘A’.

B The difference is showing the B version. The b command always produces this
state; the mode line indicates it with ‘B’.

default-A
default-B The difference is showing the A or the B state by default, because you haven’t

made a choice. All differences start in the default-A state (and thus the merge
buffer is a copy of the A buffer), except those for which one alternative is
“preferred” (see below).

When you select a difference, its state changes from default-A or default-B to
plain A or B. Thus, the selected difference never has state default-A or default-
B, and these states are never displayed in the mode line.

The command d a chooses default-A as the default state, and d b chooses
default-B. This chosen default applies to all differences which you haven’t ever
selected and for which no alternative is preferred. If you are moving through
the merge sequentially, the differences you haven’t selected are those following
the selected one. Thus, while moving sequentially, you can effectively make the
A version the default for some sections of the merge buffer and the B version
the default for others by using d a and d b between sections.

prefer-A
prefer-B The difference is showing the A or B state because it is preferred. This means

that you haven’t made an explicit choice, but one alternative seems likely to
be right because the other alternative agrees with the common ancestor. Thus,

Chapter 24: Maintaining Programs 279

where the A buffer agrees with the common ancestor, the B version is preferred,
because chances are it is the one that was actually changed.
These two states are displayed in the mode line as ‘A*’ and ‘B*’.

combined The difference is showing a combination of the A and B states, as a result of
the x c or x C commands.
Once a difference is in this state, the a and b commands don’t do anything to
it unless you give them a numeric argument.
The mode line displays this state as ‘comb’.

24.3.4 Merge Commands

Here are the Merge commands for Fast mode; in Edit mode, precede them with C-c C-c:

p Select the previous difference.

n Select the next difference.

a Choose the A version of this difference.

b Choose the B version of this difference.

C-u n j Select difference number n.

. Select the difference containing point. You can use this command in the merge
buffer or in the A or B buffer.

q Quit—finish the merge.

C-] Abort—exit merging and do not save the output.

f Go into Fast mode. (In Edit mode, this is actually C-c C-c f.)

e Go into Edit mode.

l Recenter (like C-l) all three windows.

- Specify part of a prefix numeric argument.

digit Also specify part of a prefix numeric argument.

d a Choose the A version as the default from here down in the merge buffer.

d b Choose the B version as the default from here down in the merge buffer.

c a Copy the A version of this difference into the kill ring.

c b Copy the B version of this difference into the kill ring.

i a Insert the A version of this difference at point.

i b Insert the B version of this difference at point.

m Put point and mark around the difference.

^ Scroll all three windows down (like M-v).

v Scroll all three windows up (like C-v).

< Scroll all three windows left (like C-x <).

280 GNU Emacs Manual

> Scroll all three windows right (like C-x >).

| Reset horizontal scroll on all three windows.

x 1 Shrink the merge window to one line. (Use C-u l to restore it to full size.)

x c Combine the two versions of this difference (see Section 24.3.6 [Combining in
Emerge], page 280).

x f Show the names of the files/buffers Emerge is operating on, in a Help window.
(Use C-u l to restore windows.)

x j Join this difference with the following one. (C-u x j joins this difference with
the previous one.)

x s Split this difference into two differences. Before you use this command, position
point in each of the three buffers at the place where you want to split the
difference.

x t Trim identical lines off the top and bottom of the difference. Such lines occur
when the A and B versions are identical but differ from the ancestor version.

24.3.5 Exiting Emerge

The q command (emerge-quit) finishes the merge, storing the results into the output
file if you specified one. It restores the A and B buffers to their proper contents, or kills them
if they were created by Emerge and you haven’t changed them. It also disables the Emerge
commands in the merge buffer, since executing them later could damage the contents of the
various buffers.

C-] aborts the merge. This means exiting without writing the output file. If you didn’t
specify an output file, then there is no real difference between aborting and finishing the
merge.

If the Emerge command was called from another Lisp program, then its return value is
t for successful completion, or nil if you abort.

24.3.6 Combining the Two Versions

Sometimes you want to keep both alternatives for a particular difference. To do this, use
x c, which edits the merge buffer like this:

#ifdef NEW
version from A buffer
#else /* not NEW */
version from B buffer
#endif /* not NEW */

While this example shows C preprocessor conditionals delimiting the two alternative ver-
sions, you can specify the strings to use by setting the variable emerge-combine-versions-
template to a string of your choice. In the string, ‘%a’ says where to put version A, and
‘%b’ says where to put version B. The default setting, which produces the results shown
above, looks like this:

"#ifdef NEW\n%a#else /* not NEW */\n%b#endif /* not NEW */\n"

Chapter 24: Maintaining Programs 281

24.3.7 Fine Points of Emerge

During the merge, you mustn’t try to edit the A and B buffers yourself. Emerge modifies
them temporarily, but ultimately puts them back the way they were.

You can have any number of merges going at once—just don’t use any one buffer as
input to more than one merge at once, since the temporary changes made in these buffers
would get in each other’s way.

Starting Emerge can take a long time because it needs to compare the files fully. Emacs
can’t do anything else until diff finishes. Perhaps in the future someone will change Emerge
to do the comparison in the background when the input files are large—then you could keep
on doing other things with Emacs until Emerge is ready to accept commands.

After setting up the merge, Emerge runs the hook emerge-startup-hook (see Sec-
tion 32.2.3 [Hooks], page 386).

282 GNU Emacs Manual

Chapter 25: Abbrevs 283

25 Abbrevs

A defined abbrev is a word which expands, if you insert it, into some different text.
Abbrevs are defined by the user to expand in specific ways. For example, you might define
‘foo’ as an abbrev expanding to ‘find outer otter’. Then you would be able to insert
‘find outer otter ’ into the buffer by typing f o o 〈SPC〉.

A second kind of abbreviation facility is called dynamic abbrev expansion. You use
dynamic abbrev expansion with an explicit command to expand the letters in the buffer
before point by looking for other words in the buffer that start with those letters. See
Section 25.6 [Dynamic Abbrevs], page 287.

“Hippie” expansion generalizes abbreviation expansion. See section “Hippie Expansion”
in Features for Automatic Typing.

25.1 Abbrev Concepts

An abbrev is a word which has been defined to expand into a specified expansion. When
you insert a word-separator character following the abbrev, that expands the abbrev—
replacing the abbrev with its expansion. For example, if ‘foo’ is defined as an abbrev
expanding to ‘find outer otter’, then you can insert ‘find outer otter.’ into the buffer
by typing f o o ..

Abbrevs expand only when Abbrev mode (a minor mode) is enabled. Disabling Abbrev
mode does not cause abbrev definitions to be forgotten, but they do not expand until
Abbrev mode is enabled again. The command M-x abbrev-mode toggles Abbrev mode; with
a numeric argument, it turns Abbrev mode on if the argument is positive, off otherwise.
See Section 32.1 [Minor Modes], page 377. abbrev-mode is also a variable; Abbrev mode is
on when the variable is non-nil. The variable abbrev-mode automatically becomes local
to the current buffer when it is set.

Abbrev definitions can be mode-specific—active only in one major mode. Abbrevs can
also have global definitions that are active in all major modes. The same abbrev can
have a global definition and various mode-specific definitions for different major modes. A
mode-specific definition for the current major mode overrides a global definition.

Abbrevs can be defined interactively during the editing session. Lists of abbrev defini-
tions can also be saved in files and reloaded in later sessions. Some users keep extensive
lists of abbrevs that they load in every session.

25.2 Defining Abbrevs

C-x a g Define an abbrev, using one or more words before point as its expansion (add-
global-abbrev).

C-x a l Similar, but define an abbrev specific to the current major mode (add-mode-
abbrev).

C-x a i g Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

C-x a i l Define a word in the buffer as a mode-specific abbrev (inverse-add-mode-
abbrev).

284 GNU Emacs Manual

M-x kill-all-abbrevs
This command discards all abbrev definitions currently in effect, leaving a blank
slate.

The usual way to define an abbrev is to enter the text you want the abbrev to expand
to, position point after it, and type C-x a g (add-global-abbrev). This reads the abbrev
itself using the minibuffer, and then defines it as an abbrev for one or more words before
point. Use a numeric argument to say how many words before point should be taken as
the expansion. For example, to define the abbrev ‘foo’ as mentioned above, insert the text
‘find outer otter’ and then type C-u 3 C-x a g f o o 〈RET〉.

An argument of zero to C-x a g means to use the contents of the region as the expansion
of the abbrev being defined.

The command C-x a l (add-mode-abbrev) is similar, but defines a mode-specific abbrev.
Mode-specific abbrevs are active only in a particular major mode. C-x a l defines an abbrev
for the major mode in effect at the time C-x a l is typed. The arguments work the same
as for C-x a g.

If the text already in the buffer is the abbrev, rather than its expansion, use command
C-x a i g (inverse-add-global-abbrev) instead of C-x a g, or use C-x a i l (inverse-
add-mode-abbrev) instead of C-x a l. These commands are called “inverse” because they
invert the meaning of the two text strings they use (one from the buffer and one read with
the minibuffer).

To change the definition of an abbrev, just define a new definition. When the abbrev has
a prior definition, the abbrev definition commands ask for confirmation before replacing it.

To remove an abbrev definition, give a negative argument to the abbrev definition com-
mand: C-u - C-x a g or C-u - C-x a l. The former removes a global definition, while the
latter removes a mode-specific definition.

M-x kill-all-abbrevs removes all the abbrev definitions there are, both global and
local.

25.3 Controlling Abbrev Expansion

An abbrev expands whenever it is present in the buffer just before point and you type
a self-inserting whitespace or punctuation character (〈SPC〉, comma, etc.). More precisely,
any character that is not a word constituent expands an abbrev, and any word-constituent
character can be part of an abbrev. The most common way to use an abbrev is to insert it
and then insert a punctuation character to expand it.

Abbrev expansion preserves case; thus, ‘foo’ expands into ‘find outer otter’; ‘Foo’ into
‘Find outer otter’, and ‘FOO’ into ‘FIND OUTER OTTER’ or ‘Find Outer Otter’ according to
the variable abbrev-all-caps (a non-nil value chooses the first of the two expansions).

These commands are used to control abbrev expansion:

M-’ Separate a prefix from a following abbrev to be expanded (abbrev-prefix-
mark).

C-x a e Expand the abbrev before point (expand-abbrev). This is effective even when
Abbrev mode is not enabled.

Chapter 25: Abbrevs 285

M-x expand-region-abbrevs
Expand some or all abbrevs found in the region.

You may wish to expand an abbrev with a prefix attached; for example, if ‘cnst’ expands
into ‘construction’, you might want to use it to enter ‘reconstruction’. It does not work
to type recnst, because that is not necessarily a defined abbrev. What you can do is use
the command M-’ (abbrev-prefix-mark) in between the prefix ‘re’ and the abbrev ‘cnst’.
First, insert ‘re’. Then type M-’; this inserts a hyphen in the buffer to indicate that it has
done its work. Then insert the abbrev ‘cnst’; the buffer now contains ‘re-cnst’. Now insert
a non-word character to expand the abbrev ‘cnst’ into ‘construction’. This expansion
step also deletes the hyphen that indicated M-’ had been used. The result is the desired
‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its expansion,
you can accomplish this by inserting the following punctuation with C-q. Thus, foo C-q ,
leaves ‘foo,’ in the buffer.

If you expand an abbrev by mistake, you can undo the expansion and bring back the
abbrev itself by typing C-_ to undo (see Section 4.4 [Undo], page 36). This also undoes the
insertion of the non-word character that expanded the abbrev. If the result you want is the
terminating non-word character plus the unexpanded abbrev, you must reinsert the termi-
nating character, quoting it with C-q. You can also use the command M-x unexpand-abbrev
to cancel the last expansion without deleting the terminating character.

M-x expand-region-abbrevs searches through the region for defined abbrevs, and for
each one found offers to replace it with its expansion. This command is useful if you have
typed in text using abbrevs but forgot to turn on Abbrev mode first. It may also be useful
together with a special set of abbrev definitions for making several global replacements at
once. This command is effective even if Abbrev mode is not enabled.

Expanding an abbrev runs the hook pre-abbrev-expand-hook (see Section 32.2.3
[Hooks], page 386).

25.4 Examining and Editing Abbrevs

M-x list-abbrevs
Display a list of all abbrev definitions. With a numeric argument, list only local
abbrevs.

M-x edit-abbrevs
Edit a list of abbrevs; you can add, alter or remove definitions.

The output from M-x list-abbrevs looks like this:

(lisp-mode-abbrev-table)
"dk" 0 "define-key"
(global-abbrev-table)
"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev tables, have been
omitted.)

286 GNU Emacs Manual

A line containing a name in parentheses is the header for abbrevs in a particular abbrev
table; global-abbrev-table contains all the global abbrevs, and the other abbrev tables
that are named after major modes contain the mode-specific abbrevs.

Within each abbrev table, each nonblank line defines one abbrev. The word at the
beginning of the line is the abbrev. The number that follows is the number of times the
abbrev has been expanded. Emacs keeps track of this to help you see which abbrevs you
actually use, so that you can eliminate those that you don’t use often. The string at the
end of the line is the expansion.

M-x edit-abbrevs allows you to add, change or kill abbrev definitions by editing a list
of them in an Emacs buffer. The list has the same format described above. The buffer of
abbrevs is called ‘*Abbrevs*’, and is in Edit-Abbrevs mode. Type C-c C-c in this buffer to
install the abbrev definitions as specified in the buffer—and delete any abbrev definitions
not listed.

The command edit-abbrevs is actually the same as list-abbrevs except that it selects
the buffer ‘*Abbrevs*’ whereas list-abbrevs merely displays it in another window.

25.5 Saving Abbrevs

These commands allow you to keep abbrev definitions between editing sessions.

M-x write-abbrev-file 〈RET〉 file 〈RET〉
Write a file file describing all defined abbrevs.

M-x read-abbrev-file 〈RET〉 file 〈RET〉
Read the file file and define abbrevs as specified therein.

M-x quietly-read-abbrev-file 〈RET〉 file 〈RET〉
Similar but do not display a message about what is going on.

M-x define-abbrevs
Define abbrevs from definitions in current buffer.

M-x insert-abbrevs
Insert all abbrevs and their expansions into current buffer.

M-x write-abbrev-file reads a file name using the minibuffer and then writes a descrip-
tion of all current abbrev definitions into that file. This is used to save abbrev definitions
for use in a later session. The text stored in the file is a series of Lisp expressions that,
when executed, define the same abbrevs that you currently have.

M-x read-abbrev-file reads a file name using the minibuffer and then reads the file,
defining abbrevs according to the contents of the file. M-x quietly-read-abbrev-file is
the same except that it does not display a message in the echo area saying that it is doing
its work; it is actually useful primarily in the ‘.emacs’ file. If an empty argument is given to
either of these functions, they use the file name specified in the variable abbrev-file-name,
which is by default "~/.abbrev_defs".

Emacs will offer to save abbrevs automatically if you have changed any of them, whenever
it offers to save all files (for C-x s or C-x C-c). This feature can be inhibited by setting the
variable save-abbrevs to nil.

Chapter 25: Abbrevs 287

The commands M-x insert-abbrevs and M-x define-abbrevs are similar to the
previous commands but work on text in an Emacs buffer. M-x insert-abbrevs inserts
text into the current buffer before point, describing all current abbrev definitions; M-x
define-abbrevs parses the entire current buffer and defines abbrevs accordingly.

25.6 Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you insert text, but all
abbrevs must be defined explicitly. By contrast, dynamic abbrevs allow the meanings of
abbrevs to be determined automatically from the contents of the buffer, but dynamic abbrev
expansion happens only when you request it explicitly.

M-/ Expand the word in the buffer before point as a dynamic abbrev, by searching
in the buffer for words starting with that abbreviation (dabbrev-expand).

C-M-/ Complete the word before point as a dynamic abbrev (dabbrev-completion).

For example, if the buffer contains ‘does this follow ’ and you type f o M-/, the effect
is to insert ‘follow’ because that is the last word in the buffer that starts with ‘fo’. A
numeric argument to M-/ says to take the second, third, etc. distinct expansion found
looking backward from point. Repeating M-/ searches for an alternative expansion by
looking farther back. After scanning all the text before point, it searches the text after
point. The variable dabbrev-limit, if non-nil, specifies how far in the buffer to search for
an expansion.

After scanning the current buffer, M-/ normally searches other buffers, unless you have
set dabbrev-check-all-buffers to nil.

For finer control over which buffers to scan, customize the variable dabbrev-ignored-
buffer-regexps. Its value is a list of regular expressions. If a buffer’s name matches any
of these regular expressions, dynamic abbrev expansion skips that buffer.

A negative argument to M-/, as in C-u - M-/, says to search first for expansions after
point, and second for expansions before point. If you repeat the M-/ to look for another
expansion, do not specify an argument. This tries all the expansions after point and then
the expansions before point.

After you have expanded a dynamic abbrev, you can copy additional words that follow
the expansion in its original context. Simply type 〈SPC〉 M-/ for each word you want to copy.
The spacing and punctuation between words is copied along with the words.

The command C-M-/ (dabbrev-completion) performs completion of a dynamic abbrevi-
ation. Instead of trying the possible expansions one by one, it finds all of them, then inserts
the text that they have in common. If they have nothing in common, C-M-/ displays a list
of completions, from which you can select a choice in the usual manner. See Section 5.3
[Completion], page 45.

Dynamic abbrev expansion is completely independent of Abbrev mode; the expansion
of a word with M-/ is completely independent of whether it has a definition as an ordinary
abbrev.

288 GNU Emacs Manual

25.7 Customizing Dynamic Abbreviation

Normally, dynamic abbrev expansion ignores case when searching for expansions. That
is, the expansion need not agree in case with the word you are expanding.

This feature is controlled by the variable dabbrev-case-fold-search. If it is t, case
is ignored in this search; if it is nil, the word and the expansion must match in case. If
the value of dabbrev-case-fold-search is case-fold-search, which is true by default,
then the variable case-fold-search controls whether to ignore case while searching for
expansions.

Normally, dynamic abbrev expansion preserves the case pattern of the abbrev you have
typed, by converting the expansion to that case pattern.

The variable dabbrev-case-replace controls whether to preserve the case pattern of
the abbrev. If it is t, the abbrev’s case pattern is preserved in most cases; if it is nil,
the expansion is always copied verbatim. If the value of dabbrev-case-replace is case-
replace, which is true by default, then the variable case-replace controls whether to copy
the expansion verbatim.

However, if the expansion contains a complex mixed case pattern, and the
abbrev matches this pattern as far as it goes, then the expansion is always copied
verbatim, regardless of those variables. Thus, for example, if the buffer contains
variableWithSillyCasePattern, and you type v a M-/, it copies the expansion verbatim
including its case pattern.

The variable dabbrev-abbrev-char-regexp, if non-nil, controls which characters are
considered part of a word, for dynamic expansion purposes. The regular expression must
match just one character, never two or more. The same regular expression also deter-
mines which characters are part of an expansion. The value nil has a special meaning:
abbreviations are made of word characters, but expansions are made of word and symbol
characters.

In shell scripts and makefiles, a variable name is sometimes prefixed with ‘$’ and some-
times not. Major modes for this kind of text can customize dynamic abbreviation to handle
optional prefixes by setting the variable dabbrev-abbrev-skip-leading-regexp. Its value
should be a regular expression that matches the optional prefix that dynamic abbreviation
should ignore.

Chapter 26: Editing Pictures 289

26 Editing Pictures

To edit a picture made out of text characters (for example, a picture of the division of
a register into fields, as a comment in a program), use the command M-x edit-picture to
enter Picture mode.

In Picture mode, editing is based on the quarter-plane model of text, according to which
the text characters lie studded on an area that stretches infinitely far to the right and
downward. The concept of the end of a line does not exist in this model; the most you can
say is where the last nonblank character on the line is found.

Of course, Emacs really always considers text as a sequence of characters, and lines
really do have ends. But Picture mode replaces the most frequently-used commands with
variants that simulate the quarter-plane model of text. They do this by inserting spaces or
by converting tabs to spaces.

Most of the basic editing commands of Emacs are redefined by Picture mode to do
essentially the same thing but in a quarter-plane way. In addition, Picture mode defines
various keys starting with the C-c prefix to run special picture editing commands.

One of these keys, C-c C-c, is pretty important. Often a picture is part of a larger file
that is usually edited in some other major mode. M-x edit-picture records the name of
the previous major mode so you can use the C-c C-c command (picture-mode-exit) later
to go back to that mode. C-c C-c also deletes spaces from the ends of lines, unless given a
numeric argument.

The special commands of Picture mode all work in other modes (provided the ‘picture’
library is loaded), but are not bound to keys except in Picture mode. The descriptions
below talk of moving “one column” and so on, but all the picture mode commands handle
numeric arguments as their normal equivalents do.

Turning on Picture mode runs the hook picture-mode-hook (see Section 32.2.3 [Hooks],
page 386).

26.1 Basic Editing in Picture Mode

Most keys do the same thing in Picture mode that they usually do, but do it in a quarter-
plane style. For example, C-f is rebound to run picture-forward-column, a command
which moves point one column to the right, inserting a space if necessary so that the actual
end of the line makes no difference. C-b is rebound to run picture-backward-column,
which always moves point left one column, converting a tab to multiple spaces if necessary.
C-n and C-p are rebound to run picture-move-down and picture-move-up, which can
either insert spaces or convert tabs as necessary to make sure that point stays in exactly
the same column. C-e runs picture-end-of-line, which moves to after the last nonblank
character on the line. There is no need to change C-a, as the choice of screen model does
not affect beginnings of lines.

Insertion of text is adapted to the quarter-plane screen model through the use of Over-
write mode (see Section 32.1 [Minor Modes], page 377). Self-inserting characters replace
existing text, column by column, rather than pushing existing text to the right. 〈RET〉 runs
picture-newline, which just moves to the beginning of the following line so that new text
will replace that line.

290 GNU Emacs Manual

Picture mode provides erasure instead of deletion and killing of text. 〈DEL〉 (picture-
backward-clear-column) replaces the preceding character with a space rather than re-
moving it; this moves point backwards. C-d (picture-clear-column) replaces the next
character or characters with spaces, but does not move point. (If you want to clear charac-
ters to spaces and move forward over them, use 〈SPC〉.) C-k (picture-clear-line) really
kills the contents of lines, but does not delete the newlines from the buffer.

To do actual insertion, you must use special commands. C-o (picture-open-line)
creates a blank line after the current line; it never splits a line. C-M-o (split-line) makes
sense in Picture mode, so it is not changed. C-j (picture-duplicate-line) inserts below
the current line another line with the same contents.

To do actual deletion in Picture mode, use C-w, C-c C-d (which is defined as delete-
char, as C-d is in other modes), or one of the picture rectangle commands (see Section 26.4
[Rectangles in Picture], page 291).

26.2 Controlling Motion after Insert

Since “self-inserting” characters in Picture mode overwrite and move point, there is no
essential restriction on how point should be moved. Normally point moves right, but you can
specify any of the eight orthogonal or diagonal directions for motion after a “self-inserting”
character. This is useful for drawing lines in the buffer.

C-c < Move left after insertion (picture-movement-left).

C-c > Move right after insertion (picture-movement-right).

C-c ^ Move up after insertion (picture-movement-up).

C-c . Move down after insertion (picture-movement-down).

C-c ‘ Move up and left (“northwest”) after insertion (picture-movement-nw).

C-c ’ Move up and right (“northeast”) after insertion (picture-movement-ne).

C-c / Move down and left (“southwest”) after insertion
(picture-movement-sw).

C-c \ Move down and right (“southeast”) after insertion
(picture-movement-se).

Two motion commands move based on the current Picture insertion direction. The com-
mand C-c C-f (picture-motion) moves in the same direction as motion after “insertion”
currently does, while C-c C-b (picture-motion-reverse) moves in the opposite direction.

26.3 Picture Mode Tabs

Two kinds of tab-like action are provided in Picture mode. Use M-〈TAB〉 (picture-tab-
search) for context-based tabbing. With no argument, it moves to a point underneath
the next “interesting” character that follows whitespace in the previous nonblank line.
“Next” here means “appearing at a horizontal position greater than the one point starts
out at.” With an argument, as in C-u M-〈TAB〉, this command moves to the next such
interesting character in the current line. M-〈TAB〉 does not change the text; it only moves

Chapter 26: Editing Pictures 291

point. “Interesting” characters are defined by the variable picture-tab-chars, which
should define a set of characters. The syntax for this variable is like the syntax used inside
of ‘[...]’ in a regular expression—but without the ‘[’ and the ‘]’. Its default value is
"!-~".

〈TAB〉 itself runs picture-tab, which operates based on the current tab stop settings;
it is the Picture mode equivalent of tab-to-tab-stop. Normally it just moves point, but
with a numeric argument it clears the text that it moves over.

The context-based and tab-stop-based forms of tabbing are brought together by the
command C-c 〈TAB〉 (picture-set-tab-stops). This command sets the tab stops to the
positions which M-〈TAB〉 would consider significant in the current line. The use of this
command, together with 〈TAB〉, can get the effect of context-based tabbing. But M-〈TAB〉 is
more convenient in the cases where it is sufficient.

It may be convenient to prevent use of actual tab characters in pictures. For example,
this prevents C-x 〈TAB〉 from messing up the picture. You can do this by setting the variable
indent-tabs-mode to nil. See Section 20.3 [Just Spaces], page 197.

26.4 Picture Mode Rectangle Commands

Picture mode defines commands for working on rectangular pieces of the text in ways
that fit with the quarter-plane model. The standard rectangle commands may also be useful
(see Section 9.4 [Rectangles], page 73).

C-c C-k Clear out the region-rectangle with spaces (picture-clear-rectangle). With
argument, delete the text.

C-c C-w r Similar, but save rectangle contents in register r first (picture-clear-
rectangle-to-register).

C-c C-y Copy last killed rectangle into the buffer by overwriting, with upper left corner
at point (picture-yank-rectangle). With argument, insert instead.

C-c C-x r Similar, but use the rectangle in register r (picture-yank-rectangle-from-
register).

The picture rectangle commands C-c C-k (picture-clear-rectangle) and C-c C-w
(picture-clear-rectangle-to-register) differ from the standard rectangle commands
in that they normally clear the rectangle instead of deleting it; this is analogous with the
way C-d is changed in Picture mode.

However, deletion of rectangles can be useful in Picture mode, so these commands delete
the rectangle if given a numeric argument. C-c C-k either with or without a numeric
argument saves the rectangle for C-c C-y.

The Picture mode commands for yanking rectangles differ from the standard ones in
that they overwrite instead of inserting. This is the same way that Picture mode insertion
of other text differs from other modes. C-c C-y (picture-yank-rectangle) inserts (by
overwriting) the rectangle that was most recently killed, while C-c C-x (picture-yank-
rectangle-from-register) does likewise for the rectangle found in a specified register.

292 GNU Emacs Manual

Chapter 27: Sending Mail 293

27 Sending Mail

To send a message in Emacs, you start by typing a command (C-x m) to select and
initialize the ‘*mail*’ buffer. Then you edit the text and headers of the message in this
buffer, and type another command (C-c C-s or C-c C-c) to send the message.

C-x m Begin composing a message to send (compose-mail).

C-x 4 m Likewise, but display the message in another window (compose-mail-other-
window).

C-x 5 m Likewise, but make a new frame (compose-mail-other-frame).

C-c C-s In Mail mode, send the message (mail-send).

C-c C-c Send the message and bury the mail buffer (mail-send-and-exit).

The command C-x m (compose-mail) selects a buffer named ‘*mail*’ and initializes it
with the skeleton of an outgoing message. C-x 4 m (compose-mail-other-window) selects
the ‘*mail*’ buffer in a different window, leaving the previous current buffer visible. C-x 5
m (compose-mail-other-frame) creates a new frame to select the ‘*mail*’ buffer.

Because the mail-composition buffer is an ordinary Emacs buffer, you can switch to
other buffers while in the middle of composing mail, and switch back later (or never). If
you use the C-x m command again when you have been composing another message but
have not sent it, you are asked to confirm before the old message is erased. If you answer n,
the ‘*mail*’ buffer is left selected with its old contents, so you can finish the old message
and send it. C-u C-x m is another way to do this. Sending the message marks the ‘*mail*’
buffer “unmodified,” which avoids the need for confirmation when C-x m is next used.

If you are composing a message in the ‘*mail*’ buffer and want to send another message
before finishing the first, rename the ‘*mail*’ buffer using M-x rename-uniquely (see Sec-
tion 15.3 [Misc Buffer], page 151). Then you can use C-x m or its variants described above
to make a new ‘*mail*’ buffer. Once you’ve done that, you can work with each mail buffer
independently.

27.1 The Format of the Mail Buffer

In addition to the text or body, a message has header fields which say who sent it,
when, to whom, why, and so on. Some header fields, such as ‘Date’ and ‘Sender’, are
created automatically when you send the message. Others, such as the recipient names,
must be specified by you in order to send the message properly.

Mail mode provides a few commands to help you edit some header fields, and some are
preinitialized in the buffer automatically at times. You can insert and edit header fields
using ordinary editing commands.

The line in the buffer that says
--text follows this line--

is a special delimiter that separates the headers you have specified from the text. Whatever
follows this line is the text of the message; the headers precede it. The delimiter line
itself does not appear in the message actually sent. The text used for the delimiter line is
controlled by the variable mail-header-separator.

Here is an example of what the headers and text in the mail buffer might look like.

294 GNU Emacs Manual

To: gnu@gnu.org
CC: lungfish@spam.org, byob@spam.org
Subject: The Emacs Manual
--Text follows this line--
Please ignore this message.

27.2 Mail Header Fields

A header field in the mail buffer starts with a field name at the beginning of a line,
terminated by a colon. Upper and lower case are equivalent in field names (and in mailing
addresses also). After the colon and optional whitespace comes the contents of the field.

You can use any name you like for a header field, but normally people use only standard
field names with accepted meanings. Here is a table of fields commonly used in outgoing
messages.

‘To’ This field contains the mailing addresses to which the message is addressed. If
you list more than one address, use commas, not spaces, to separate them.

‘Subject’ The contents of the ‘Subject’ field should be a piece of text that says what
the message is about. The reason ‘Subject’ fields are useful is that most mail-
reading programs can provide a summary of messages, listing the subject of
each message but not its text.

‘CC’ This field contains additional mailing addresses to send the message to, like ‘To’
except that these readers should not regard the message as directed at them.

‘BCC’ This field contains additional mailing addresses to send the message to, which
should not appear in the header of the message actually sent. Copies sent this
way are called blind carbon copies.
To send a blind carbon copy of every outgoing message to yourself, set the
variable mail-self-blind to t. To send a blind carbon copy of every mes-
sage to some other address, set the variable mail-default-headers to "Bcc:
address\n".

‘FCC’ This field contains the name of one file and directs Emacs to append a copy
of the message to that file when you send the message. If the file is in Rmail
format, Emacs writes the message in Rmail format; otherwise, Emacs writes the
message in system mail file format. To specify more than one file, use several
‘FCC’ fields, with one file name in each field.
To put a fixed file name in the ‘FCC’ field each time you start editing an outgoing
message, set the variable mail-archive-file-name to that file name. Unless
you remove the ‘FCC’ field before sending, the message will be written into that
file when it is sent.

‘From’ Use the ‘From’ field to say who you are, when the account you are using to
send the mail is not your own. The contents of the ‘From’ field should be a
valid mailing address, since replies will normally go there. If you don’t specify
the ‘From’ field yourself, Emacs uses the value of user-mail-address as the
default.

Chapter 27: Sending Mail 295

‘Reply-to’
Use this field to direct replies to a different address. Most mail-reading pro-
grams (including Rmail) automatically send replies to the ‘Reply-to’ address in
preference to the ‘From’ address. By adding a ‘Reply-to’ field to your header,
you can work around any problems your ‘From’ address may cause for replies.

To put a fixed ‘Reply-to’ address into every outgoing message, set the variable
mail-default-reply-to to that address (as a string). Then mail initializes
the message with a ‘Reply-to’ field as specified. You can delete or alter that
header field before you send the message, if you wish. When Emacs starts up, if
the environment variable REPLYTO is set, mail-default-reply-to is initialized
from that environment variable.

‘In-reply-to’
This field contains a piece of text describing the message you are replying to.
Some mail systems can use this information to correlate related pieces of mail.
Normally this field is filled in by Rmail when you reply to a message in Rmail,
and you never need to think about it (see Chapter 28 [Rmail], page 303).

‘References’
This field lists the message IDs of related previous messages. Rmail sets up this
field automatically when you reply to a message.

The ‘To’, ‘CC’, and ‘BCC’ header fields can appear any number of times, and each such
header field can contain multiple addresses, separated by commas. This way, you can specify
any number of places to send the message. These fields can also have continuation lines: one
or more lines starting with whitespace, following the starting line of the field, are considered
part of the field. Here’s an example of a ‘To’ field with a continuation line:

To: foo@here.net, this@there.net,
me@gnu.cambridge.mass.usa.earth.spiral3281

When you send the message, if you didn’t write a ‘From’ field yourself, Emacs puts in
one for you. The variable mail-from-style controls the format:

nil Use just the email address, as in ‘king@grassland.com’.

parens Use both email address and full name, as in ‘king@grassland.com (Elvis
Parsley)’.

angles Use both email address and full name, as in ‘Elvis Parsley
<king@grassland.com>’.

system-default
Allow the system to insert the ‘From’ field.

You can direct Emacs to insert certain default headers into the outgoing message by
setting the variable mail-default-headers to a string. Then C-x m inserts this string
into the message headers. If the default header fields are not appropriate for a particular
message, edit them as appropriate before sending the message.

296 GNU Emacs Manual

27.3 Mail Aliases

You can define mail aliases in a file named ‘~/.mailrc’. These are short mnemonic
names which stand for mail addresses or groups of mail addresses. Like many other mail
programs, Emacs expands aliases when they occur in the ‘To’, ‘From’, ‘CC’, ‘BCC’, and
‘Reply-to’ fields, plus their ‘Resent-’ variants.

To define an alias in ‘~/.mailrc’, write a line in the following format:
alias shortaddress fulladdresses

Here fulladdresses stands for one or more mail addresses for shortaddress to expand into.
Separate multiple addresses with spaces; if an address contains a space, quote the whole
address with a pair of double-quotes.

For instance, to make maingnu stand for gnu@gnu.org plus a local address of your own,
put in this line:

alias maingnu gnu@gnu.org local-gnu

Emacs also recognizes include commands in ‘.mailrc’ files. They look like this:
source filename

The file ‘~/.mailrc’ is used primarily by other mail-reading programs; it can contain various
other commands. Emacs ignores everything in it except for alias definitions and include
commands.

Another way to define a mail alias, within Emacs alone, is with the define-mail-alias
command. It prompts for the alias and then the full address. You can use it to define
aliases in your ‘.emacs’ file, like this:

(define-mail-alias "maingnu" "gnu@gnu.org")

define-mail-alias records aliases by adding them to a variable named mail-aliases.
If you are comfortable with manipulating Lisp lists, you can set mail-aliases directly.
The initial value of mail-aliases is t, which means that Emacs should read ‘.mailrc’ to
get the proper value.

You can specify a different file name to use instead of ‘~/.mailrc’ by setting the variable
mail-personal-alias-file.

Normally, Emacs expands aliases when you send the message. You do not need to expand
mail aliases before sending the message, but you can expand them if you want to see where
the mail will actually go. To do this, use the command M-x expand-mail-aliases; it
expands all mail aliases currently present in the mail headers that hold addresses.

If you like, you can have mail aliases expand as abbrevs, as soon as you type them in
(see Chapter 25 [Abbrevs], page 283). To enable this feature, execute the following:

(add-hook ’mail-mode-hook ’mail-abbrevs-setup)

This can go in your ‘.emacs’ file. See Section 32.2.3 [Hooks], page 386. If you use this
feature, you must use define-mail-abbrev instead of define-mail-alias; the latter does
not work with this package. Note that the mail abbreviation package uses the variable
mail-abbrevs instead of mail-aliases, and that all alias names are converted to lower
case.

The mail abbreviation package also provides the C-c C-a (mail-interactive-insert-
alias) command, which reads an alias name (with completion) and inserts its definition at

Chapter 27: Sending Mail 297

point. This is useful when editing the message text itself or a header field such as ‘Subject’
in which Emacs does not normally expand aliases.

Note that abbrevs expand only if you insert a word-separator character afterward. How-
ever, you can rebind C-n and M-> to cause expansion as well. Here’s how to do that:

(add-hook ’mail-mode-hook
(lambda ()
(substitute-key-definition

’next-line ’mail-abbrev-next-line
mail-mode-map global-map)

(substitute-key-definition
’end-of-buffer ’mail-abbrev-end-of-buffer
mail-mode-map global-map)))

27.4 Mail Mode

The major mode used in the mail buffer is Mail mode, which is much like Text mode
except that various special commands are provided on the C-c prefix. These commands all
have to do specifically with editing or sending the message. In addition, Mail mode defines
the character ‘%’ as a word separator; this is helpful for using the word commands to edit
mail addresses.

Mail mode is normally used in buffers set up automatically by the mail command and
related commands. However, you can also switch to Mail mode in a file-visiting buffer. This
is a useful thing to do if you have saved the text of a draft message in a file.

27.4.1 Mail Sending

Mail mode has two commands for sending the message you have been editing:

C-c C-s Send the message, and leave the mail buffer selected (mail-send).

C-c C-c Send the message, and select some other buffer (mail-send-and-exit).

C-c C-s (mail-send) sends the message and marks the mail buffer unmodified, but
leaves that buffer selected so that you can modify the message (perhaps with new recipients)
and send it again. C-c C-c (mail-send-and-exit) sends and then deletes the window or
switches to another buffer. It puts the mail buffer at the lowest priority for reselection by
default, since you are finished with using it. This is the usual way to send the message.

In a file-visiting buffer, sending the message does not clear the modified flag, because
only saving the file should do that. As a result, you don’t get a warning if you try to send
the same message twice.

When you send a message that contains non-ASCII characters, they need to be encoded
with a coding system (see Section 18.7 [Coding Systems], page 181). Usually the coding
system is specified automatically by your chosen language environment (see Section 18.3
[Language Environments], page 177). You can explicitly specify the coding system for
outgoing mail by setting the variable sendmail-coding-system (see Section 18.8 [Recognize
Coding], page 183).

If the coding system thus determined does not handle the characters in a particular
message, Emacs asks you to select the coding system to use, showing a list of possible
coding systems.

298 GNU Emacs Manual

27.4.2 Mail Header Editing

Mail mode provides special commands to move to particular header fields and to complete
addresses in headers.

C-c C-f C-t
Move to the ‘To’ header field, creating one if there is none (mail-to).

C-c C-f C-s
Move to the ‘Subject’ header field, creating one if there is none
(mail-subject).

C-c C-f C-c
Move to the ‘CC’ header field, creating one if there is none (mail-cc).

C-c C-f C-b
Move to the ‘BCC’ header field, creating one if there is none (mail-bcc).

C-c C-f C-f
Move to the ‘FCC’ header field, creating one if there is none (mail-fcc).

M-〈TAB〉 Complete a mailing address (mail-complete).

There are five commands to move point to particular header fields, all based on the prefix
C-c C-f (‘C-f’ is for “field”). They are listed in the table above. If the field in question
does not exist, these commands create one. We provide special motion commands for these
particular fields because they are the fields users most often want to edit.

While editing a header field that contains mailing addresses, such as ‘To:’, ‘CC:’ and
‘BCC:’, you can complete a mailing address by typing M-〈TAB〉 (mail-complete). It inserts
the full name corresponding to the address, if it can determine the full name. The variable
mail-complete-style controls whether to insert the full name, and what style to use, as
in mail-from-style (see Section 27.2 [Mail Headers], page 294).

For completion purposes, the valid mailing addresses are taken to be the local users’
names plus your personal mail aliases. You can specify additional sources of valid addresses;
look at the customization group ‘mailalias’ to see the options for this (see Section 32.2.2.1
[Customization Groups], page 380).

If you type M-〈TAB〉 in the body of the message, mail-complete invokes
ispell-complete-word, as in Text mode.

27.4.3 Citing Mail

Mail mode also has commands for yanking or citing all or part of a message that you
are replying to. These commands are active only when you started sending a message using
an Rmail command.

C-c C-y Yank the selected message from Rmail (mail-yank-original).

C-c C-r Yank the region from the Rmail buffer (mail-yank-region).

C-c C-q Fill each paragraph cited from another message (mail-fill-yanked-message).

Chapter 27: Sending Mail 299

When mail sending is invoked from the Rmail mail reader using an Rmail command, C-c
C-y can be used inside the mail buffer to insert the text of the message you are replying to.
Normally it indents each line of that message three spaces and eliminates most header fields.
A numeric argument specifies the number of spaces to indent. An argument of just C-u says
not to indent at all and not to eliminate anything. C-c C-y always uses the current message
from the Rmail buffer, so you can insert several old messages by selecting one in Rmail,
switching to ‘*mail*’ and yanking it, then switching back to Rmail to select another.

You can specify the text for C-c C-y to insert at the beginning of each line: set mail-
yank-prefix to the desired string. (A value of nil means to use indentation; this is the
default.) However, C-u C-c C-y never adds anything at the beginning of the inserted lines,
regardless of the value of mail-yank-prefix.

To yank just a part of an incoming message, set the region in Rmail to the part you
want; then go to the ‘*Mail*’ message and type C-c C-r (mail-yank-region). Each line
that is copied is indented or prefixed according to mail-yank-prefix.

After using C-c C-y or C-c C-r, you can type C-c C-q (mail-fill-yanked-message) to
fill the paragraphs of the yanked old message or messages. One use of C-c C-q fills all such
paragraphs, each one individually. To fill a single paragraph of the quoted message, use
M-q. If filling does not automatically handle the type of citation prefix you use, try setting
the fill prefix explicitly. See Section 21.5 [Filling], page 203.

27.4.4 Mail Mode Miscellany

C-c C-t Move to the beginning of the message body text (mail-text).

C-c C-w Insert the file ‘~/.signature’ at the end of the message text (mail-signature).

C-c C-i file 〈RET〉
Insert the contents of file at the end of the outgoing message (mail-attach-
file).

M-x ispell-message
Perform spelling correction on the message text, but not on citations from other
messages.

C-c C-t (mail-text) moves point to just after the header separator line—that is, to the
beginning of the message body text.

C-c C-w (mail-signature) adds a standard piece of text at the end of the message to
say more about who you are. The text comes from the file ‘~/.signature’ in your home
directory. To insert your signature automatically, set the variable mail-signature to t;
after that, starting a mail message automatically inserts the contents of your ‘~/.signature’
file. If you want to omit your signature from a particular message, delete it from the buffer
before you send the message.

You can also set mail-signature to a string; then that string is inserted automatically
as your signature when you start editing a message to send. If you set it to some other Lisp
expression, the expression is evaluated each time, and its value (which should be a string)
specifies the signature.

You can do spelling correction on the message text you have written with the command
M-x ispell-message. If you have yanked an incoming message into the outgoing draft,

300 GNU Emacs Manual

this command skips what was yanked, but it checks the text that you yourself inserted. (It
looks for indentation or mail-yank-prefix to distinguish the cited lines from your input.)
See Section 13.4 [Spelling], page 106.

To include a file in the outgoing message, you can use C-x i, the usual command to
insert a file in the current buffer. But it is often more convenient to use a special command,
C-c C-i (mail-attach-file). This command inserts the file contents at the end of the
buffer, after your signature if any, with a delimiter line that includes the file name.

Turning on Mail mode (which C-x m does automatically) runs the normal hooks text-
mode-hook and mail-mode-hook. Initializing a new outgoing message runs the normal
hook mail-setup-hook; if you want to add special fields to your mail header or make other
changes to the appearance of the mail buffer, use that hook. See Section 32.2.3 [Hooks],
page 386.

The main difference between these hooks is just when they are invoked. Whenever you
type M-x mail, mail-mode-hook runs as soon as the ‘*mail*’ buffer is created. Then the
mail-setup function inserts the default contents of the buffer. After these default contents
are inserted, mail-setup-hook runs.

27.5 Mail Amusements

M-x spook adds a line of randomly chosen keywords to an outgoing mail message. The
keywords are chosen from a list of words that suggest you are discussing something subver-
sive.

The idea behind this feature is the suspicion that the NSA1 snoops on all electronic mail
messages that contain keywords suggesting they might find them interesting. (The NSA
says they don’t, but that’s what they would say.) The idea is that if lots of people add
suspicious words to their messages, the NSA will get so busy with spurious input that they
will have to give up reading it all.

Here’s how to insert spook keywords automatically whenever you start entering an out-
going message:

(add-hook ’mail-setup-hook ’spook)

Whether or not this confuses the NSA, it at least amuses people.
You can use the fortune program to put a “fortune cookie” message into outgoing mail.

To do this, add fortune-to-signature to mail-setup-hook:
(add-hook ’mail-setup-hook ’fortune-to-signature)

27.6 Mail-Composition Methods

In this chapter we have described the usual Emacs mode for editing and sending mail—
Mail mode. Emacs has alternative facilities for editing and sending mail, including MH-E
and Message mode, not documented in this manual. See section “MH-E” in The Emacs
Interface to MH . See section “Message” in Message Manual. You can choose any of them
as your preferred method. The commands C-x m, C-x 4 m and C-x 5 m use whichever agent
you have specified, as do various other Emacs commands and facilities that send mail.

1 The US National Security Agency.

Chapter 27: Sending Mail 301

To specify your mail-composition method, customize the variable mail-user-agent.
Currently legitimate values include sendmail-user-agent (Mail mode), mh-e-user-agent,
message-user-agent and gnus-user-agent.

If you select a different mail-composition method, the information in this chapter about
the ‘*mail*’ buffer and Mail mode does not apply; the other methods use a different format
of text in a different buffer, and their commands are different as well.

302 GNU Emacs Manual

Chapter 28: Reading Mail with Rmail 303

28 Reading Mail with Rmail

Rmail is an Emacs subsystem for reading and disposing of mail that you receive. Rmail
stores mail messages in files called Rmail files. Reading the message in an Rmail file is done
in a special major mode, Rmail mode, which redefines most letters to run commands for
managing mail. The command rmail-mode is used to switch into Rmail mode, and it runs
the hook rmail-mode-hook as usual, but don’t run this command by hand; it can’t do a
reasonable job unless the buffer is visiting a proper Rmail file.

28.1 Basic Concepts of Rmail

Using Rmail in the simplest fashion, you have one Rmail file ‘~/RMAIL’ in which all of
your mail is saved. It is called your primary Rmail file. The command M-x rmail reads
your primary Rmail file, merges new mail in from your inboxes, displays the first message
you haven’t read yet, and lets you begin reading. The variable rmail-file-name specifies
the name of the primary Rmail file.

Rmail uses narrowing to hide all but one message in the Rmail file. The message that is
shown is called the current message. Rmail mode’s special commands can do such things
as delete the current message, copy it into another file, send a reply, or move to another
message. You can also create multiple Rmail files and use Rmail to move messages between
them.

Within the Rmail file, messages are normally arranged sequentially in order of receipt;
you can specify other ways to sort them. Messages are assigned consecutive integers as
their message numbers. The number of the current message is displayed in Rmail’s mode
line, followed by the total number of messages in the file. You can move to a message by
specifying its message number with the j key (see Section 28.3 [Rmail Motion], page 304).

Following the usual conventions of Emacs, changes in an Rmail file become permanent
only when the file is saved. You can save it with s (rmail-expunge-and-save), which also
expunges deleted messages from the file first (see Section 28.4 [Rmail Deletion], page 305).
To save the file without expunging, use C-x C-s. Rmail also saves the Rmail file after
merging new mail from an inbox file (see Section 28.5 [Rmail Inbox], page 306).

You can exit Rmail with q (rmail-quit); this expunges and saves the Rmail file and
then switches to another buffer. But there is no need to “exit” formally. If you switch from
Rmail to editing in other buffers, and never happen to switch back, you have exited. (The
Rmail command b, rmail-bury, does this for you.) Just make sure to save the Rmail file
eventually (like any other file you have changed). C-x s is a good enough way to do this
(see Section 14.3 [Saving], page 113).

28.2 Scrolling Within a Message

When Rmail displays a message that does not fit on the screen, you must scroll through
it to read the rest. You could do this with C-v, M-v and M-<, but in Rmail scrolling is so
frequent that it deserves to be easier to type.

〈SPC〉 Scroll forward (scroll-up).

〈DEL〉 Scroll backward (scroll-down).

304 GNU Emacs Manual

. Scroll to start of message (rmail-beginning-of-message).

Since the most common thing to do while reading a message is to scroll through it by
screenfuls, Rmail makes 〈SPC〉 and 〈DEL〉 synonyms of C-v (scroll-up) and M-v (scroll-
down)

The command . (rmail-beginning-of-message) scrolls back to the beginning of the
selected message. This is not quite the same as M-<: for one thing, it does not set the mark;
for another, it resets the buffer boundaries to the current message if you have changed them.

28.3 Moving Among Messages

The most basic thing to do with a message is to read it. The way to do this in Rmail is
to make the message current. The usual practice is to move sequentially through the file,
since this is the order of receipt of messages. When you enter Rmail, you are positioned
at the first message that you have not yet made current (that is, the first one that has the
‘unseen’ attribute; see Section 28.9 [Rmail Attributes], page 310). Move forward to see the
other new messages; move backward to re-examine old messages.

n Move to the next nondeleted message, skipping any intervening deleted mes-
sages (rmail-next-undeleted-message).

p Move to the previous nondeleted message (rmail-previous-undeleted-
message).

M-n Move to the next message, including deleted messages (rmail-next-message).

M-p Move to the previous message, including deleted messages (rmail-previous-
message).

j Move to the first message. With argument n, move to message number n
(rmail-show-message).

> Move to the last message (rmail-last-message).

< Move to the first message (rmail-first-message).

M-s regexp 〈RET〉
Move to the next message containing a match for regexp (rmail-search).

- M-s regexp 〈RET〉
Move to the previous message containing a match for regexp.

n and p are the usual way of moving among messages in Rmail. They move through the
messages sequentially, but skip over deleted messages, which is usually what you want to
do. Their command definitions are named rmail-next-undeleted-message and rmail-
previous-undeleted-message. If you do not want to skip deleted messages—for example,
if you want to move to a message to undelete it—use the variants M-n and M-p (rmail-next-
message and rmail-previous-message). A numeric argument to any of these commands
serves as a repeat count.

In Rmail, you can specify a numeric argument by typing just the digits. You don’t need
to type C-u first.

Chapter 28: Reading Mail with Rmail 305

The M-s (rmail-search) command is Rmail’s version of search. The usual incremental
search command C-s works in Rmail, but it searches only within the current message.
The purpose of M-s is to search for another message. It reads a regular expression (see
Section 12.5 [Regexps], page 95) nonincrementally, then searches starting at the beginning
of the following message for a match. It then selects that message. If regexp is empty, M-s
reuses the regexp used the previous time.

To search backward in the file for another message, give M-s a negative argument. In
Rmail you can do this with - M-s.

It is also possible to search for a message based on labels. See Section 28.8 [Rmail
Labels], page 309.

To move to a message specified by absolute message number, use j (rmail-show-
message) with the message number as argument. With no argument, j selects the first
message. < (rmail-first-message) also selects the first message. > (rmail-last-message)
selects the last message.

28.4 Deleting Messages

When you no longer need to keep a message, you can delete it. This flags it as ignorable,
and some Rmail commands pretend it is no longer present; but it still has its place in the
Rmail file, and still has its message number.

Expunging the Rmail file actually removes the deleted messages. The remaining mes-
sages are renumbered consecutively. Expunging is the only action that changes the mes-
sage number of any message, except for undigestifying (see Section 28.16 [Rmail Digest],
page 317).

d Delete the current message, and move to the next nondeleted message (rmail-
delete-forward).

C-d Delete the current message, and move to the previous nondeleted message
(rmail-delete-backward).

u Undelete the current message, or move back to a deleted message and undelete
it (rmail-undelete-previous-message).

x Expunge the Rmail file (rmail-expunge).

There are two Rmail commands for deleting messages. Both delete the current message
and select another message. d (rmail-delete-forward) moves to the following message,
skipping messages already deleted, while C-d (rmail-delete-backward) moves to the pre-
vious nondeleted message. If there is no nondeleted message to move to in the specified
direction, the message that was just deleted remains current. A numeric argument to either
command reverses the direction of motion after deletion.

Whenever Rmail deletes a message, it runs the hook rmail-delete-message-hook.
When the hook functions are invoked, the message has been marked deleted, but it is still
the current message in the Rmail buffer.

To make all the deleted messages finally vanish from the Rmail file, type x (rmail-
expunge). Until you do this, you can still undelete the deleted messages. The undeletion
command, u (rmail-undelete-previous-message), is designed to cancel the effect of a d

306 GNU Emacs Manual

command in most cases. It undeletes the current message if the current message is deleted.
Otherwise it moves backward to previous messages until a deleted message is found, and
undeletes that message.

You can usually undo a d with a u because the u moves back to and undeletes the
message that the d deleted. But this does not work when the d skips a few already-deleted
messages that follow the message being deleted; then the u command undeletes the last of
the messages that were skipped. There is no clean way to avoid this problem. However,
by repeating the u command, you can eventually get back to the message that you intend
to undelete. You can also select a particular deleted message with the M-p command, then
type u to undelete it.

A deleted message has the ‘deleted’ attribute, and as a result ‘deleted’ appears in the
mode line when the current message is deleted. In fact, deleting or undeleting a message is
nothing more than adding or removing this attribute. See Section 28.9 [Rmail Attributes],
page 310.

28.5 Rmail Files and Inboxes

The operating system places incoming mail for you in a file that we call your inbox.
When you start up Rmail, it runs a C program called movemail to copy the new messages
from your inbox into your primary Rmail file, which also contains other messages saved
from previous Rmail sessions. It is in this file that you actually read the mail with Rmail.
This operation is called getting new mail. You can get new mail at any time in Rmail by
typing g.

The variable rmail-primary-inbox-list contains a list of the files which are inboxes
for your primary Rmail file. If you don’t set this variable explicitly, it is initialized from
the MAIL environment variable, or, as a last resort, set to nil, which means to use the
default inbox. The default inbox is ‘/var/mail/username’, ‘/usr/spool/mail/username’,
or ‘/usr/mail/username’, depending on your operating system.

To see what the default is on your system, use C-h v rmail-primary-inbox 〈RET〉. You
can specify the inbox file(s) for any Rmail file with the command set-rmail-inbox-list;
see Section 28.6 [Rmail Files], page 307.

There are two reasons for having separate Rmail files and inboxes.

1. The inbox file format varies between operating systems and according to the other mail
software in use. Only one part of Rmail needs to know about the alternatives, and it
need only understand how to convert all of them to Rmail’s own format.

2. It is very cumbersome to access an inbox file without danger of losing mail, because it
is necessary to interlock with mail delivery. Moreover, different operating systems use
different interlocking techniques. The strategy of moving mail out of the inbox once
and for all into a separate Rmail file avoids the need for interlocking in all the rest of
Rmail, since only Rmail operates on the Rmail file.

Rmail was written to use Babyl format as its internal format. Since then, we have
recognized that the usual inbox format on Unix and GNU systems is adequate for the job,
and we plan to change Rmail to use that as its internal format. However, the Rmail file
will still be separate from the inbox file, even on systems where their format is the same.

Chapter 28: Reading Mail with Rmail 307

28.6 Multiple Rmail Files

Rmail operates by default on your primary Rmail file, which is named ‘~/RMAIL’ and
receives your incoming mail from your system inbox file. But you can also have other Rmail
files and edit them with Rmail. These files can receive mail through their own inboxes, or
you can move messages into them with explicit Rmail commands (see Section 28.7 [Rmail
Output], page 308).

i file 〈RET〉
Read file into Emacs and run Rmail on it (rmail-input).

M-x set-rmail-inbox-list 〈RET〉 files 〈RET〉
Specify inbox file names for current Rmail file to get mail from.

g Merge new mail from current Rmail file’s inboxes (rmail-get-new-mail).

C-u g file 〈RET〉
Merge new mail from inbox file file.

To run Rmail on a file other than your primary Rmail file, you may use the i
(rmail-input) command in Rmail. This visits the file in Rmail mode. You can use M-x
rmail-input even when not in Rmail.

The file you read with i should normally be a valid Rmail file. If it is not, Rmail tries to
decompose it into a stream of messages in various known formats. If it succeeds, it converts
the whole file to an Rmail file. If you specify a file name that doesn’t exist, i initializes a
new buffer for creating a new Rmail file.

You can also select an Rmail file from a menu. Choose first the menu bar Classify item,
then from the Classify menu choose the Input Rmail File item; then choose the Rmail file
you want. The variables rmail-secondary-file-directory and rmail-secondary-file-
regexp specify which files to offer in the menu: the first variable says which directory to
find them in; the second says which files in that directory to offer (all those that match the
regular expression). These variables also apply to choosing a file for output (see Section 28.7
[Rmail Output], page 308).

Each Rmail file can contain a list of inbox file names; you can specify this list with
M-x set-rmail-inbox-list 〈RET〉 files 〈RET〉. The argument can contain any number of
file names, separated by commas. It can also be empty, which specifies that this file should
have no inboxes. Once a list of inboxes is specified, the Rmail file remembers it permanently
until you specify a different list.

As a special exception, if your primary Rmail file does not specify any inbox files, it uses
your standard system inbox.

The g command (rmail-get-new-mail) merges mail into the current Rmail file from
its specified inboxes. If the Rmail file has no inboxes, g does nothing. The command M-x
rmail also merges new mail into your primary Rmail file.

To merge mail from a file that is not the usual inbox, give the g key a numeric argument,
as in C-u g. Then it reads a file name and merges mail from that file. The inbox file is
not deleted or changed in any way when g with an argument is used. This is, therefore, a
general way of merging one file of messages into another.

308 GNU Emacs Manual

28.7 Copying Messages Out to Files

These commands copy messages from an Rmail file into another file.

o file 〈RET〉
Append a copy of the current message to the file file, using Rmail file format
by default (rmail-output-to-rmail-file).

C-o file 〈RET〉
Append a copy of the current message to the file file, using system inbox file
format by default (rmail-output).

w file 〈RET〉
Output just the message body to the file file, taking the default file name from
the message ‘Subject’ header.

The commands o and C-o copy the current message into a specified file. This file may
be an Rmail file or it may be in system inbox format; the output commands ascertain the
file’s format and write the copied message in that format.

The o and C-o commands differ in two ways: each has its own separate default file name,
and each specifies a choice of format to use when the file does not already exist. The o
command uses Rmail format when it creates a new file, while C-o uses system inbox format
for a new file. The default file name for o is the file name used last with o, and the default
file name for C-o is the file name used last with C-o.

If the output file is an Rmail file currently visited in an Emacs buffer, the output com-
mands copy the message into that buffer. It is up to you to save the buffer eventually in its
file.

Sometimes you may receive a message whose body holds the contents of a file. You can
save the body to a file (excluding the message header) with the w command (rmail-output-
body-to-file). Often these messages contain the intended file name in the ‘Subject’ field,
so the w command uses the ‘Subject’ field as the default for the output file name. However,
the file name is read using the minibuffer, so you can specify a different name if you wish.

You can also output a message to an Rmail file chosen with a menu. Choose first the
menu bar Classify item, then from the Classify menu choose the Output Rmail File menu
item; then choose the Rmail file you want. This outputs the current message to that file, like
the o command. The variables rmail-secondary-file-directory and rmail-secondary-
file-regexp specify which files to offer in the menu: the first variable says which directory
to find them in; the second says which files in that directory to offer (all those that match
the regular expression).

Copying a message gives the original copy of the message the ‘filed’ attribute, so that
‘filed’ appears in the mode line when such a message is current. If you like to keep just a
single copy of every mail message, set the variable rmail-delete-after-output to t; then
the o and C-o commands delete the original message after copying it. (You can undelete
the original afterward if you wish.)

Copying messages into files in system inbox format uses the header fields that are dis-
played in Rmail at the time. Thus, if you use the t command to view the entire header
and then copy the message, the entire header is copied. See Section 28.13 [Rmail Display],
page 315.

Chapter 28: Reading Mail with Rmail 309

The variable rmail-output-file-alist lets you specify intelligent defaults for the out-
put file, based on the contents of the current message. The value should be a list whose
elements have this form:

(regexp . name-exp)

If there’s a match for regexp in the current message, then the default file name for output
is name-exp. If multiple elements match the message, the first matching element decides
the default file name. The subexpression name-exp may be a string constant giving the file
name to use, or more generally it may be any Lisp expression that returns a file name as a
string. rmail-output-file-alist applies to both o and C-o.

28.8 Labels

Each message can have various labels assigned to it as a means of classification. Each
label has a name; different names are different labels. Any given label is either present
or absent on a particular message. A few label names have standard meanings and are
given to messages automatically by Rmail when appropriate; these special labels are called
attributes. All other labels are assigned only by users.

a label 〈RET〉
Assign the label label to the current message (rmail-add-label).

k label 〈RET〉
Remove the label label from the current message (rmail-kill-label).

C-M-n labels 〈RET〉
Move to the next message that has one of the labels labels (rmail-next-
labeled-message).

C-M-p labels 〈RET〉
Move to the previous message that has one of the labels labels
(rmail-previous-labeled-message).

C-M-l labels 〈RET〉
Make a summary of all messages containing any of the labels labels (rmail-
summary-by-labels).

The a (rmail-add-label) and k (rmail-kill-label) commands allow you to assign
or remove any label on the current message. If the label argument is empty, it means to
assign or remove the same label most recently assigned or removed.

Once you have given messages labels to classify them as you wish, there are two ways
to use the labels: in moving and in summaries.

The command C-M-n labels 〈RET〉 (rmail-next-labeled-message) moves to the next
message that has one of the labels labels. The argument labels specifies one or more label
names, separated by commas. C-M-p (rmail-previous-labeled-message) is similar, but
moves backwards to previous messages. A numeric argument to either command serves as
a repeat count.

The command C-M-l labels 〈RET〉 (rmail-summary-by-labels) displays a summary con-
taining only the messages that have at least one of a specified set of labels. The argument

310 GNU Emacs Manual

labels is one or more label names, separated by commas. See Section 28.11 [Rmail Sum-
mary], page 312, for information on summaries.

If the labels argument to C-M-n, C-M-p or C-M-l is empty, it means to use the last set
of labels specified for any of these commands.

28.9 Rmail Attributes

Some labels such as ‘deleted’ and ‘filed’ have built-in meanings and are assigned
to or removed from messages automatically at appropriate times; these labels are called
attributes. Here is a list of Rmail attributes:

‘unseen’ Means the message has never been current. Assigned to messages when they
come from an inbox file, and removed when a message is made current. When
you start Rmail, it initially shows the first message that has this attribute.

‘deleted’ Means the message is deleted. Assigned by deletion commands and removed
by undeletion commands (see Section 28.4 [Rmail Deletion], page 305).

‘filed’ Means the message has been copied to some other file. Assigned by the file
output commands (see Section 28.6 [Rmail Files], page 307).

‘answered’
Means you have mailed an answer to the message. Assigned by the r command
(rmail-reply). See Section 28.10 [Rmail Reply], page 310.

‘forwarded’
Means you have forwarded the message. Assigned by the f command (rmail-
forward). See Section 28.10 [Rmail Reply], page 310.

‘edited’ Means you have edited the text of the message within Rmail. See Section 28.15
[Rmail Editing], page 316.

‘resent’ Means you have resent the message. Assigned by the command M-x
rmail-resend. See Section 28.10 [Rmail Reply], page 310.

All other labels are assigned or removed only by the user, and have no standard meaning.

28.10 Sending Replies

Rmail has several commands that use Mail mode to send outgoing mail. See Chapter 27
[Sending Mail], page 293, for information on using Mail mode, including certain features
meant to work with Rmail. What this section documents are the special commands of
Rmail for entering Mail mode. Note that the usual keys for sending mail—C-x m, C-x 4 m,
and C-x 5 m—are available in Rmail mode and work just as they usually do.

m Send a message (rmail-mail).

c Continue editing the already started outgoing message (rmail-continue).

r Send a reply to the current Rmail message (rmail-reply).

f Forward the current message to other users (rmail-forward).

C-u f Resend the current message to other users (rmail-resend).

Chapter 28: Reading Mail with Rmail 311

M-m Try sending a bounced message a second time (rmail-retry-failure).

The most common reason to send a message while in Rmail is to reply to the message you
are reading. To do this, type r (rmail-reply). This displays the ‘*mail*’ buffer in another
window, much like C-x 4 m, but preinitializes the ‘Subject’, ‘To’, ‘CC’ and ‘In-reply-to’
header fields based on the message you are replying to. The ‘To’ field starts out as the
address of the person who sent the message you received, and the ‘CC’ field starts out with
all the other recipients of that message.

You can exclude certain recipients from being placed automatically in the ‘CC’, using
the variable rmail-dont-reply-to-names. Its value should be a regular expression (as a
string); any recipient that the regular expression matches, is excluded from the ‘CC’ field.
The default value matches your own name, and any name starting with ‘info-’. (Those
names are excluded because there is a convention of using them for large mailing lists to
broadcast announcements.)

To omit the ‘CC’ field completely for a particular reply, enter the reply command with a
numeric argument: C-u r or 1 r.

Once the ‘*mail*’ buffer has been initialized, editing and sending the mail goes as usual
(see Chapter 27 [Sending Mail], page 293). You can edit the presupplied header fields if
they are not right for you. You can also use the commands of Mail mode (see Section 27.4
[Mail Mode], page 297), including C-c C-y which yanks in the message that you are replying
to. You can switch to the Rmail buffer, select a different message there, switch back, and
yank the new current message.

Sometimes a message does not reach its destination. Mailers usually send the failed
message back to you, enclosed in a failure message. The Rmail command M-m (rmail-
retry-failure) prepares to send the same message a second time: it sets up a ‘*mail*’
buffer with the same text and header fields as before. If you type C-c C-c right away, you
send the message again exactly the same as the first time. Alternatively, you can edit the
text or headers and then send it. The variable rmail-retry-ignored-headers, in the same
format as rmail-ignored-headers (see Section 28.13 [Rmail Display], page 315), controls
which headers are stripped from the failed message when retrying it.

Another frequent reason to send mail in Rmail is to forward the current message to
other users. f (rmail-forward) makes this easy by preinitializing the ‘*mail*’ buffer with
the current message as the text, and a subject designating a forwarded message. All you
have to do is fill in the recipients and send. When you forward a message, recipients get a
message which is “from” you, and which has the original message in its contents.

Forwarding a message encloses it between two delimiter lines. It also modifies every
line that starts with a dash, by inserting ‘- ’ at the start of the line. When you receive a
forwarded message, if it contains something besides ordinary text—for example, program
source code—you might find it useful to undo that transformation. You can do this by se-
lecting the forwarded message and typing M-x unforward-rmail-message. This command
extracts the original forwarded message, deleting the inserted ‘- ’ strings, and inserts it into
the Rmail file as a separate message immediately following the current one.

Resending is an alternative similar to forwarding; the difference is that resending sends
a message that is “from” the original sender, just as it reached you—with a few added
header fields ‘Resent-From’ and ‘Resent-To’ to indicate that it came via you. To resend

312 GNU Emacs Manual

a message in Rmail, use C-u f. (f runs rmail-forward, which is programmed to invoke
rmail-resend if you provide a numeric argument.)

The m (rmail-mail) command is used to start editing an outgoing message that is not
a reply. It leaves the header fields empty. Its only difference from C-x 4 m is that it makes
the Rmail buffer accessible for C-c C-y, just as r does. Thus, m can be used to reply to or
forward a message; it can do anything r or f can do.

The c (rmail-continue) command resumes editing the ‘*mail*’ buffer, to finish editing
an outgoing message you were already composing, or to alter a message you have sent.

If you set the variable rmail-mail-new-frame to a non-nil value, then all the Rmail
commands to start sending a message create a new frame to edit it in. This frame is deleted
when you send the message, or when you use the ‘Cancel’ item in the ‘Mail’ menu.

All the Rmail commands to send a message use the mail-composition method that you
have chosen (see Section 27.6 [Mail Methods], page 300).

28.11 Summaries

A summary is a buffer containing one line per message to give you an overview of the
mail in an Rmail file. Each line shows the message number and date, the sender, the line
count, the labels, and the subject. Moving point in the summary buffer selects messages as
you move to their summary lines. Almost all Rmail commands are valid in the summary
buffer also; when used there, they apply to the message described by the current line of the
summary.

A summary buffer applies to a single Rmail file only; if you are editing multiple Rmail
files, each one can have its own summary buffer. The summary buffer name is made by
appending ‘-summary’ to the Rmail buffer’s name. Normally only one summary buffer is
displayed at a time.

28.11.1 Making Summaries

Here are the commands to create a summary for the current Rmail file. Once the Rmail
file has a summary buffer, changes in the Rmail file (such as deleting or expunging messages,
and getting new mail) automatically update the summary.

h
C-M-h Summarize all messages (rmail-summary).

l labels 〈RET〉
C-M-l labels 〈RET〉

Summarize messages that have one or more of the specified labels (rmail-
summary-by-labels).

C-M-r rcpts 〈RET〉
Summarize messages that have one or more of the specified recipients (rmail-
summary-by-recipients).

C-M-t topic 〈RET〉
Summarize messages that have a match for the specified regexp topic in their
subjects (rmail-summary-by-topic).

Chapter 28: Reading Mail with Rmail 313

C-M-s regexp
Summarize messages whose headers and the subject line match the specified
regular expression regexp (rmail-summary-by-regexp).

The h or C-M-h (rmail-summary) command fills the summary buffer for the current
Rmail file with a summary of all the messages in the file. It then displays and selects the
summary buffer in another window.

C-M-l labels 〈RET〉 (rmail-summary-by-labels) makes a partial summary mentioning
only the messages that have one or more of the labels labels. labels should contain label
names separated by commas.

C-M-r rcpts 〈RET〉 (rmail-summary-by-recipients) makes a partial summary mention-
ing only the messages that have one or more of the recipients rcpts. rcpts should contain
mailing addresses separated by commas.

C-M-t topic 〈RET〉 (rmail-summary-by-topic) makes a partial summary mentioning
only the messages whose subjects have a match for the regular expression topic.

C-M-s regexp 〈RET〉 (rmail-summary-by-regexp) makes a partial summary which men-
tions only the messages whose headers (including the date and the subject lines) match the
regular expression regexp.

Note that there is only one summary buffer for any Rmail file; making one kind of
summary discards any previously made summary.

The variable rmail-summary-window-size says how many lines to use for the summary
window. The variable rmail-summary-line-count-flag controls whether the summary
line for a message should include the line count of the message.

28.11.2 Editing in Summaries

You can use the Rmail summary buffer to do almost anything you can do in the Rmail
buffer itself. In fact, once you have a summary buffer, there’s no need to switch back to the
Rmail buffer.

You can select and display various messages in the Rmail buffer, from the summary
buffer, just by moving point in the summary buffer to different lines. It doesn’t matter
what Emacs command you use to move point; whichever line point is on at the end of the
command, that message is selected in the Rmail buffer.

Almost all Rmail commands work in the summary buffer as well as in the Rmail buffer.
Thus, d in the summary buffer deletes the current message, u undeletes, and x expunges.
o and C-o output the current message to a file; r starts a reply to it. You can scroll the
current message while remaining in the summary buffer using 〈SPC〉 and 〈DEL〉.

The Rmail commands to move between messages also work in the summary buffer, but
with a twist: they move through the set of messages included in the summary. They also
ensure the Rmail buffer appears on the screen (unlike cursor motion commands, which
update the contents of the Rmail buffer but don’t display it in a window unless it already
appears). Here is a list of these commands:

n Move to next line, skipping lines saying ‘deleted’, and select its message.

p Move to previous line, skipping lines saying ‘deleted’, and select its message.

314 GNU Emacs Manual

M-n Move to next line and select its message.

M-p Move to previous line and select its message.

> Move to the last line, and select its message.

< Move to the first line, and select its message.

M-s pattern 〈RET〉
Search through messages for pattern starting with the current message; select
the message found, and move point in the summary buffer to that message’s
line.

Deletion, undeletion, and getting new mail, and even selection of a different message all
update the summary buffer when you do them in the Rmail buffer. If the variable rmail-
redisplay-summary is non-nil, these actions also bring the summary buffer back onto the
screen.

When you are finished using the summary, type Q (rmail-summary-wipe) to delete the
summary buffer’s window. You can also exit Rmail while in the summary: q (rmail-
summary-quit) deletes the summary window, then exits from Rmail by saving the Rmail
file and switching to another buffer.

28.12 Sorting the Rmail File

M-x rmail-sort-by-date
Sort messages of current Rmail file by date.

M-x rmail-sort-by-subject
Sort messages of current Rmail file by subject.

M-x rmail-sort-by-author
Sort messages of current Rmail file by author’s name.

M-x rmail-sort-by-recipient
Sort messages of current Rmail file by recipient’s names.

M-x rmail-sort-by-correspondent
Sort messages of current Rmail file by the name of the other correspondent.

M-x rmail-sort-by-lines
Sort messages of current Rmail file by size (number of lines).

M-x rmail-sort-by-keywords 〈RET〉 labels 〈RET〉
Sort messages of current Rmail file by labels. The argument labels should be
a comma-separated list of labels. The order of these labels specifies the order
of messages; messages with the first label come first, messages with the second
label come second, and so on. Messages which have none of these labels come
last.

The Rmail sort commands perform a stable sort : if there is no reason to prefer either one
of two messages, their order remains unchanged. You can use this to sort by more than one
criterion. For example, if you use rmail-sort-by-date and then rmail-sort-by-author,
messages from the same author appear in order by date.

Chapter 28: Reading Mail with Rmail 315

With a numeric argument, all these commands reverse the order of comparison. This
means they sort messages from newest to oldest, from biggest to smallest, or in reverse
alphabetical order.

28.13 Display of Messages

Rmail reformats the header of each message before displaying it for the first time. Re-
formatting hides uninteresting header fields to reduce clutter. You can use the t command
to show the entire header or to repeat the header reformatting operation.

t Toggle display of complete header (rmail-toggle-header).

Reformatting the header involves deleting most header fields, on the grounds that they
are not interesting. The variable rmail-ignored-headers holds a regular expression that
specifies which header fields to hide in this way—if it matches the beginning of a header
field, that whole field is hidden.

Rmail saves the complete original header before reformatting; to see it, use the t com-
mand (rmail-toggle-header). This discards the reformatted headers of the current mes-
sage and displays it with the original header. Repeating t reformats the message again.
Selecting the message again also reformats.

One consequence of this is that if you edit the reformatted header (using e; see Sec-
tion 28.15 [Rmail Editing], page 316), subsequent use of t will discard your edits. On the
other hand, if you use e after t, to edit the original (unreformatted) header, those changes
are permanent.

When the t command has a prefix argument, a positive argument means to show the
reformatted header, and a zero or negative argument means to show the full header.

When the terminal supports multiple fonts or colors, Rmail highlights certain header
fields that are especially interesting—by default, the ‘From’ and ‘Subject’ fields. The
variable rmail-highlighted-headers holds a regular expression that specifies the header
fields to highlight; if it matches the beginning of a header field, that whole field is highlighted.

If you specify unusual colors for your text foreground and background, the colors used
for highlighting may not go well with them. If so, specify different colors for the face
rmail-highlight-face. See Section 11.1 [Faces], page 79, for how to do this. To turn off
highlighting entirely in Rmail, set rmail-highlighted-headers to nil.

You can highlight and activate URLs in incoming messages by adding the function
goto-address to the hook rmail-show-message-hook. Then you can browse these URLs
by clicking on them with Mouse-2 or by moving to one and typing C-c 〈RET〉. See Sec-
tion 31.15.2 [Activating URLs], page 372.

28.14 Rmail and Coding Systems

Rmail automatically decodes messages which contain non-ASCII characters, just as
Emacs does with files you visit and with subprocess output. Rmail uses the standard
‘charset=charset’ header in the message, if any, to determine how the message was en-
coded by the sender. It maps charset into the corresponding Emacs coding system (see
Section 18.7 [Coding Systems], page 181), and uses that coding system to decode message

316 GNU Emacs Manual

text. If the message header doesn’t have the ‘charset’ specification, or if charset is not
recognized, Rmail chooses the coding system with the usual Emacs heuristics and defaults
(see Section 18.8 [Recognize Coding], page 183).

Occasionally, a message is decoded incorrectly, either because Emacs guessed the wrong
coding system in the absence of the ‘charset’ specification, or because the specifica-
tion was inaccurate. For example, a misconfigured mailer could send a message with a
‘charset=iso-8859-1’ header when the message is actually encoded in koi8-r. When you
see the message text garbled, or some of its characters displayed as empty boxes, this may
have happened.

You can correct the problem by decoding the message again using the right coding
system, if you can figure out or guess which one is right. To do this, invoke the M-x
rmail-redecode-body command. It reads the name of a coding system, encodes the mes-
sage body using whichever coding system was used to decode it before, then redecodes it
using the coding system you specified. If you specified the right coding system, the result
should be readable.

Decoding and encoding using the wrong coding system is lossless for most encodings,
in particular with 8-bit encodings such as iso-8859 or koi8. So, if the initial attempt to
redecode the message didn’t result in a legible text, you can try other coding systems until
you succeed.

With some coding systems, notably those from the iso-2022 family, information can be
lost in decoding, so that encoding the message again won’t bring back the original incoming
text. In such a case, rmail-redecode-body cannot work. However, the problems that call
for use of rmail-redecode-body rarely occur with those coding systems. So in practice the
command works when you need it.

28.15 Editing Within a Message

Most of the usual Emacs commands are available in Rmail mode, though a few, such as
C-M-n and C-M-h, are redefined by Rmail for other purposes. However, the Rmail buffer is
normally read only, and most of the letters are redefined as Rmail commands. If you want
to edit the text of a message, you must use the Rmail command e.

e Edit the current message as ordinary text.

The e command (rmail-edit-current-message) switches from Rmail mode into Rmail
Edit mode, another major mode which is nearly the same as Text mode. The mode line
indicates this change.

In Rmail Edit mode, letters insert themselves as usual and the Rmail commands are not
available. When you are finished editing the message and are ready to go back to Rmail,
type C-c C-c, which switches back to Rmail mode. Alternatively, you can return to Rmail
mode but cancel all the editing that you have done, by typing C-c C-].

Entering Rmail Edit mode runs the hook text-mode-hook; then it runs the hook rmail-
edit-mode-hook (see Section 32.2.3 [Hooks], page 386). It adds the attribute ‘edited’ to
the message. It also displays the full headers of the message, so that you can edit the headers
as well as the body of the message, and your changes in the headers will be permanent.

Chapter 28: Reading Mail with Rmail 317

28.16 Digest Messages

A digest message is a message which exists to contain and carry several other messages.
Digests are used on some moderated mailing lists; all the messages that arrive for the list
during a period of time such as one day are put inside a single digest which is then sent to the
subscribers. Transmitting the single digest uses much less computer time than transmitting
the individual messages even though the total size is the same, because the per-message
overhead in network mail transmission is considerable.

When you receive a digest message, the most convenient way to read it is to undigestify
it: to turn it back into many individual messages. Then you can read and delete the
individual messages as it suits you.

To do this, select the digest message and type the command M-x undigestify-rmail-message.
This extracts the submessages as separate Rmail messages, and inserts them following the
digest. The digest message itself is flagged as deleted.

28.17 Converting an Rmail File to Inbox Format

The command M-x unrmail converts a file in Rmail format to inbox format (also known
as the system mailbox, or mbox, format), so that you can use it with other mail-editing
tools. You must specify two arguments, the name of the Rmail file and the name to use for
the converted file. M-x unrmail does not alter the Rmail file itself.

M-x unrmail is useful if you can run Emacs on the machine where the Rmail file resides,
or can access the Rmail file remotely (see Section 14.13 [Remote Files], page 145) from a
machine where Emacs is installed. If accessing Rmail files from Emacs is impossible, you
can use the b2m program instead. b2m is part of the Emacs distribution, it is installed into
the same directory where all the other auxiliary programs (etags etc.) are installed, and
its source is available in the Emacs source distribution, so that you could copy the source
to the target machine and compile it there.

To convert a file ‘babyl-file’ into ‘mbox-file’, invoke b2m like this:
b2m < babyl-file > mbox-file

28.18 Reading Rot13 Messages

Mailing list messages that might offend some readers are sometimes encoded in a simple
code called rot13—so named because it rotates the alphabet by 13 letters. This code is not
for secrecy, as it provides none; rather, it enables those who might be offended to avoid ever
seeing the real text of the message.

To view a buffer using the rot13 code, use the command M-x rot13-other-window. This
displays the current buffer in another window which applies the code when displaying the
text.

28.19 movemail and POP

When getting new mail, Rmail first copies the new mail from the inbox file to the Rmail
file; then it saves the Rmail file; then it truncates the inbox file. This way, a system crash

318 GNU Emacs Manual

may cause duplication of mail between the inbox and the Rmail file, but cannot lose mail.
If rmail-preserve-inbox is non-nil, then Rmail will copy new mail from the inbox file to
the Rmail file without truncating the inbox file. You may wish to set this, for example, on
a portable computer you use to check your mail via POP while traveling, so that your mail
will remain on the server and you can save it later on your workstation.

In some cases, Rmail copies the new mail from the inbox file indirectly. First it runs
the movemail program to move the mail from the inbox to an intermediate file called
‘~/.newmail-inboxname’. Then Rmail merges the new mail from that file, saves the Rmail
file, and only then deletes the intermediate file. If there is a crash at the wrong time, this
file continues to exist, and Rmail will use it again the next time it gets new mail from that
inbox.

If Rmail is unable to convert the data in ‘~/.newmail-inboxname’ into Babyl format, it
renames the file to ‘~/RMAILOSE.n’ (n is an integer chosen to make the name unique) so that
Rmail will not have trouble with the data again. You should look at the file, find whatever
message confuses Rmail (probably one that includes the control-underscore character, octal
code 037), and delete it. Then you can use 1 g to get new mail from the corrected file.

Some sites use a method called POP for accessing users’ inbox data instead of storing
the data in inbox files. movemail can work with POP if you compile it with the macro
MAIL_USE_POP defined. (You can achieve that by specifying ‘--with-pop’ when you run
configure during the installation of Emacs.) movemail only works with POP3, not with
older versions of POP.

Assuming you have compiled and installed movemail appropriately, you can specify
a POP inbox by using a “file name” of the form ‘po:username’, in the inbox list of an
Rmail file. movemail handles such a name by opening a connection to the POP server. The
MAILHOST environment variable specifies the machine to look for the server on; alternatively,
you can specify the POP server host name as part of the mailbox name using the syntax
‘po:username:hostname’.

Accessing mail via POP may require a password. If the variable rmail-pop-password is
non-nil, it specifies the password to use for POP. Alternatively, if rmail-pop-password-
required is non-nil, then Rmail asks you for the password to use.

If you need to pass additional command-line flags to movemail, set the variable rmail-
movemail-flags a list of the flags you wish to use. Do not use this variable to pass the
‘-p’ flag to preserve your inbox contents; use rmail-preserve-inbox instead.

The movemail program installed at your site may support Kerberos authentication. If
it is supported, it is used by default whenever you attempt to retrieve POP mail when
rmail-pop-password and rmail-pop-password-required are unset.

Some POP servers store messages in reverse order. If your server does this, and you
would rather read your mail in the order in which it was received, you can tell movemail to
reverse the order of downloaded messages by adding the ‘-r’ flag to rmail-movemail-flags.

Chapter 29: Dired, the Directory Editor 319

29 Dired, the Directory Editor

Dired makes an Emacs buffer containing a listing of a directory, and optionally some of
its subdirectories as well. You can use the normal Emacs commands to move around in this
buffer, and special Dired commands to operate on the files listed.

The Dired buffer is “read-only,” and inserting text in it is not useful, so ordinary printing
characters such as d and x are used for special Dired commands. Some Dired commands
mark or flag the current file (that is, the file on the current line); other commands operate
on the marked files or on the flagged files.

The Dired-X package provides various extra features for Dired mode. See section “Top”
in Dired Extra Version 2 User’s Manual.

29.1 Entering Dired

To invoke Dired, do C-x d or M-x dired. The command reads a directory name or
wildcard file name pattern as a minibuffer argument to specify which files to list. Where
dired differs from list-directory is in putting the buffer into Dired mode so that the
special commands of Dired are available.

The variable dired-listing-switches specifies the options to give to ls for listing
directory; this string must contain ‘-l’. If you use a numeric prefix argument with the
dired command, you can specify the ls switches with the minibuffer before you enter the
directory specification.

To display the Dired buffer in another window rather than in the selected window, use
C-x 4 d (dired-other-window) instead of C-x d. C-x 5 d (dired-other-frame) uses a
separate frame to display the Dired buffer.

29.2 Navigation in the Dired Buffer

All the usual Emacs cursor motion commands are available in Dired buffers. Some
special-purpose cursor motion commands are also provided. The keys C-n and C-p are
redefined to put the cursor at the beginning of the file name on the line, rather than at the
beginning of the line.

For extra convenience, 〈SPC〉 and n in Dired are equivalent to C-n. p is equivalent to C-p.
(Moving by lines is so common in Dired that it deserves to be easy to type.) 〈DEL〉 (move
up and unflag) is often useful simply for moving up.

Some additional navigation commands are available when the Dired buffer includes sev-
eral directories. See Section 29.12 [Subdirectory Motion], page 328.

29.3 Deleting Files with Dired

One of the most frequent uses of Dired is to first flag files for deletion, then delete the
files that were flagged.

d Flag this file for deletion.

u Remove deletion flag on this line.

320 GNU Emacs Manual

〈DEL〉 Move point to previous line and remove the deletion flag on that line.

x Delete the files that are flagged for deletion.

You can flag a file for deletion by moving to the line describing the file and typing d
(dired-flag-file-deletion). The deletion flag is visible as a ‘D’ at the beginning of
the line. This command moves point to the next line, so that repeated d commands flag
successive files. A numeric argument serves as a repeat count.

The variable dired-recursive-deletes controls whether the delete command will
delete non-empty directories (including their contents). The default is to delete only
empty directories.

The files are flagged for deletion rather than deleted immediately to reduce the danger of
deleting a file accidentally. Until you direct Dired to delete the flagged files, you can remove
deletion flags using the commands u and 〈DEL〉. u (dired-unmark) works just like d, but
removes flags rather than making flags. 〈DEL〉 (dired-unmark-backward) moves upward,
removing flags; it is like u with argument −1.

To delete the flagged files, type x (dired-do-flagged-delete). (This is also known as
expunging.) This command first displays a list of all the file names flagged for deletion, and
requests confirmation with yes. If you confirm, Dired deletes the flagged files, then deletes
their lines from the text of the Dired buffer. The shortened Dired buffer remains selected.

If you answer no or quit with C-g when asked to confirm, you return immediately to
Dired, with the deletion flags still present in the buffer, and no files actually deleted.

29.4 Flagging Many Files at Once

Flag all auto-save files (files whose names start and end with ‘#’) for deletion
(see Section 14.5 [Auto Save], page 120).

~ Flag all backup files (files whose names end with ‘~’) for deletion (see Sec-
tion 14.3.1 [Backup], page 114).

& Flag for deletion all files with certain kinds of names, names that suggest you
could easily create the files again.

. (Period) Flag excess numeric backup files for deletion. The oldest and newest few backup
files of any one file are exempt; the middle ones are flagged.

% d regexp 〈RET〉
Flag for deletion all files whose names match the regular expression regexp.

The #, ~, &, and . commands flag many files for deletion, based on their file names.
These commands are useful precisely because they do not themselves delete any files; you
can remove the deletion flags from any flagged files that you really wish to keep.

& (dired-flag-garbage-files) flags files whose names match the regular expression
specified by the variable dired-garbage-files-regexp. By default, this matches certain
files produced by TEX, ‘.bak’ files, and the ‘.orig’ and ‘.rej’ files produced by patch.

(dired-flag-auto-save-files) flags for deletion all files whose names look like auto-
save files (see Section 14.5 [Auto Save], page 120)—that is, files whose names begin and end
with ‘#’.

Chapter 29: Dired, the Directory Editor 321

~ (dired-flag-backup-files) flags for deletion all files whose names say they are
backup files (see Section 14.3.1 [Backup], page 114)—that is, files whose names end in
‘~’.

. (period, dired-clean-directory) flags just some of the backup files for deletion: all
but the oldest few and newest few backups of any one file. Normally dired-kept-versions
(not kept-new-versions; that applies only when saving) specifies the number of newest
versions of each file to keep, and kept-old-versions specifies the number of oldest versions
to keep.

Period with a positive numeric argument, as in C-u 3 ., specifies the number of newest
versions to keep, overriding dired-kept-versions. A negative numeric argument overrides
kept-old-versions, using minus the value of the argument to specify the number of oldest
versions of each file to keep.

The % d command flags all files whose names match a specified regular expression (dired-
flag-files-regexp). Only the non-directory part of the file name is used in matching.
You can use ‘^’ and ‘$’ to anchor matches. You can exclude subdirectories by hiding them
(see Section 29.13 [Hiding Subdirectories], page 328).

29.5 Visiting Files in Dired

There are several Dired commands for visiting or examining the files listed in the Dired
buffer. All of them apply to the current line’s file; if that file is really a directory, these
commands invoke Dired on that subdirectory (making a separate Dired buffer).

f Visit the file described on the current line, like typing C-x C-f and supplying
that file name (dired-find-file). See Section 14.2 [Visiting], page 110.

〈RET〉
e Equivalent to f.

a Like f, but replaces the contents of the Dired buffer with that of an alternate
file or directory (dired-find-alternate-file).

o Like f, but uses another window to display the file’s buffer (dired-find-file-
other-window). The Dired buffer remains visible in the first window. This is
like using C-x 4 C-f to visit the file. See Chapter 16 [Windows], page 157.

C-o Visit the file described on the current line, and display the buffer in another
window, but do not select that window (dired-display-file).

Mouse-2 Visit the file named by the line you click on (dired-mouse-find-file-other-
window). This uses another window to display the file, like the o command.

v View the file described on the current line, using M-x view-file (dired-view-
file).
Viewing a file is like visiting it, but is slanted toward moving around in the file
conveniently and does not allow changing the file. See Section 14.10 [Miscella-
neous File Operations], page 143.

^ Visit the parent directory of the current directory (dired-up-directory). This
is more convenient than moving to the parent directory’s line and typing f there.

322 GNU Emacs Manual

29.6 Dired Marks vs. Flags

Instead of flagging a file with ‘D’, you can mark the file with some other character (usually
‘*’). Most Dired commands to operate on files use the files marked with ‘*’, the exception
being x which deletes the flagged files.

Here are some commands for marking with ‘*’, or for unmarking or operating on marks.
(See Section 29.3 [Dired Deletion], page 319, for commands to flag and unflag files.)

m
* m Mark the current file with ‘*’ (dired-mark). With a numeric argument n, mark

the next n files starting with the current file. (If n is negative, mark the previous
−n files.)

* * Mark all executable files with ‘*’ (dired-mark-executables). With a numeric
argument, unmark all those files.

* @ Mark all symbolic links with ‘*’ (dired-mark-symlinks). With a numeric
argument, unmark all those files.

* / Mark with ‘*’ all files which are actually directories, except for ‘.’ and ‘..’
(dired-mark-directories). With a numeric argument, unmark all those files.

* s Mark all the files in the current subdirectory, aside from ‘.’ and ‘..’ (dired-
mark-subdir-files).

u
* u Remove any mark on this line (dired-unmark).

〈DEL〉
* 〈DEL〉 Move point to previous line and remove any mark on that line (dired-unmark-

backward).

* ! Remove all marks from all the files in this Dired buffer (dired-unmark-all-
marks).

* ? markchar
Remove all marks that use the character markchar (dired-unmark-all-
files). The argument is a single character—do not use 〈RET〉 to terminate it.
See the description of the * c command below, which lets you replace one
mark character with another.

With a numeric argument, this command queries about each marked file, asking
whether to remove its mark. You can answer y meaning yes, n meaning no, or
! to remove the marks from the remaining files without asking about them.

* C-n Move down to the next marked file (dired-next-marked-file) A file is
“marked” if it has any kind of mark.

* C-p Move up to the previous marked file (dired-prev-marked-file)

* t Toggle all marks (dired-do-toggle): files marked with ‘*’ become unmarked,
and unmarked files are marked with ‘*’. Files marked in any other way are not
affected.

Chapter 29: Dired, the Directory Editor 323

* c old-markchar new-markchar
Replace all marks that use the character old-markchar with marks that use
the character new-markchar (dired-change-marks). This command is the
primary way to create or use marks other than ‘*’ or ‘D’. The arguments are
single characters—do not use 〈RET〉 to terminate them.
You can use almost any character as a mark character by means of this com-
mand, to distinguish various classes of files. If old-markchar is a space (‘ ’),
then the command operates on all unmarked files; if new-markchar is a space,
then the command unmarks the files it acts on.
To illustrate the power of this command, here is how to put ‘D’ flags on all the
files that have no marks, while unflagging all those that already have ‘D’ flags:

* c D t * c SPC D * c t SPC

This assumes that no files were already marked with ‘t’.

% m regexp 〈RET〉
* % regexp 〈RET〉

Mark (with ‘*’) all files whose names match the regular expression regexp
(dired-mark-files-regexp). This command is like % d, except that it marks
files with ‘*’ instead of flagging with ‘D’. See Section 29.4 [Flagging Many Files],
page 320.
Only the non-directory part of the file name is used in matching. Use ‘^’ and ‘$’
to anchor matches. Exclude subdirectories by hiding them (see Section 29.13
[Hiding Subdirectories], page 328).

% g regexp 〈RET〉
Mark (with ‘*’) all files whose contents contain a match for the regular expres-
sion regexp (dired-mark-files-containing-regexp). This command is like
% m, except that it searches the file contents instead of the file name.

C-_ Undo changes in the Dired buffer, such as adding or removing marks (dired-
undo). This command does not revert the actual file operations, nor recover
lost files! It just undoes changes in the buffer itself. For example, if used after
renaming one or more files, dired-undo restores the original names, which will
get the Dired buffer out of sync with the actual contents of the directory.

29.7 Operating on Files

This section describes the basic Dired commands to operate on one file or several files.
All of these commands are capital letters; all of them use the minibuffer, either to read an
argument or to ask for confirmation, before they act. All of them give you several ways to
specify which files to manipulate:

• If you give the command a numeric prefix argument n, it operates on the next n files,
starting with the current file. (If n is negative, the command operates on the −n files
preceding the current line.)

• Otherwise, if some files are marked with ‘*’, the command operates on all those files.
• Otherwise, the command operates on the current file only.

324 GNU Emacs Manual

Commands which ask for a destination directory, such as those which copy and rename
files or create links for them, try to guess the default target directory for the operation.
Normally, they suggest the Dired buffer’s default directory, but if the variable dired-dwim-
target is non-nil, and if there is another Dired buffer displayed in the next window, that
other buffer’s directory is suggested instead.

Here are the file-manipulating commands that operate on files in this way. (Some other
Dired commands, such as ! and the ‘%’ commands, also use these conventions to decide
which files to work on.)

C new 〈RET〉
Copy the specified files (dired-do-copy). The argument new is the directory
to copy into, or (if copying a single file) the new name.
If dired-copy-preserve-time is non-nil, then copying with this command
sets the modification time of the new file to be the same as that of the old file.
The variable dired-recursive-copies controls whether directories are copied
recursively. The default is to not copy recursively, which means that directories
cannot be copied.

D Delete the specified files (dired-do-delete). Like the other commands in this
section, this command operates on the marked files, or the next n files. By
contrast, x (dired-do-flagged-delete) deletes all flagged files.

R new 〈RET〉
Rename the specified files (dired-do-rename). The argument new is the di-
rectory to rename into, or (if renaming a single file) the new name.
Dired automatically changes the visited file name of buffers associated with
renamed files so that they refer to the new names.

H new 〈RET〉
Make hard links to the specified files (dired-do-hardlink). The argument new
is the directory to make the links in, or (if making just one link) the name to
give the link.

S new 〈RET〉
Make symbolic links to the specified files (dired-do-symlink). The argument
new is the directory to make the links in, or (if making just one link) the name
to give the link.

M modespec 〈RET〉
Change the mode (also called “permission bits”) of the specified files (dired-
do-chmod). This uses the chmod program, so modespec can be any argument
that chmod can handle.

G newgroup 〈RET〉
Change the group of the specified files to newgroup (dired-do-chgrp).

O newowner 〈RET〉
Change the owner of the specified files to newowner (dired-do-chown). (On
most systems, only the superuser can do this.)
The variable dired-chown-program specifies the name of the program to use
to do the work (different systems put chown in different places).

Chapter 29: Dired, the Directory Editor 325

P command 〈RET〉
Print the specified files (dired-do-print). You must specify the command
to print them with, but the minibuffer starts out with a suitable guess made
using the variables lpr-command and lpr-switches (the same variables that
lpr-buffer uses; see Section 31.5 [Hardcopy], page 361).

Z Compress the specified files (dired-do-compress). If the file appears to be a
compressed file already, it is uncompressed instead.

L Load the specified Emacs Lisp files (dired-do-load). See Section 23.7 [Lisp
Libraries], page 262.

B Byte compile the specified Emacs Lisp files (dired-do-byte-compile). See
section “Byte Compilation” in The Emacs Lisp Reference Manual.

A regexp 〈RET〉
Search all the specified files for the regular expression regexp (dired-do-
search).

This command is a variant of tags-search. The search stops at the first match
it finds; use M-, to resume the search and find the next match. See Section 24.2.6
[Tags Search], page 275.

Q regexp 〈RET〉 to 〈RET〉
Perform query-replace-regexp on each of the specified files, replacing
matches for regexp with the string to (dired-do-query-replace-regexp).

This command is a variant of tags-query-replace. If you exit the query
replace loop, you can use M-, to resume the scan and replace more matches.
See Section 24.2.6 [Tags Search], page 275.

One special file-operation command is + (dired-create-directory). This command
reads a directory name and creates the directory if it does not already exist.

29.8 Shell Commands in Dired

The Dired command ! (dired-do-shell-command) reads a shell command string in the
minibuffer and runs that shell command on all the specified files. X is a synonym for !. You
can specify the files to operate on in the usual ways for Dired commands (see Section 29.7
[Operating on Files], page 323). There are two ways of applying a shell command to multiple
files:

• If you use ‘*’ in the shell command, then it runs just once, with the list of file names
substituted for the ‘*’. The order of file names is the order of appearance in the Dired
buffer.

Thus, ! tar cf foo.tar * 〈RET〉 runs tar on the entire list of file names, putting them
into one tar file ‘foo.tar’.

• If the command string doesn’t contain ‘*’, then it runs once for each file, with the file
name added at the end.

For example, ! uudecode 〈RET〉 runs uudecode on each file.

326 GNU Emacs Manual

What if you want to run the shell command once for each file, with the file name inserted
in the middle? You can use ‘?’ in the command instead of ‘*’. The current file name is
substituted for ‘?’. You can use ‘?’ more than once. For instance, here is how to uuencode
each file, making the output file name by appending ‘.uu’ to the input file name:

uuencode ? ? > ?.uu

To use the file names in a more complicated fashion, you can use a shell loop. For
example, this shell command is another way to uuencode each file:

for file in *; do uuencode "$file" "$file" >"$file".uu; done

The working directory for the shell command is the top-level directory of the Dired
buffer.

The ! command does not attempt to update the Dired buffer to show new or modified
files, because it doesn’t really understand shell commands, and does not know what files the
shell command changed. Use the g command to update the Dired buffer (see Section 29.14
[Dired Updating], page 329).

29.9 Transforming File Names in Dired

This section describes Dired commands which alter file names in a systematic way.
Like the basic Dired file-manipulation commands (see Section 29.7 [Operating on Files],

page 323), the commands described here operate either on the next n files, or on all files
marked with ‘*’, or on the current file. (To mark files, use the commands described in
Section 29.6 [Marks vs Flags], page 322.)

All of the commands described in this section work interactively : they ask you to confirm
the operation for each candidate file. Thus, you can select more files than you actually need
to operate on (e.g., with a regexp that matches many files), and then refine the selection
by typing y or n when the command prompts for confirmation.

% u Rename each of the selected files to an upper-case name (dired-upcase). If
the old file names are ‘Foo’ and ‘bar’, the new names are ‘FOO’ and ‘BAR’.

% l Rename each of the selected files to a lower-case name (dired-downcase). If
the old file names are ‘Foo’ and ‘bar’, the new names are ‘foo’ and ‘bar’.

% R from 〈RET〉 to 〈RET〉
% C from 〈RET〉 to 〈RET〉
% H from 〈RET〉 to 〈RET〉
% S from 〈RET〉 to 〈RET〉

These four commands rename, copy, make hard links and make soft links, in
each case computing the new name by regular-expression substitution from the
name of the old file.

The four regular-expression substitution commands effectively perform a search-and-
replace on the selected file names in the Dired buffer. They read two arguments: a regular
expression from, and a substitution pattern to.

The commands match each “old” file name against the regular expression from, and then
replace the matching part with to. You can use ‘\&’ and ‘\digit’ in to to refer to all or part
of what the pattern matched in the old file name, as in replace-regexp (see Section 12.7.2

Chapter 29: Dired, the Directory Editor 327

[Regexp Replace], page 101). If the regular expression matches more than once in a file
name, only the first match is replaced.

For example, % R ^.*$ 〈RET〉 x-\& 〈RET〉 renames each selected file by prepending ‘x-’ to
its name. The inverse of this, removing ‘x-’ from the front of each file name, is also possible:
one method is % R ^x-\(.*\)$ 〈RET〉 \1 〈RET〉; another is % R ^x- 〈RET〉 〈RET〉. (Use ‘^’ and
‘$’ to anchor matches that should span the whole filename.)

Normally, the replacement process does not consider the files’ directory names; it op-
erates on the file name within the directory. If you specify a numeric argument of zero,
then replacement affects the entire absolute file name including directory name. (Non-zero
argument specifies the number of files to operate on.)

Often you will want to select the set of files to operate on using the same regexp that you
will use to operate on them. To do this, mark those files with % m regexp 〈RET〉, then use the
same regular expression in the command to operate on the files. To make this easier, the
% commands to operate on files use the last regular expression specified in any % command
as a default.

29.10 File Comparison with Dired

Here are two Dired commands that compare specified files using diff.

= Compare the current file (the file at point) with another file (the file at the
mark) using the diff program (dired-diff). The file at the mark is the first
argument of diff, and the file at point is the second argument. Use C-〈SPC〉
(set-mark-command) to set the mark at the first file’s line (see Section 8.1
[Setting Mark], page 61), since dired-diff ignores the files marked with the
Dired’s m command.

M-= Compare the current file with its latest backup file (dired-backup-diff). If
the current file is itself a backup, compare it with the file it is a backup of; this
way, you can compare a file with any backup version of your choice.
The backup file is the first file given to diff.

29.11 Subdirectories in Dired

A Dired buffer displays just one directory in the normal case; but you can optionally
include its subdirectories as well.

The simplest way to include multiple directories in one Dired buffer is to specify the
options ‘-lR’ for running ls. (If you give a numeric argument when you run Dired, then
you can specify these options in the minibuffer.) That produces a recursive directory listing
showing all subdirectories at all levels.

But usually all the subdirectories are too many; usually you will prefer to include specific
subdirectories only. You can do this with the i command:

i Insert the contents of a subdirectory later in the buffer.

Use the i (dired-maybe-insert-subdir) command on a line that describes a file which
is a directory. It inserts the contents of that directory into the same Dired buffer, and moves

328 GNU Emacs Manual

there. Inserted subdirectory contents follow the top-level directory of the Dired buffer, just
as they do in ‘ls -lR’ output.

If the subdirectory’s contents are already present in the buffer, the i command just
moves to it.

In either case, i sets the Emacs mark before moving, so C-u C-〈SPC〉 takes you back to
the old position in the buffer (the line describing that subdirectory).

Use the l command (dired-do-redisplay) to update the subdirectory’s contents. Use
C-u k on the subdirectory header line to delete the subdirectory. See Section 29.14 [Dired
Updating], page 329.

29.12 Moving Over Subdirectories

When a Dired buffer lists subdirectories, you can use the page motion commands C-x [
and C-x] to move by entire directories (see Section 21.4 [Pages], page 202).

The following commands move across, up and down in the tree of directories within one
Dired buffer. They move to directory header lines, which are the lines that give a directory’s
name, at the beginning of the directory’s contents.

C-M-n Go to next subdirectory header line, regardless of level (dired-next-subdir).

C-M-p Go to previous subdirectory header line, regardless of level (dired-prev-
subdir).

C-M-u Go up to the parent directory’s header line (dired-tree-up).

C-M-d Go down in the directory tree, to the first subdirectory’s header line (dired-
tree-down).

< Move up to the previous directory-file line (dired-prev-dirline). These lines
are the ones that describe a directory as a file in its parent directory.

> Move down to the next directory-file line (dired-prev-dirline).

29.13 Hiding Subdirectories

Hiding a subdirectory means to make it invisible, except for its header line, via selective
display (see Section 11.9 [Selective Display], page 87).

$ Hide or reveal the subdirectory that point is in, and move point to the next
subdirectory (dired-hide-subdir). A numeric argument serves as a repeat
count.

M-$ Hide all subdirectories in this Dired buffer, leaving only their header lines
(dired-hide-all). Or, if any subdirectory is currently hidden, make all sub-
directories visible again. You can use this command to get an overview in very
deep directory trees or to move quickly to subdirectories far away.

Ordinary Dired commands never consider files inside a hidden subdirectory. For example,
the commands to operate on marked files ignore files in hidden directories even if they are
marked. Thus you can use hiding to temporarily exclude subdirectories from operations
without having to remove the markers.

Chapter 29: Dired, the Directory Editor 329

The subdirectory hiding commands toggle; that is, they hide what was visible, and show
what was hidden.

29.14 Updating the Dired Buffer

This section describes commands to update the Dired buffer to reflect outside (non-
Dired) changes in the directories and files, and to delete part of the Dired buffer.

g Update the entire contents of the Dired buffer (revert-buffer).

l Update the specified files (dired-do-redisplay).

k Delete the specified file lines—not the files, just the lines (dired-do-kill-
lines).

s Toggle between alphabetical order and date/time order (dired-sort-toggle-
or-edit).

C-u s switches 〈RET〉
Refresh the Dired buffer using switches as dired-listing-switches.

Type g (revert-buffer) to update the contents of the Dired buffer, based on changes
in the files and directories listed. This preserves all marks except for those on files that
have vanished. Hidden subdirectories are updated but remain hidden.

To update only some of the files, type l (dired-do-redisplay). Like the Dired file-
operating commands, this command operates on the next n files (or previous −n files), or
on the marked files if any, or on the current file. Updating the files means reading their
current status, then updating their lines in the buffer to indicate that status.

If you use l on a subdirectory header line, it updates the contents of the corresponding
subdirectory.

To delete the specified file lines from the buffer—not delete the files—type k (dired-
do-kill-lines). Like the file-operating commands, this command operates on the next n
files, or on the marked files if any; but it does not operate on the current file as a last resort.

If you kill the line for a file that is a directory, the directory’s contents are also deleted
from the buffer. Typing C-u k on the header line for a subdirectory is another way to delete
a subdirectory from the Dired buffer.

The g command brings back any individual lines that you have killed in this way, but
not subdirectories—you must use i to reinsert a subdirectory.

The files in a Dired buffers are normally listed in alphabetical order by file names.
Alternatively Dired can sort them by date/time. The Dired command s (dired-sort-
toggle-or-edit) switches between these two sorting modes. The mode line in a Dired
buffer indicates which way it is currently sorted—by name, or by date.

C-u s switches 〈RET〉 lets you specify a new value for dired-listing-switches.

330 GNU Emacs Manual

29.15 Dired and find

You can select a set of files for display in a Dired buffer more flexibly by using the find
utility to choose the files.

To search for files with names matching a wildcard pattern use M-x find-name-dired.
It reads arguments directory and pattern, and chooses all the files in directory or its sub-
directories whose individual names match pattern.

The files thus chosen are displayed in a Dired buffer in which the ordinary Dired com-
mands are available.

If you want to test the contents of files, rather than their names, use M-x
find-grep-dired. This command reads two minibuffer arguments, directory and regexp;
it chooses all the files in directory or its subdirectories that contain a match for regexp. It
works by running the programs find and grep. See also M-x grep-find, in Section 23.1
[Compilation], page 255. Remember to write the regular expression for grep, not for
Emacs. (An alternative method of showing files whose contents match a given regexp is
the % g regexp command, see Section 29.6 [Marks vs Flags], page 322.)

The most general command in this series is M-x find-dired, which lets you specify any
condition that find can test. It takes two minibuffer arguments, directory and find-args;
it runs find in directory, passing find-args to tell find what condition to test. To use this
command, you need to know how to use find.

M-x locate provides a similar interface to the locate program. M-x
locate-with-filter is similar, but keeps only lines matching a given regular
expression.

The format of listing produced by these commands is controlled by the variable find-
ls-option, whose default value specifies using options ‘-ld’ for ls. If your listings are
corrupted, you may need to change the value of this variable.

Chapter 30: The Calendar and the Diary 331

30 The Calendar and the Diary

Emacs provides the functions of a desk calendar, with a diary of planned or past events.
It also has facilities for managing your appointments, and keeping track of how much time
you spend working on certain projects.

To enter the calendar, type M-x calendar; this displays a three-month calendar centered
on the current month, with point on the current date. With a numeric argument, as in C-u
M-x calendar, it prompts you for the month and year to be the center of the three-month
calendar. The calendar uses its own buffer, whose major mode is Calendar mode.

Mouse-2 in the calendar brings up a menu of operations on a particular date; C-Mouse-3
brings up a menu of commonly used calendar features that are independent of any particular
date. To exit the calendar, type q. See section “Calendar” in The Emacs Lisp Reference
Manual, for customization information about the calendar and diary.

30.1 Movement in the Calendar

Calendar mode lets you move through the calendar in logical units of time such as days,
weeks, months, and years. If you move outside the three months originally displayed, the
calendar display “scrolls” automatically through time to make the selected date visible.
Moving to a date lets you view its holidays or diary entries, or convert it to other calendars;
moving longer time periods is also useful simply to scroll the calendar.

30.1.1 Motion by Standard Lengths of Time

The commands for movement in the calendar buffer parallel the commands for movement
in text. You can move forward and backward by days, weeks, months, and years.

C-f Move point one day forward (calendar-forward-day).

C-b Move point one day backward (calendar-backward-day).

C-n Move point one week forward (calendar-forward-week).

C-p Move point one week backward (calendar-backward-week).

M-} Move point one month forward (calendar-forward-month).

M-{ Move point one month backward (calendar-backward-month).

C-x] Move point one year forward (calendar-forward-year).

C-x [Move point one year backward (calendar-backward-year).

The day and week commands are natural analogues of the usual Emacs commands for
moving by characters and by lines. Just as C-n usually moves to the same column in the
following line, in Calendar mode it moves to the same day in the following week. And C-p
moves to the same day in the previous week.

The arrow keys are equivalent to C-f, C-b, C-n and C-p, just as they normally are in
other modes.

The commands for motion by months and years work like those for weeks, but move a
larger distance. The month commands M-} and M-{ move forward or backward by an entire

332 GNU Emacs Manual

month’s time. The year commands C-x] and C-x [move forward or backward a whole
year.

The easiest way to remember these commands is to consider months and years analogous
to paragraphs and pages of text, respectively. But the commands themselves are not quite
analogous. The ordinary Emacs paragraph commands move to the beginning or end of a
paragraph, whereas these month and year commands move by an entire month or an entire
year, which usually involves skipping across the end of a month or year.

All these commands accept a numeric argument as a repeat count. For convenience, the
digit keys and the minus sign specify numeric arguments in Calendar mode even without
the Meta modifier. For example, 100 C-f moves point 100 days forward from its present
location.

30.1.2 Beginning or End of Week, Month or Year

A week (or month, or year) is not just a quantity of days; we think of weeks (months,
years) as starting on particular dates. So Calendar mode provides commands to move to
the beginning or end of a week, month or year:

C-a Move point to start of week (calendar-beginning-of-week).

C-e Move point to end of week (calendar-end-of-week).

M-a Move point to start of month (calendar-beginning-of-month).

M-e Move point to end of month (calendar-end-of-month).

M-< Move point to start of year (calendar-beginning-of-year).

M-> Move point to end of year (calendar-end-of-year).

These commands also take numeric arguments as repeat counts, with the repeat count
indicating how many weeks, months, or years to move backward or forward.

By default, weeks begin on Sunday. To make them begin on Monday instead, set the
variable calendar-week-start-day to 1.

30.1.3 Specified Dates

Calendar mode provides commands for moving to a particular date specified in various
ways.

g d Move point to specified date (calendar-goto-date).

o Center calendar around specified month (calendar-other-month).

. Move point to today’s date (calendar-goto-today).

g d (calendar-goto-date) prompts for a year, a month, and a day of the month, and
then moves to that date. Because the calendar includes all dates from the beginning of the
current era, you must type the year in its entirety; that is, type ‘1990’, not ‘90’.

o (calendar-other-month) prompts for a month and year, then centers the three-month
calendar around that month.

You can return to today’s date with . (calendar-goto-today).

Chapter 30: The Calendar and the Diary 333

30.2 Scrolling in the Calendar

The calendar display scrolls automatically through time when you move out of the visible
portion. You can also scroll it manually. Imagine that the calendar window contains a
long strip of paper with the months on it. Scrolling the calendar means moving the strip
horizontally, so that new months become visible in the window.

C-x < Scroll calendar one month forward (scroll-calendar-left).

C-x > Scroll calendar one month backward (scroll-calendar-right).

C-v
〈NEXT〉 Scroll calendar three months forward (scroll-calendar-left-three-

months).

M-v
〈PRIOR〉 Scroll calendar three months backward (scroll-calendar-right-three-

months).

The most basic calendar scroll commands scroll by one month at a time. This means
that there are two months of overlap between the display before the command and the
display after. C-x < scrolls the calendar contents one month to the left; that is, it moves
the display forward in time. C-x > scrolls the contents to the right, which moves backwards
in time.

The commands C-v and M-v scroll the calendar by an entire “screenful”—three months—
in analogy with the usual meaning of these commands. C-v makes later dates visible and
M-v makes earlier dates visible. These commands take a numeric argument as a repeat
count; in particular, since C-u multiplies the next command by four, typing C-u C-v scrolls
the calendar forward by a year and typing C-u M-v scrolls the calendar backward by a year.

The function keys 〈NEXT〉 and 〈PRIOR〉 are equivalent to C-v and M-v, just as they are in
other modes.

30.3 Counting Days

M-= Display the number of days in the current region (calendar-count-days-
region).

To determine the number of days in the region, type M-= (calendar-count-days-
region). The numbers of days shown is inclusive; that is, it includes the days specified by
mark and point.

30.4 Miscellaneous Calendar Commands

p d Display day-in-year (calendar-print-day-of-year).

C-c C-l Regenerate the calendar window (redraw-calendar).

SPC Scroll the next window (scroll-other-window).

q Exit from calendar (exit-calendar).

334 GNU Emacs Manual

To display the number of days elapsed since the start of the year, or the number of
days remaining in the year, type the p d command (calendar-print-day-of-year). This
displays both of those numbers in the echo area. The number of days elapsed includes the
selected date. The number of days remaining does not include that date.

If the calendar window text gets corrupted, type C-c C-l (redraw-calendar) to redraw
it. (This can only happen if you use non-Calendar-mode editing commands.)

In Calendar mode, you can use SPC (scroll-other-window) to scroll the other window.
This is handy when you display a list of holidays or diary entries in another window.

To exit from the calendar, type q (exit-calendar). This buries all buffers related to the
calendar, selecting other buffers. (If a frame contains a dedicated calendar window, exiting
from the calendar iconifies that frame.)

30.5 LaTeX Calendar

The Calendar LaTEX commands produce a buffer of LaTEX code that prints as a calen-
dar. Depending on the command you use, the printed calendar covers the day, week, month
or year that point is in.

t m Generate a one-month calendar (cal-tex-cursor-month).

t M Generate a sideways-printing one-month calendar (cal-tex-cursor-month-
landscape).

t d Generate a one-day calendar (cal-tex-cursor-day).

t w 1 Generate a one-page calendar for one week (cal-tex-cursor-week).

t w 2 Generate a two-page calendar for one week (cal-tex-cursor-week2).

t w 3 Generate an ISO-style calendar for one week (cal-tex-cursor-week-iso).

t w 4 Generate a calendar for one Monday-starting week (cal-tex-cursor-week-
monday).

t f w Generate a Filofax-style two-weeks-at-a-glance calendar (cal-tex-cursor-
filofax-2week).

t f W Generate a Filofax-style one-week-at-a-glance calendar (cal-tex-cursor-
filofax-week).

t y Generate a calendar for one year (cal-tex-cursor-year).

t Y Generate a sideways-printing calendar for one year (cal-tex-cursor-year-
landscape).

t f y Generate a Filofax-style calendar for one year (cal-tex-cursor-filofax-
year).

Some of these commands print the calendar sideways (in “landscape mode”), so it can
be wider than it is long. Some of them use Filofax paper size (3.75in x 6.75in). All of these
commands accept a prefix argument which specifies how many days, weeks, months or years
to print (starting always with the selected one).

If the variable cal-tex-holidays is non-nil (the default), then the printed calendars
show the holidays in calendar-holidays. If the variable cal-tex-diary is non-nil (the

Chapter 30: The Calendar and the Diary 335

default is nil), diary entries are included also (in weekly and monthly calendars only). If
the variable cal-tex-rules is non-nil (the default is nil), the calendar displays ruled
pages in styles that have sufficient room.

30.6 Holidays

The Emacs calendar knows about all major and many minor holidays, and can display
them.

h Display holidays for the selected date (calendar-cursor-holidays).

Mouse-2 Holidays
Display any holidays for the date you click on.

x Mark holidays in the calendar window (mark-calendar-holidays).

u Unmark calendar window (calendar-unmark).

a List all holidays for the displayed three months in another window (list-
calendar-holidays).

M-x holidays
List all holidays for three months around today’s date in another window.

M-x list-holidays
List holidays in another window for a specified range of years.

To see if any holidays fall on a given date, position point on that date in the calendar
window and use the h command. Alternatively, click on that date with Mouse-2 and then
choose Holidays from the menu that appears. Either way, this displays the holidays for
that date, in the echo area if they fit there, otherwise in a separate window.

To view the distribution of holidays for all the dates shown in the calendar, use the x
command. This displays the dates that are holidays in a different face (or places a ‘*’ after
these dates, if display with multiple faces is not available). The command applies both
to the currently visible months and to other months that subsequently become visible by
scrolling. To turn marking off and erase the current marks, type u, which also erases any
diary marks (see Section 30.10 [Diary], page 341).

To get even more detailed information, use the a command, which displays a separate
buffer containing a list of all holidays in the current three-month range. You can use 〈SPC〉
in the calendar window to scroll that list.

The command M-x holidays displays the list of holidays for the current month and the
preceding and succeeding months; this works even if you don’t have a calendar window.
If you want the list of holidays centered around a different month, use C-u M-x holidays,
which prompts for the month and year.

The holidays known to Emacs include United States holidays and the major Christian,
Jewish, and Islamic holidays; also the solstices and equinoxes.

The command M-x list-holidays displays the list of holidays for a range of years.
This function asks you for the starting and stopping years, and allows you to choose all the
holidays or one of several categories of holidays. You can use this command even if you
don’t have a calendar window.

336 GNU Emacs Manual

The dates used by Emacs for holidays are based on current practice, not historical fact.
Historically, for instance, the start of daylight savings time and even its existence have
varied from year to year, but present United States law mandates that daylight savings
time begins on the first Sunday in April. When the daylight savings rules are set up for the
United States, Emacs always uses the present definition, even though it is wrong for some
prior years.

30.7 Times of Sunrise and Sunset

Special calendar commands can tell you, to within a minute or two, the times of sunrise
and sunset for any date.

S Display times of sunrise and sunset for the selected date (calendar-sunrise-
sunset).

Mouse-2 Sunrise/sunset
Display times of sunrise and sunset for the date you click on.

M-x sunrise-sunset
Display times of sunrise and sunset for today’s date.

C-u M-x sunrise-sunset
Display times of sunrise and sunset for a specified date.

Within the calendar, to display the local times of sunrise and sunset in the echo area,
move point to the date you want, and type S. Alternatively, click Mouse-2 on the date, then
choose ‘Sunrise/sunset’ from the menu that appears. The command M-x sunrise-sunset
is available outside the calendar to display this information for today’s date or a specified
date. To specify a date other than today, use C-u M-x sunrise-sunset, which prompts for
the year, month, and day.

You can display the times of sunrise and sunset for any location and any date with
C-u C-u M-x sunrise-sunset. This asks you for a longitude, latitude, number of minutes
difference from Coordinated Universal Time, and date, and then tells you the times of
sunrise and sunset for that location on that date.

Because the times of sunrise and sunset depend on the location on earth, you need to
tell Emacs your latitude, longitude, and location name before using these commands. Here
is an example of what to set:

(setq calendar-latitude 40.1)
(setq calendar-longitude -88.2)
(setq calendar-location-name "Urbana, IL")

Use one decimal place in the values of calendar-latitude and calendar-longitude.
Your time zone also affects the local time of sunrise and sunset. Emacs usually gets

time zone information from the operating system, but if these values are not what you want
(or if the operating system does not supply them), you must set them yourself. Here is an
example:

(setq calendar-time-zone -360)
(setq calendar-standard-time-zone-name "CST")
(setq calendar-daylight-time-zone-name "CDT")

Chapter 30: The Calendar and the Diary 337

The value of calendar-time-zone is the number of minutes difference between your local
standard time and Coordinated Universal Time (Greenwich time). The values of calendar-
standard-time-zone-name and calendar-daylight-time-zone-name are the abbrevia-
tions used in your time zone. Emacs displays the times of sunrise and sunset corrected
for daylight savings time. See Section 30.12 [Daylight Savings], page 347, for how daylight
savings time is determined.

As a user, you might find it convenient to set the calendar location variables for your
usual physical location in your ‘.emacs’ file. And when you install Emacs on a machine,
you can create a ‘default.el’ file which sets them properly for the typical location of most
users of that machine. See Section 32.7 [Init File], page 403.

30.8 Phases of the Moon

These calendar commands display the dates and times of the phases of the moon (new
moon, first quarter, full moon, last quarter). This feature is useful for debugging problems
that “depend on the phase of the moon.”

M Display the dates and times for all the quarters of the moon for the three-month
period shown (calendar-phases-of-moon).

M-x phases-of-moon
Display dates and times of the quarters of the moon for three months around
today’s date.

Within the calendar, use the M command to display a separate buffer of the phases of
the moon for the current three-month range. The dates and times listed are accurate to
within a few minutes.

Outside the calendar, use the command M-x phases-of-moon to display the list of the
phases of the moon for the current month and the preceding and succeeding months. For
information about a different month, use C-u M-x phases-of-moon, which prompts for the
month and year.

The dates and times given for the phases of the moon are given in local time (corrected
for daylight savings, when appropriate); but if the variable calendar-time-zone is void,
Coordinated Universal Time (the Greenwich time zone) is used. See Section 30.12 [Daylight
Savings], page 347.

30.9 Conversion To and From Other Calendars

The Emacs calendar displayed is always the Gregorian calendar, sometimes called the
“new style” calendar, which is used in most of the world today. However, this calendar
did not exist before the sixteenth century and was not widely used before the eighteenth
century; it did not fully displace the Julian calendar and gain universal acceptance until the
early twentieth century. The Emacs calendar can display any month since January, year 1
of the current era, but the calendar displayed is the Gregorian, even for a date at which the
Gregorian calendar did not exist.

While Emacs cannot display other calendars, it can convert dates to and from several
other calendars.

338 GNU Emacs Manual

30.9.1 Supported Calendar Systems

The ISO commercial calendar is used largely in Europe.
The Julian calendar, named after Julius Caesar, was the one used in Europe throughout

medieval times, and in many countries up until the nineteenth century.
Astronomers use a simple counting of days elapsed since noon, Monday, January 1, 4713

B.C. on the Julian calendar. The number of days elapsed is called the Julian day number
or the Astronomical day number.

The Hebrew calendar is used by tradition in the Jewish religion. The Emacs calendar
program uses the Hebrew calendar to determine the dates of Jewish holidays. Hebrew
calendar dates begin and end at sunset.

The Islamic calendar is used in many predominantly Islamic countries. Emacs uses it
to determine the dates of Islamic holidays. There is no universal agreement in the Islamic
world about the calendar; Emacs uses a widely accepted version, but the precise dates of
Islamic holidays often depend on proclamation by religious authorities, not on calculations.
As a consequence, the actual dates of observance can vary slightly from the dates computed
by Emacs. Islamic calendar dates begin and end at sunset.

The French Revolutionary calendar was created by the Jacobins after the 1789 revolution,
to represent a more secular and nature-based view of the annual cycle, and to install a 10-
day week in a rationalization measure similar to the metric system. The French government
officially abandoned this calendar at the end of 1805.

The Maya of Central America used three separate, overlapping calendar systems, the long
count, the tzolkin, and the haab. Emacs knows about all three of these calendars. Experts
dispute the exact correlation between the Mayan calendar and our calendar; Emacs uses
the Goodman-Martinez-Thompson correlation in its calculations.

The Copts use a calendar based on the ancient Egyptian solar calendar. Their calendar
consists of twelve 30-day months followed by an extra five-day period. Once every fourth
year they add a leap day to this extra period to make it six days. The Ethiopic calendar is
identical in structure, but has different year numbers and month names.

The Persians use a solar calendar based on a design of Omar Khayyam. Their calendar
consists of twelve months of which the first six have 31 days, the next five have 30 days, and
the last has 29 in ordinary years and 30 in leap years. Leap years occur in a complicated
pattern every four or five years.

The Chinese calendar is a complicated system of lunar months arranged into solar years.
The years go in cycles of sixty, each year containing either twelve months in an ordinary
year or thirteen months in a leap year; each month has either 29 or 30 days. Years, ordinary
months, and days are named by combining one of ten “celestial stems” with one of twelve
“terrestrial branches” for a total of sixty names that are repeated in a cycle of sixty.

30.9.2 Converting To Other Calendars

The following commands describe the selected date (the date at point) in various other
calendar systems:

Mouse-2 Other calendars
Display the date that you click on, expressed in various other calendars.

Chapter 30: The Calendar and the Diary 339

p c Display ISO commercial calendar equivalent for selected day (calendar-print-
iso-date).

p j Display Julian date for selected day (calendar-print-julian-date).

p a Display astronomical (Julian) day number for selected day (calendar-print-
astro-day-number).

p h Display Hebrew date for selected day (calendar-print-hebrew-date).

p i Display Islamic date for selected day (calendar-print-islamic-date).

p f Display French Revolutionary date for selected day (calendar-print-french-
date).

p C Display Chinese date for selected day (calendar-print-chinese-date).

p k Display Coptic date for selected day (calendar-print-coptic-date).

p e Display Ethiopic date for selected day (calendar-print-ethiopic-date).

p p Display Persian date for selected day (calendar-print-persian-date).

p m Display Mayan date for selected day (calendar-print-mayan-date).

If you are using X, the easiest way to translate a date into other calendars is to click on
it with Mouse-2, then choose Other calendars from the menu that appears. This displays
the equivalent forms of the date in all the calendars Emacs understands, in the form of a
menu. (Choosing an alternative from this menu doesn’t actually do anything—the menu is
used only for display.)

Otherwise, move point to the date you want to convert, then type the appropriate
command starting with p from the table above. The prefix p is a mnemonic for “print,”
since Emacs “prints” the equivalent date in the echo area.

30.9.3 Converting From Other Calendars

You can use the other supported calendars to specify a date to move to. This section
describes the commands for doing this using calendars other than Mayan; for the Mayan
calendar, see the following section.

g c Move to a date specified in the ISO commercial calendar (calendar-goto-iso-
date).

g j Move to a date specified in the Julian calendar (calendar-goto-julian-date).

g a Move to a date specified with an astronomical (Julian) day number (calendar-
goto-astro-day-number).

g h Move to a date specified in the Hebrew calendar (calendar-goto-hebrew-
date).

g i Move to a date specified in the Islamic calendar (calendar-goto-islamic-
date).

g f Move to a date specified in the French Revolutionary calendar (calendar-goto-
french-date).

340 GNU Emacs Manual

g C Move to a date specified in the Chinese calendar (calendar-goto-chinese-
date).

g p Move to a date specified in the Persian calendar (calendar-goto-persian-
date).

g k Move to a date specified in the Coptic calendar (calendar-goto-coptic-date).

g e Move to a date specified in the Ethiopic calendar (calendar-goto-ethiopic-
date).

These commands ask you for a date on the other calendar, move point to the Gregorian
calendar date equivalent to that date, and display the other calendar’s date in the echo area.
Emacs uses strict completion (see Section 5.3 [Completion], page 45) whenever it asks you
to type a month name, so you don’t have to worry about the spelling of Hebrew, Islamic,
or French names.

One common question concerning the Hebrew calendar is the computation of the an-
niversary of a date of death, called a “yahrzeit.” The Emacs calendar includes a facility
for such calculations. If you are in the calendar, the command M-x list-yahrzeit-dates
asks you for a range of years and then displays a list of the yahrzeit dates for those years
for the date given by point. If you are not in the calendar, this command first asks you for
the date of death and the range of years, and then displays the list of yahrzeit dates.

30.9.4 Converting from the Mayan Calendar

Here are the commands to select dates based on the Mayan calendar:

g m l Move to a date specified by the long count calendar (calendar-goto-mayan-
long-count-date).

g m n t Move to the next occurrence of a place in the tzolkin calendar (calendar-next-
tzolkin-date).

g m p t Move to the previous occurrence of a place in the tzolkin calendar (calendar-
previous-tzolkin-date).

g m n h Move to the next occurrence of a place in the haab calendar (calendar-next-
haab-date).

g m p h Move to the previous occurrence of a place in the haab calendar (calendar-
previous-haab-date).

g m n c Move to the next occurrence of a place in the calendar round (calendar-next-
calendar-round-date).

g m p c Move to the previous occurrence of a place in the calendar round (calendar-
previous-calendar-round-date).

To understand these commands, you need to understand the Mayan calendars. The long
count is a counting of days with these units:

1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal
1 katun = 20 tun 1 baktun = 20 katun

Chapter 30: The Calendar and the Diary 341

Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun, 16 uinal, and 6
kin. The Emacs calendar can handle Mayan long count dates as early as 7.17.18.13.1, but
no earlier. When you use the g m l command, type the Mayan long count date with the
baktun, katun, tun, uinal, and kin separated by periods.

The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of independent cycles
of 13 and 20 days. Since this cycle repeats endlessly, Emacs provides commands to move
backward and forward to the previous or next point in the cycle. Type g m p t to go to the
previous tzolkin date; Emacs asks you for a tzolkin date and moves point to the previous
occurrence of that date. Similarly, type g m n t to go to the next occurrence of a tzolkin
date.

The Mayan haab calendar is a cycle of 365 days arranged as 18 months of 20 days each,
followed a 5-day monthless period. Like the tzolkin cycle, this cycle repeats endlessly, and
there are commands to move backward and forward to the previous or next point in the
cycle. Type g m p h to go to the previous haab date; Emacs asks you for a haab date and
moves point to the previous occurrence of that date. Similarly, type g m n h to go to the
next occurrence of a haab date.

The Maya also used the combination of the tzolkin date and the haab date. This combi-
nation is a cycle of about 52 years called a calendar round. If you type g m p c, Emacs asks
you for both a haab and a tzolkin date and then moves point to the previous occurrence
of that combination. Use g m n c to move point to the next occurrence of a combination.
These commands signal an error if the haab/tzolkin date combination you have typed is
impossible.

Emacs uses strict completion (see Section 5.3.3 [Strict Completion], page 46) whenever
it asks you to type a Mayan name, so you don’t have to worry about spelling.

30.10 The Diary

The Emacs diary keeps track of appointments or other events on a daily basis, in con-
junction with the calendar. To use the diary feature, you must first create a diary file
containing a list of events and their dates. Then Emacs can automatically pick out and
display the events for today, for the immediate future, or for any specified date.

By default, Emacs uses ‘~/diary’ as the diary file. This is the same file that the calendar
utility uses. A sample ‘~/diary’ file is:

12/22/1988 Twentieth wedding anniversary!!
&1/1. Happy New Year!
10/22 Ruth’s birthday.
* 21, *: Payday
Tuesday--weekly meeting with grad students at 10am

Supowit, Shen, Bitner, and Kapoor to attend.
1/13/89 Friday the thirteenth!!
&thu 4pm squash game with Lloyd.
mar 16 Dad’s birthday
April 15, 1989 Income tax due.
&* 15 time cards due.

This example uses extra spaces to align the event descriptions of most of the entries. Such
formatting is purely a matter of taste.

342 GNU Emacs Manual

Although you probably will start by creating a diary manually, Emacs provides a number
of commands to let you view, add, and change diary entries.

30.10.1 Commands Displaying Diary Entries

Once you have created a ‘~/diary’ file, you can use the calendar to view it. You can
also view today’s events outside of Calendar mode.

d Display all diary entries for the selected date (view-diary-entries).

Mouse-2 Diary
Display all diary entries for the date you click on.

s Display the entire diary file (show-all-diary-entries).

m Mark all visible dates that have diary entries (mark-diary-entries).

u Unmark the calendar window (calendar-unmark).

M-x print-diary-entries
Print hard copy of the diary display as it appears.

M-x diary Display all diary entries for today’s date.

M-x diary-mail-entries
Mail yourself email reminders about upcoming diary entries.

Displaying the diary entries with d shows in a separate window the diary entries for the
selected date in the calendar. The mode line of the new window shows the date of the diary
entries and any holidays that fall on that date. If you specify a numeric argument with d, it
shows all the diary entries for that many successive days. Thus, 2 d displays all the entries
for the selected date and for the following day.

Another way to display the diary entries for a date is to click Mouse-2 on the date, and
then choose Diary entries from the menu that appears.

To get a broader view of which days are mentioned in the diary, use the m command.
This displays the dates that have diary entries in a different face (or places a ‘+’ after these
dates, if display with multiple faces is not available). The command applies both to the
currently visible months and to other months that subsequently become visible by scrolling.
To turn marking off and erase the current marks, type u, which also turns off holiday marks
(see Section 30.6 [Holidays], page 335).

To see the full diary file, rather than just some of the entries, use the s command.
Display of selected diary entries uses the selective display feature to hide entries that

don’t apply.
The diary buffer as you see it is an illusion, so simply printing the buffer does not

print what you see on your screen. There is a special command to print hard copy of the
diary buffer as it appears; this command is M-x print-diary-entries. It sends the data
directly to the printer. You can customize it like lpr-region (see Section 31.5 [Hardcopy],
page 361).

The command M-x diary displays the diary entries for the current date, independently
of the calendar display, and optionally for the next few days as well; the variable number-
of-diary-entries specifies how many days to include. See section “Calendar” in The
Emacs Lisp Reference Manual.

Chapter 30: The Calendar and the Diary 343

If you put (diary) in your ‘.emacs’ file, this automatically displays a window with the
day’s diary entries, when you enter Emacs. The mode line of the displayed window shows
the date and any holidays that fall on that date.

Many users like to receive notice of events in their diary as email. To send such mail
to yourself, use the command M-x diary-mail-entries. A prefix argument specifies how
many days (starting with today) to check; otherwise, the variable diary-mail-days says
how many days.

30.10.2 The Diary File

Your diary file is a file that records events associated with particular dates. The name
of the diary file is specified by the variable diary-file; ‘~/diary’ is the default. The
calendar utility program supports a subset of the format allowed by the Emacs diary
facilities, so you can use that utility to view the diary file, with reasonable results aside
from the entries it cannot understand.

Each entry in the diary file describes one event and consists of one or more lines. An
entry always begins with a date specification at the left margin. The rest of the entry is
simply text to describe the event. If the entry has more than one line, then the lines after
the first must begin with whitespace to indicate they continue a previous entry. Lines that
do not begin with valid dates and do not continue a preceding entry are ignored.

You can inhibit the marking of certain diary entries in the calendar window; to do this,
insert an ampersand (‘&’) at the beginning of the entry, before the date. This has no effect
on display of the entry in the diary window; it affects only marks on dates in the calendar
window. Nonmarking entries are especially useful for generic entries that would otherwise
mark many different dates.

If the first line of a diary entry consists only of the date or day name with no following
blanks or punctuation, then the diary window display doesn’t include that line; only the
continuation lines appear. For example, this entry:

02/11/1989
Bill B. visits Princeton today
2pm Cognitive Studies Committee meeting
2:30-5:30 Liz at Lawrenceville
4:00pm Dentist appt
7:30pm Dinner at George’s
8:00-10:00pm concert

appears in the diary window without the date line at the beginning. This style of entry
looks neater when you display just a single day’s entries, but can cause confusion if you ask
for more than one day’s entries.

You can edit the diary entries as they appear in the window, but it is important to
remember that the buffer displayed contains the entire diary file, with portions of it con-
cealed from view. This means, for instance, that the C-f (forward-char) command can
put point at what appears to be the end of the line, but what is in reality the middle of
some concealed line.

Be careful when editing the diary entries! Inserting additional lines or adding/deleting
characters in the middle of a visible line cannot cause problems, but editing at the end of
a line may not do what you expect. Deleting a line may delete other invisible entries that

344 GNU Emacs Manual

follow it. Before editing the diary, it is best to display the entire file with s (show-all-
diary-entries).

30.10.3 Date Formats

Here are some sample diary entries, illustrating different ways of formatting a date. The
examples all show dates in American order (month, day, year), but Calendar mode supports
European order (day, month, year) as an option.

4/20/93 Switch-over to new tabulation system
apr. 25 Start tabulating annual results
4/30 Results for April are due
*/25 Monthly cycle finishes
Friday Don’t leave without backing up files

The first entry appears only once, on April 20, 1993. The second and third appear every
year on the specified dates, and the fourth uses a wildcard (asterisk) for the month, so it
appears on the 25th of every month. The final entry appears every week on Friday.

You can use just numbers to express a date, as in ‘month/day ’ or ‘month/day/year’.
This must be followed by a nondigit. In the date itself, month and day are numbers of one
or two digits. The optional year is also a number, and may be abbreviated to the last two
digits; that is, you can use ‘11/12/1989’ or ‘11/12/89’.

Dates can also have the form ‘monthname day’ or ‘monthname day, year’, where the
month’s name can be spelled in full or abbreviated to three characters (with or without a
period). Case is not significant.

A date may be generic; that is, partially unspecified. Then the entry applies to all dates
that match the specification. If the date does not contain a year, it is generic and applies
to any year. Alternatively, month, day, or year can be a ‘*’; this matches any month, day,
or year, respectively. Thus, a diary entry ‘3/*/*’ matches any day in March of any year;
so does ‘march *’.

If you prefer the European style of writing dates—in which the day comes before the
month—type M-x european-calendar while in the calendar, or set the variable european-
calendar-style to t before using any calendar or diary command. This mode interprets
all dates in the diary in the European manner, and also uses European style for displaying
diary dates. (Note that there is no comma after the monthname in the European style.)
To go back to the (default) American style of writing dates, type M-x american-calendar.

You can use the name of a day of the week as a generic date which applies to any date
falling on that day of the week. You can abbreviate the day of the week to three letters
(with or without a period) or spell it in full; case is not significant.

30.10.4 Commands to Add to the Diary

While in the calendar, there are several commands to create diary entries:

i d Add a diary entry for the selected date (insert-diary-entry).

i w Add a diary entry for the selected day of the week (insert-weekly-diary-
entry).

Chapter 30: The Calendar and the Diary 345

i m Add a diary entry for the selected day of the month (insert-monthly-diary-
entry).

i y Add a diary entry for the selected day of the year (insert-yearly-diary-
entry).

You can make a diary entry for a specific date by selecting that date in the calendar
window and typing the i d command. This command displays the end of your diary file in
another window and inserts the date; you can then type the rest of the diary entry.

If you want to make a diary entry that applies to a specific day of the week, select that
day of the week (any occurrence will do) and type i w. This inserts the day-of-week as a
generic date; you can then type the rest of the diary entry. You can make a monthly diary
entry in the same fashion: select the day of the month, use the i m command, and type the
rest of the entry. Similarly, you can insert a yearly diary entry with the i y command.

All of the above commands make marking diary entries by default. To make a nonmark-
ing diary entry, give a numeric argument to the command. For example, C-u i w makes a
nonmarking weekly diary entry.

When you modify the diary file, be sure to save the file before exiting Emacs.

30.10.5 Special Diary Entries

In addition to entries based on calendar dates, the diary file can contain sexp entries for
regular events such as anniversaries. These entries are based on Lisp expressions (sexps)
that Emacs evaluates as it scans the diary file. Instead of a date, a sexp entry contains
‘%%’ followed by a Lisp expression which must begin and end with parentheses. The Lisp
expression determines which dates the entry applies to.

Calendar mode provides commands to insert certain commonly used sexp entries:

i a Add an anniversary diary entry for the selected date (insert-anniversary-
diary-entry).

i b Add a block diary entry for the current region (insert-block-diary-entry).

i c Add a cyclic diary entry starting at the date (insert-cyclic-diary-entry).

If you want to make a diary entry that applies to the anniversary of a specific date, move
point to that date and use the i a command. This displays the end of your diary file in
another window and inserts the anniversary description; you can then type the rest of the
diary entry. The entry looks like this:

%%(diary-anniversary 10 31 1948) Arthur’s birthday

This entry applies to October 31 in any year after 1948; ‘10 31 1948’ specifies the date.
(If you are using the European calendar style, the month and day are interchanged.) The
reason this expression requires a beginning year is that advanced diary functions can use it
to calculate the number of elapsed years.

A block diary entry applies to a specified range of consecutive dates. Here is a block
diary entry that applies to all dates from June 24, 1990 through July 10, 1990:

%%(diary-block 6 24 1990 7 10 1990) Vacation

346 GNU Emacs Manual

The ‘6 24 1990’ indicates the starting date and the ‘7 10 1990’ indicates the stopping date.
(Again, if you are using the European calendar style, the month and day are interchanged.)

To insert a block entry, place point and the mark on the two dates that begin and end the
range, and type i b. This command displays the end of your diary file in another window
and inserts the block description; you can then type the diary entry.

Cyclic diary entries repeat after a fixed interval of days. To create one, select the
starting date and use the i c command. The command prompts for the length of interval,
then inserts the entry, which looks like this:

%%(diary-cyclic 50 3 1 1990) Renew medication

This entry applies to March 1, 1990 and every 50th day following; ‘3 1 1990’ specifies
the starting date. (If you are using the European calendar style, the month and day are
interchanged.)

All three of these commands make marking diary entries. To insert a nonmarking entry,
give a numeric argument to the command. For example, C-u i a makes a nonmarking
anniversary diary entry.

Marking sexp diary entries in the calendar is extremely time-consuming, since every date
visible in the calendar window must be individually checked. So it’s a good idea to make
sexp diary entries nonmarking (with ‘&’) when possible.

Another sophisticated kind of sexp entry, a floating diary entry, specifies a regularly
occurring event by offsets specified in days, weeks, and months. It is comparable to a
crontab entry interpreted by the cron utility. Here is a nonmarking, floating diary entry
that applies to the last Thursday in November:

&%%(diary-float 11 4 -1) American Thanksgiving

The 11 specifies November (the eleventh month), the 4 specifies Thursday (the fourth day
of the week, where Sunday is numbered zero), and the −1 specifies “last” (1 would mean
“first,” 2 would mean “second,” −2 would mean “second-to-last,” and so on). The month
can be a single month or a list of months. Thus you could change the 11 above to ‘’(1 2
3)’ and have the entry apply to the last Thursday of January, February, and March. If the
month is t, the entry applies to all months of the year.

Most generally, sexp diary entries can perform arbitrary computations to determine when
they apply. See section “Sexp Diary Entries” in The Emacs Lisp Reference Manual.

30.11 Appointments

If you have a diary entry for an appointment, and that diary entry begins with a recog-
nizable time of day, Emacs can warn you several minutes beforehand that that appointment
is pending. Emacs alerts you to the appointment by displaying a message in the mode line.

To enable appointment notification, you must enable the time display feature of Emacs,
M-x display-time (see Section 1.3 [Mode Line], page 23). You must also add the function
appt-make-list to the diary-hook, like this:

(add-hook ’diary-hook ’appt-make-list)

Adding this text to your ‘.emacs’ file does the whole job:
(display-time)
(add-hook ’diary-hook ’appt-make-list)

Chapter 30: The Calendar and the Diary 347

(diary 0)

With these preparations done, when you display the diary (either with the d command
in the calendar window or with the M-x diary command), it sets up an appointment list of
all the diary entries found with recognizable times of day, and reminds you just before each
of them.

For example, suppose the diary file contains these lines:
Monday
9:30am Coffee break

12:00pm Lunch

Then on Mondays, after you have displayed the diary, you will be reminded at 9:20am about
your coffee break and at 11:50am about lunch.

You can write times in am/pm style (with ‘12:00am’ standing for midnight and ‘12:00pm’
standing for noon), or 24-hour European/military style. You need not be consistent; your
diary file can have a mixture of the two styles.

Emacs updates the appointments list automatically just after midnight. This also dis-
plays the next day’s diary entries in the diary buffer, unless you set appt-display-diary
to nil.

You can also use the appointment notification facility like an alarm clock. The command
M-x appt-add adds entries to the appointment list without affecting your diary file. You
delete entries from the appointment list with M-x appt-delete.

You can turn off the appointment notification feature at any time by setting appt-
issue-message to nil.

30.12 Daylight Savings Time

Emacs understands the difference between standard time and daylight savings time—the
times given for sunrise, sunset, solstices, equinoxes, and the phases of the moon take that
into account. The rules for daylight savings time vary from place to place and have also
varied historically from year to year. To do the job properly, Emacs needs to know which
rules to use.

Some operating systems keep track of the rules that apply to the place where you are; on
these systems, Emacs gets the information it needs from the system automatically. If some
or all of this information is missing, Emacs fills in the gaps with the rules currently used
in Cambridge, Massachusetts. If the resulting rules are not what you want, you can tell
Emacs the rules to use by setting certain variables: calendar-daylight-savings-starts
and calendar-daylight-savings-ends.

These values should be Lisp expressions that refer to the variable year, and evaluate to
the Gregorian date on which daylight savings time starts or (respectively) ends, in the form
of a list (month day year). The values should be nil if your area does not use daylight
savings time.

Emacs uses these expressions to determine the starting date of daylight savings time for
the holiday list and for correcting times of day in the solar and lunar calculations.

The values for Cambridge, Massachusetts are as follows:

348 GNU Emacs Manual

(calendar-nth-named-day 1 0 4 year)
(calendar-nth-named-day -1 0 10 year)

That is, the first 0th day (Sunday) of the fourth month (April) in the year specified by year,
and the last Sunday of the tenth month (October) of that year. If daylight savings time
were changed to start on October 1, you would set calendar-daylight-savings-starts
to this:

(list 10 1 year)

If there is no daylight savings time at your location, or if you want all times in standard
time, set calendar-daylight-savings-starts and calendar-daylight-savings-ends
to nil.

The variable calendar-daylight-time-offset specifies the difference between day-
light savings time and standard time, measured in minutes. The value for Cambridge,
Massachusetts is 60.

The two variables calendar-daylight-savings-starts-time and calendar-
daylight-savings-ends-time specify the number of minutes after midnight local time
when the transition to and from daylight savings time should occur. For Cambridge,
Massachusetts both variables’ values are 120.

30.13 Summing Time Intervals

The timeclock feature adds up time intervals, so you can (for instance) keep track of
how much time you spend working.

Use the M-x timeclock-in command when you start working on a project, and M-x
timeclock-out command when you’re done. Each time you do this, it adds one time
interval to the record of the project.

Once you’ve collected data from a number of time intervals, you can use M-x
timeclock-workday-remaining to see how much time is left to work today (assuming a
typical average of 8 hours a day), and M-x timeclock-when-to-leave which will calculate
when you’re “done.”

If you want Emacs to display the amount of time “left” of your workday in the mode
line, either customize the timeclock-modeline-display variable and set its value to t, or
invoke the M-x timeclock-modeline-display command.

Terminating the current Emacs session might or might not mean that you have stopped
working on the project. If you’d like Emacs to ask you about this, set the value of the
variable timeclock-ask-before-exiting to t (via M-x customize). By default, only an
explicit M-x timeclock-out tells Emacs that the current interval is over.

The timeclock functions work by accumulating the data in a file called ‘.timelog’ in
your home directory. (On MS-DOS, this file is called ‘_timelog’, since an initial period
is not allowed in file names on MS-DOS.) You can specify a different name for this file by
customizing the variable timeclock-file. If you edit the timeclock file manually, or if you
change the value of any of timeclock’s customizable variables, you should run the command
M-x timeclock-reread-log to update the data in Emacs from the file.

Chapter 31: Miscellaneous Commands 349

31 Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else: reading netnews,
running shell commands and shell subprocesses, using a single shared Emacs for utilities that
expect to run an editor as a subprocess, printing hardcopy, sorting text, narrowing display
to part of the buffer, editing double-column files and binary files, saving an Emacs session
for later resumption, emulating other editors, and various diversions and amusements.

31.1 Gnus

Gnus is an Emacs package primarily designed for reading and posting Usenet news. It
can also be used to read and respond to messages from a number of other sources—mail,
remote directories, digests, and so on.

Here we introduce Gnus and describe several basic features. For full details on Gnus,
type M-x info and then select the Gnus manual.

To start Gnus, type M-x gnus 〈RET〉.

31.1.1 Gnus Buffers

As opposed to most normal Emacs packages, Gnus uses a number of different buffers to
display information and to receive commands. The three buffers users spend most of their
time in are the group buffer, the summary buffer and the article buffer.

The group buffer contains a list of groups. This is the first buffer Gnus displays when
it starts up. It normally displays only the groups to which you subscribe and that contain
unread articles. Use this buffer to select a specific group.

The summary buffer lists one line for each article in a single group. By default, the
author, the subject and the line number are displayed for each article, but this is customiz-
able, like most aspects of Gnus display. The summary buffer is created when you select a
group in the group buffer, and is killed when you exit the group. Use this buffer to select
an article.

The article buffer displays the article. In normal Gnus usage, you don’t select this
buffer—all useful article-oriented commands work in the summary buffer. But you can
select the article buffer, and execute all Gnus commands from that buffer, if you want to.

31.1.2 When Gnus Starts Up

At startup, Gnus reads your ‘.newsrc’ news initialization file and attempts to commu-
nicate with the local news server, which is a repository of news articles. The news server
need not be the same computer you are logged in on.

If you start Gnus and connect to the server, but do not see any newsgroups listed in
the group buffer, type L or A k to get a listing of all the groups. Then type u to toggle
subscription to groups.

The first time you start Gnus, Gnus subscribes you to a few selected groups. All other
groups start out as killed groups for you; you can list them with A k. All new groups that
subsequently come to exist at the news server become zombie groups for you; type A z to
list them. You can subscribe to a group shown in these lists using the u command.

350 GNU Emacs Manual

When you quit Gnus with q, it automatically records in your ‘.newsrc’ and
‘.newsrc.eld’ initialization files the subscribed or unsubscribed status of all groups. You
should normally not edit these files manually, but you may if you know how.

31.1.3 Summary of Gnus Commands

Reading news is a two-step process:
1. Choose a group in the group buffer.
2. Select articles from the summary buffer. Each article selected is displayed in the article

buffer in a large window, below the summary buffer in its small window.

Each Gnus buffer has its own special commands; however, the meanings of any given key
in the various Gnus buffers are usually analogous, even if not identical. Here are commands
for the group and summary buffers:

q In the group buffer, update your ‘.newsrc’ initialization file and quit Gnus.
In the summary buffer, exit the current group and return to the group buffer.
Thus, typing q twice quits Gnus.

L In the group buffer, list all the groups available on your news server (except
those you have killed). This may be a long list!

l In the group buffer, list only the groups to which you subscribe and which
contain unread articles.

u In the group buffer, unsubscribe from (or subscribe to) the group listed in
the line that point is on. When you quit Gnus by typing q, Gnus lists in
your ‘.newsrc’ file which groups you have subscribed to. The next time you
start Gnus, you won’t see this group, because Gnus normally displays only
subscribed-to groups.

C-k In the group buffer, “kill” the current line’s group—don’t even list it in
‘.newsrc’ from now on. This affects future Gnus sessions as well as the present
session.
When you quit Gnus by typing q, Gnus writes information in the file ‘.newsrc’
describing all newsgroups except those you have “killed.”

〈SPC〉 In the group buffer, select the group on the line under the cursor and display
the first unread article in that group.
In the summary buffer,
• Select the article on the line under the cursor if none is selected.
• Scroll the text of the selected article (if there is one).
• Select the next unread article if at the end of the current article.

Thus, you can move through all the articles by repeatedly typing 〈SPC〉.
〈DEL〉 In the group buffer, move point to the previous group containing unread articles.

In the summary buffer, scroll the text of the article backwards.

n Move point to the next unread group, or select the next unread article.

Chapter 31: Miscellaneous Commands 351

p Move point to the previous unread group, or select the previous unread article.

C-n
C-p Move point to the next or previous item, even if it is marked as read. This does

not select the article or group on that line.

s In the summary buffer, do an incremental search of the current text in the
article buffer, just as if you switched to the article buffer and typed C-s.

M-s regexp 〈RET〉
In the summary buffer, search forward for articles containing a match for regexp.

31.2 Running Shell Commands from Emacs

Emacs has commands for passing single command lines to inferior shell processes; it can
also run a shell interactively with input and output to an Emacs buffer named ‘*shell*’
or run a shell inside a terminal emulator window.

There is a shell implemented entirely in Emacs, documented in a separate manual. See
section “Eshell” in Eshell: The Emacs Shell.

M-! cmd 〈RET〉
Run the shell command line cmd and display the output (shell-command).

M-| cmd 〈RET〉
Run the shell command line cmd with region contents as input; optionally
replace the region with the output (shell-command-on-region).

M-x shell Run a subshell with input and output through an Emacs buffer. You can then
give commands interactively.

M-x term Run a subshell with input and output through an Emacs buffer. You can then
give commands interactively. Full terminal emulation is available.

M-x eshell
Start the Emacs shell.

31.2.1 Single Shell Commands

M-! (shell-command) reads a line of text using the minibuffer and executes it as a shell
command in a subshell made just for that command. Standard input for the command
comes from the null device. If the shell command produces any output, the output appears
either in the echo area (if it is short), or in an Emacs buffer named ‘*Shell Command
Output*’, which is displayed in another window but not selected (if the output is long).

For instance, one way to decompress a file ‘foo.gz’ from Emacs is to type M-! gunzip
foo.gz 〈RET〉. That shell command normally creates the file ‘foo’ and produces no terminal
output.

A numeric argument, as in M-1 M-!, says to insert terminal output into the current
buffer instead of a separate buffer. It puts point before the output, and sets the mark after
the output. For instance, M-1 M-! gunzip < foo.gz 〈RET〉 would insert the uncompressed
equivalent of ‘foo.gz’ into the current buffer.

352 GNU Emacs Manual

If the shell command line ends in ‘&’, it runs asynchronously. For a synchronous shell
command, shell-command returns the command’s exit status (0 means success), when it
is called from a Lisp program. You do not get any status information for an asynchronous
command, since it hasn’t finished yet.

M-| (shell-command-on-region) is like M-! but passes the contents of the region as the
standard input to the shell command, instead of no input. If a numeric argument is used,
meaning insert the output in the current buffer, then the old region is deleted first and the
output replaces it as the contents of the region. It returns the command’s exit status when
it is called from a Lisp program.

One use for M-| is to run uudecode. For instance, if the buffer contains uuencoded text,
type C-x h M-| uudecode 〈RET〉 to feed the entire buffer contents to the uudecode program.
That program will ignore everything except the encoded text, and will store the decoded
output into the file whose name is specified in the encoded text.

Both M-! and M-| use shell-file-name to specify the shell to use. This variable is
initialized based on your SHELL environment variable when Emacs is started. If the file
name does not specify a directory, the directories in the list exec-path are searched; this
list is initialized based on the environment variable PATH when Emacs is started. Your
‘.emacs’ file can override either or both of these default initializations.

Both M-! and M-| wait for the shell command to complete. To stop waiting, type C-g
to quit; that terminates the shell command with the signal SIGINT—the same signal that
C-c normally generates in the shell. Emacs waits until the command actually terminates.
If the shell command doesn’t stop (because it ignores the SIGINT signal), type C-g again;
this sends the command a SIGKILL signal which is impossible to ignore.

To specify a coding system for M-! or M-|, use the command C-x 〈RET〉 c immediately
beforehand. See Section 18.9 [Specify Coding], page 185.

Error output from the command is normally intermixed with the regular output. If
you set the variable shell-command-default-error-buffer to a string, which is a buffer
name, error output is inserted before point in the buffer of that name.

31.2.2 Interactive Inferior Shell

To run a subshell interactively, putting its typescript in an Emacs buffer, use M-x shell.
This creates (or reuses) a buffer named ‘*shell*’ and runs a subshell with input coming
from and output going to that buffer. That is to say, any “terminal output” from the
subshell goes into the buffer, advancing point, and any “terminal input” for the subshell
comes from text in the buffer. To give input to the subshell, go to the end of the buffer and
type the input, terminated by 〈RET〉.

Emacs does not wait for the subshell to do anything. You can switch windows or buffers
and edit them while the shell is waiting, or while it is running a command. Output from the
subshell waits until Emacs has time to process it; this happens whenever Emacs is waiting
for keyboard input or for time to elapse.

Input lines, once you submit them, are displayed using the face comint-highlight-
input, and prompts are displayed using the face comint-highlight-prompt. This makes
it easier to see previous input lines in the buffer. See Section 11.1 [Faces], page 79.

Chapter 31: Miscellaneous Commands 353

To make multiple subshells, you can invoke M-x shell with a prefix argument (e.g.
C-u M-x shell), which will read a buffer name and create (or reuse) a subshell in that
buffer. You can also rename the ‘*shell*’ buffer using M-x rename-uniquely, then create
a new ‘*shell*’ buffer using plain M-x shell. All the subshells in different buffers run
independently and in parallel.

The file name used to load the subshell is the value of the variable explicit-shell-
file-name, if that is non-nil. Otherwise, the environment variable ESHELL is used, or the
environment variable SHELL if there is no ESHELL. If the file name specified is relative, the
directories in the list exec-path are searched; this list is initialized based on the environment
variable PATH when Emacs is started. Your ‘.emacs’ file can override either or both of these
default initializations.

Emacs sends the new shell the contents of the file ‘~/.emacs_shellname’ as input, if it
exists, where shellname is the name of the file that the shell was loaded from. For example,
if you use bash, the file sent to it is ‘~/.emacs_bash’.

To specify a coding system for the shell, you can use the command C-x 〈RET〉 c imme-
diately before M-x shell. You can also specify a coding system after starting the shell by
using C-x 〈RET〉 p in the shell buffer. See Section 18.9 [Specify Coding], page 185.

Unless the environment variable EMACS is already defined, Emacs defines it in the sub-
shell, with value t. A shell script can check this variable to determine whether it has been
run from an Emacs subshell.

31.2.3 Shell Mode

Shell buffers use Shell mode, which defines several special keys attached to the C-c prefix.
They are chosen to resemble the usual editing and job control characters present in shells
that are not under Emacs, except that you must type C-c first. Here is a complete list of
the special key bindings of Shell mode:

〈RET〉 At end of buffer send line as input; otherwise, copy current line to end of buffer
and send it (comint-send-input). When a line is copied, any prompt at the
beginning of the line (text output by programs preceding your input) is omitted.
(See also the variable comint-use-prompt-regexp-instead-of-fields.)

〈TAB〉 Complete the command name or file name before point in the shell buffer
(comint-dynamic-complete). 〈TAB〉 also completes history references (see Sec-
tion 31.2.4.3 [History References], page 357) and environment variable names.

The variable shell-completion-fignore specifies a list of file name extensions
to ignore in Shell mode completion. The default setting is nil, but some users
prefer ("~" "#" "%") to ignore file names ending in ‘~’, ‘#’ or ‘%’. Other related
Comint modes use the variable comint-completion-fignore instead.

M-? Display temporarily a list of the possible completions of the file name before
point in the shell buffer (comint-dynamic-list-filename-completions).

C-d Either delete a character or send eof (comint-delchar-or-maybe-eof).
Typed at the end of the shell buffer, C-d sends eof to the subshell. Typed at
any other position in the buffer, C-d deletes a character as usual.

354 GNU Emacs Manual

C-c C-a Move to the beginning of the line, but after the prompt if any (comint-bol-or-
process-mark). If you repeat this command twice in a row, the second time it
moves back to the process mark, which is the beginning of the input that you
have not yet sent to the subshell. (Normally that is the same place—the end
of the prompt on this line—but after C-c 〈SPC〉 the process mark may be in a
previous line.)

C-c 〈SPC〉 Accumulate multiple lines of input, then send them together. This command
inserts a newline before point, but does not send the preceding text as input to
the subshell—at least, not yet. Both lines, the one before this newline and the
one after, will be sent together (along with the newline that separates them),
when you type 〈RET〉.

C-c C-u Kill all text pending at end of buffer to be sent as input (comint-kill-input).

C-c C-w Kill a word before point (backward-kill-word).

C-c C-c Interrupt the shell or its current subjob if any (comint-interrupt-subjob).
This command also kills any shell input pending in the shell buffer and not yet
sent.

C-c C-z Stop the shell or its current subjob if any (comint-stop-subjob). This com-
mand also kills any shell input pending in the shell buffer and not yet sent.

C-c C-\ Send quit signal to the shell or its current subjob if any (comint-quit-subjob).
This command also kills any shell input pending in the shell buffer and not yet
sent.

C-c C-o Delete the last batch of output from a shell command (comint-delete-
output). This is useful if a shell command spews out lots of output that just
gets in the way. This command used to be called comint-kill-output.

C-c C-s Write the last batch of output from a shell command to a file (comint-write-
output). With a prefix argument, the file is appended to instead. Any prompt
at the end of the output is not written.

C-c C-r
C-M-l Scroll to display the beginning of the last batch of output at the top of the

window; also move the cursor there (comint-show-output).

C-c C-e Scroll to put the end of the buffer at the bottom of the window (comint-show-
maximum-output).

C-c C-f Move forward across one shell command, but not beyond the current line
(shell-forward-command). The variable shell-command-regexp specifies how
to recognize the end of a command.

C-c C-b Move backward across one shell command, but not beyond the current line
(shell-backward-command).

C-c C-l Display the buffer’s history of shell commands in another window (comint-
dynamic-list-input-ring).

M-x dirs Ask the shell what its current directory is, so that Emacs can agree with the
shell.

Chapter 31: Miscellaneous Commands 355

M-x send-invisible 〈RET〉 text 〈RET〉
Send text as input to the shell, after reading it without echoing. This is useful
when a shell command runs a program that asks for a password.
Alternatively, you can arrange for Emacs to notice password prompts and turn
off echoing for them, as follows:

(add-hook ’comint-output-filter-functions
’comint-watch-for-password-prompt)

M-x comint-continue-subjob
Continue the shell process. This is useful if you accidentally suspend the shell
process.1

M-x comint-strip-ctrl-m
Discard all control-M characters from the current group of shell output. The
most convenient way to use this command is to make it run automatically when
you get output from the subshell. To do that, evaluate this Lisp expression:

(add-hook ’comint-output-filter-functions
’comint-strip-ctrl-m)

M-x comint-truncate-buffer
This command truncates the shell buffer to a certain maximum number of lines,
specified by the variable comint-buffer-maximum-size. Here’s how to do this
automatically each time you get output from the subshell:

(add-hook ’comint-output-filter-functions
’comint-truncate-buffer)

Shell mode also customizes the paragraph commands so that only shell prompts start
new paragraphs. Thus, a paragraph consists of an input command plus the output that
follows it in the buffer.

Shell mode is a derivative of Comint mode, a general-purpose mode for communicating
with interactive subprocesses. Most of the features of Shell mode actually come from Comint
mode, as you can see from the command names listed above. The special features of Shell
mode include the directory tracking feature, and a few user commands.

Other Emacs features that use variants of Comint mode include GUD (see Section 23.5
[Debuggers], page 258) and M-x run-lisp (see Section 23.10 [External Lisp], page 265).

You can use M-x comint-run to execute any program of your choice in a subprocess
using unmodified Comint mode—without the specializations of Shell mode.

31.2.4 Shell Command History

Shell buffers support three ways of repeating earlier commands. You can use the same
keys used in the minibuffer; these work much as they do in the minibuffer, inserting text
from prior commands while point remains always at the end of the buffer. You can move
through the buffer to previous inputs in their original place, then resubmit them or copy
them to the end. Or you can use a ‘!’-style history reference.

1 You should not suspend the shell process. Suspending a subjob of the shell is a completely different
matter—that is normal practice, but you must use the shell to continue the subjob; this command won’t
do it.

356 GNU Emacs Manual

31.2.4.1 Shell History Ring

M-p Fetch the next earlier old shell command.

M-n Fetch the next later old shell command.

M-r regexp 〈RET〉
M-s regexp 〈RET〉

Search backwards or forwards for old shell commands that match regexp.

C-c C-x (Shell mode)
Fetch the next subsequent command from the history.

Shell buffers provide a history of previously entered shell commands. To reuse shell
commands from the history, use the editing commands M-p, M-n, M-r and M-s. These work
just like the minibuffer history commands except that they operate on the text at the end
of the shell buffer, where you would normally insert text to send to the shell.

M-p fetches an earlier shell command to the end of the shell buffer. Successive use of
M-p fetches successively earlier shell commands, each replacing any text that was already
present as potential shell input. M-n does likewise except that it finds successively more
recent shell commands from the buffer.

The history search commands M-r and M-s read a regular expression and search through
the history for a matching command. Aside from the choice of which command to fetch,
they work just like M-p and M-n. If you enter an empty regexp, these commands reuse the
same regexp used last time.

When you find the previous input you want, you can resubmit it by typing 〈RET〉, or you
can edit it first and then resubmit it if you wish.

Often it is useful to reexecute several successive shell commands that were previously
executed in sequence. To do this, first find and reexecute the first command of the sequence.
Then type C-c C-x; that will fetch the following command—the one that follows the com-
mand you just repeated. Then type 〈RET〉 to reexecute this command. You can reexecute
several successive commands by typing C-c C-x 〈RET〉 over and over.

These commands get the text of previous shell commands from a special history list, not
from the shell buffer itself. Thus, editing the shell buffer, or even killing large parts of it,
does not affect the history that these commands access.

Some shells store their command histories in files so that you can refer to previous
commands from previous shell sessions. Emacs reads the command history file for your
chosen shell, to initialize its own command history. The file name is ‘~/.bash_history’ for
bash, ‘~/.sh_history’ for ksh, and ‘~/.history’ for other shells.

31.2.4.2 Shell History Copying

C-c C-p Move point to the previous prompt (comint-previous-prompt).

C-c C-n Move point to the following prompt (comint-next-prompt).

C-c 〈RET〉 Copy the input command which point is in, inserting the copy at the end of
the buffer (comint-copy-old-input). This is useful if you move point back to

Chapter 31: Miscellaneous Commands 357

a previous command. After you copy the command, you can submit the copy
as input with 〈RET〉. If you wish, you can edit the copy before resubmitting it.

Moving to a previous input and then copying it with C-c 〈RET〉 produces the same
results—the same buffer contents—that you would get by using M-p enough times to fetch
that previous input from the history list. However, C-c 〈RET〉 copies the text from the buffer,
which can be different from what is in the history list if you edit the input text in the buffer
after it has been sent.

31.2.4.3 Shell History References

Various shells including csh and bash support history references that begin with ‘!’ and
‘^’. Shell mode recognizes these constructs, and can perform the history substitution for
you.

If you insert a history reference and type 〈TAB〉, this searches the input history for a
matching command, performs substitution if necessary, and places the result in the buffer
in place of the history reference. For example, you can fetch the most recent command
beginning with ‘mv’ with ! m v 〈TAB〉. You can edit the command if you wish, and then
resubmit the command to the shell by typing 〈RET〉.

Shell mode can optionally expand history references in the buffer when you send them
to the shell. To request this, set the variable comint-input-autoexpand to input. You
can make 〈SPC〉 perform history expansion by binding 〈SPC〉 to the command comint-magic-
space.

Shell mode recognizes history references when they follow a prompt. Normally, any
text output by a program at the beginning of an input line is considered a prompt.
However, if the variable comint-use-prompt-regexp-instead-of-fields is non-nil,
then Comint mode uses a regular expression to recognize prompts. In general, the variable
comint-prompt-regexp specifies the regular expression; Shell mode uses the variable
shell-prompt-pattern to set up comint-prompt-regexp in the shell buffer.

31.2.5 Directory Tracking

Shell mode keeps track of ‘cd’, ‘pushd’ and ‘popd’ commands given to the inferior shell, so
it can keep the ‘*shell*’ buffer’s default directory the same as the shell’s working directory.
It recognizes these commands syntactically, by examining lines of input that are sent.

If you use aliases for these commands, you can tell Emacs to recognize them also. For
example, if the value of the variable shell-pushd-regexp matches the beginning of a shell
command line, that line is regarded as a pushd command. Change this variable when you
add aliases for ‘pushd’. Likewise, shell-popd-regexp and shell-cd-regexp are used to
recognize commands with the meaning of ‘popd’ and ‘cd’. These commands are recognized
only at the beginning of a shell command line.

If Emacs gets confused about changes in the current directory of the subshell, use the
command M-x dirs to ask the shell what its current directory is. This command works for
shells that support the most common command syntax; it may not work for unusual shells.

You can also use M-x dirtrack-mode to enable (or disable) an alternative and more
aggressive method of tracking changes in the current directory.

358 GNU Emacs Manual

31.2.6 Shell Mode Options

If the variable comint-scroll-to-bottom-on-input is non-nil, insertion and yank
commands scroll the selected window to the bottom before inserting.

If comint-scroll-show-maximum-output is non-nil, then scrolling due to the arrival
of output tries to place the last line of text at the bottom line of the window, so as to show
as much useful text as possible. (This mimics the scrolling behavior of many terminals.)
The default is nil.

By setting comint-scroll-to-bottom-on-output, you can opt for having point jump
to the end of the buffer whenever output arrives—no matter where in the buffer point was
before. If the value is this, point jumps in the selected window. If the value is all, point
jumps in each window that shows the Comint buffer. If the value is other, point jumps
in all nonselected windows that show the current buffer. The default value is nil, which
means point does not jump to the end.

The variable comint-input-ignoredups controls whether successive identical inputs are
stored in the input history. A non-nil value means to omit an input that is the same as
the previous input. The default is nil, which means to store each input even if it is equal
to the previous input.

Three variables customize file name completion. The variable comint-completion-
addsuffix controls whether completion inserts a space or a slash to indicate a
fully completed file or directory name (non-nil means do insert a space or slash).
comint-completion-recexact, if non-nil, directs 〈TAB〉 to choose the shortest possible
completion if the usual Emacs completion algorithm cannot add even a single character.
comint-completion-autolist, if non-nil, says to list all the possible completions
whenever completion is not exact.

Command completion normally considers only executable files. If you set
shell-completion-execonly to nil, it considers nonexecutable files as well.

You can configure the behavior of ‘pushd’. Variables control whether ‘pushd’ behaves like
‘cd’ if no argument is given (shell-pushd-tohome), pop rather than rotate with a numeric
argument (shell-pushd-dextract), and only add directories to the directory stack if they
are not already on it (shell-pushd-dunique). The values you choose should match the
underlying shell, of course.

31.2.7 Emacs Terminal Emulator

To run a subshell in a terminal emulator, putting its typescript in an Emacs buffer, use
M-x term. This creates (or reuses) a buffer named ‘*terminal*’, and runs a subshell with
input coming from your keyboard, and output going to that buffer.

The terminal emulator uses Term mode, which has two input modes. In line mode, Term
basically acts like Shell mode; see Section 31.2.3 [Shell Mode], page 353.

In char mode, each character is sent directly to the inferior subshell, as “terminal input.”
Any “echoing” of your input is the responsibility of the subshell. The sole exception is
the terminal escape character, which by default is C-c (see Section 31.2.8 [Term Mode],
page 359). Any “terminal output” from the subshell goes into the buffer, advancing point.

Some programs (such as Emacs itself) need to control the appearance on the terminal
screen in detail. They do this by sending special control codes. The exact control codes

Chapter 31: Miscellaneous Commands 359

needed vary from terminal to terminal, but nowadays most terminals and terminal emulators
(including xterm) understand the ANSI-standard (VT100-style) escape sequences. Term
mode recognizes these escape sequences, and handles each one appropriately, changing the
buffer so that the appearance of the window matches what it would be on a real terminal.
You can actually run Emacs inside an Emacs Term window.

The file name used to load the subshell is determined the same way as for Shell mode. To
make multiple terminal emulators, rename the buffer ‘*terminal*’ to something different
using M-x rename-uniquely, just as with Shell mode.

Unlike Shell mode, Term mode does not track the current directory by examining your
input. But some shells can tell Term what the current directory is. This is done automati-
cally by bash version 1.15 and later.

31.2.8 Term Mode

The terminal emulator uses Term mode, which has two input modes. In line mode, Term
basically acts like Shell mode; see Section 31.2.3 [Shell Mode], page 353. In char mode, each
character is sent directly to the inferior subshell, except for the Term escape character,
normally C-c.

To switch between line and char mode, use these commands:

C-c C-k Switch to line mode. Do nothing if already in line mode.

C-c C-j Switch to char mode. Do nothing if already in char mode.

The following commands are only available in char mode:

C-c C-c Send a literal 〈C-c〉 to the sub-shell.

C-c C-x A prefix command to access the global 〈C-x〉 commands conveniently. For
example, C-c C-x o invokes the global binding of C-x o, which is normally
‘other-window’.

31.2.9 Page-At-A-Time Output

Term mode has a page-at-a-time feature. When enabled it makes output pause at the
end of each screenful.

C-c C-q Toggle the page-at-a-time feature. This command works in both line and char
modes. When page-at-a-time is enabled, the mode-line displays the word ‘page’.

With page-at-a-time enabled, whenever Term receives more than a screenful of output
since your last input, it pauses, displaying ‘**MORE**’ in the mode-line. Type 〈SPC〉 to
display the next screenful of output. Type ? to see your other options. The interface is
similar to the more program.

31.2.10 Remote Host Shell

You can login to a remote computer, using whatever commands you would from a regular
terminal (e.g. using the telnet or rlogin commands), from a Term window.

360 GNU Emacs Manual

A program that asks you for a password will normally suppress echoing of the password,
so the password will not show up in the buffer. This will happen just as if you were using a
real terminal, if the buffer is in char mode. If it is in line mode, the password is temporarily
visible, but will be erased when you hit return. (This happens automatically; there is no
special password processing.)

When you log in to a different machine, you need to specify the type of terminal you’re
using. Terminal types ‘ansi’ or ‘vt100’ will work on most systems.

31.3 Using Emacs as a Server

Various programs such as mail can invoke your choice of editor to edit a particular piece
of text, such as a message that you are sending. By convention, most of these programs
use the environment variable EDITOR to specify which editor to run. If you set EDITOR to
‘emacs’, they invoke Emacs—but in an inconvenient fashion, by starting a new, separate
Emacs process. This is inconvenient because it takes time and because the new Emacs
process doesn’t share the buffers in any existing Emacs process.

You can arrange to use your existing Emacs process as the editor for programs like mail
by using the Emacs client and Emacs server programs. Here is how.

First, the preparation. Within Emacs, call the function server-start. (Your ‘.emacs’
file can do this automatically if you add the expression (server-start) to it.) Then,
outside Emacs, set the EDITOR environment variable to ‘emacsclient’. (Note that some
programs use a different environment variable; for example, to make TEX use ‘emacsclient’,
you should set the TEXEDIT environment variable to ‘emacsclient +%d %s’.)

Then, whenever any program invokes your specified EDITOR program, the effect is to
send a message to your principal Emacs telling it to visit a file. (That’s what the program
emacsclient does.) Emacs displays the buffer immediately and you can immediately begin
editing it.

When you’ve finished editing that buffer, type C-x # (server-edit). This saves the file
and sends a message back to the emacsclient program telling it to exit. The programs
that use EDITOR wait for the “editor” (actually, emacsclient) to exit. C-x # also checks
for other pending external requests to edit various files, and selects the next such file.

You can switch to a server buffer manually if you wish; you don’t have to arrive at it
with C-x #. But C-x # is the way to say that you are finished with one.

Finishing with a server buffer also kills the buffer, unless it already existed in the Emacs
session before the server asked to create it. However, if you set server-kill-new-buffers
to nil, then a different criterion is used: finishing with a server buffer kills it if the file name
matches the regular expression server-temp-file-regexp. This is set up to distinguish
certain “temporary” files.

If you set the variable server-window to a window or a frame, C-x # displays the server
buffer in that window or in that frame.

While mail or another application is waiting for emacsclient to finish, emacsclient
does not read terminal input. So the terminal that mail was using is effectively blocked
for the duration. In order to edit with your principal Emacs, you need to be able to use it
without using that terminal. There are three ways to do this:

Chapter 31: Miscellaneous Commands 361

• Using a window system, run mail and the principal Emacs in two separate windows.
While mail is waiting for emacsclient, the window where it was running is blocked,
but you can use Emacs by switching windows.

• Using virtual terminals, run mail in one virtual terminal and run Emacs in another.
• Use Shell mode or Term mode in Emacs to run the other program such as mail; then,

emacsclient blocks only the subshell under Emacs, and you can still use Emacs to
edit the file.

If you run emacsclient with the option ‘--no-wait’, it returns immediately without
waiting for you to “finish” the buffer in Emacs. Note that server buffers created in this way
are not killed automatically when you finish with them.

31.4 Invoking emacsclient

To run the emacsclient program, specify file names as arguments, and optionally line
numbers as well. Do it like this:

emacsclient {[+line[column]] filename}...

This tells Emacs to visit each of the specified files; if you specify a line number for a certain
file, Emacs moves to that line in the file. If you specify a column number as well, Emacs
puts point on that column in the line.

Ordinarily, emacsclient does not return until you use the C-x # command on each of
these buffers. When that happens, Emacs sends a message to the emacsclient program
telling it to return.

But if you use the option ‘-n’ or ‘--no-wait’ when running emacsclient, then it returns
immediately. (You can take as long as you like to edit the files in Emacs.)

The option ‘--alternate-editor=command’ is useful when running emacsclient in a
script. It specifies a command to run if emacsclient fails to contact Emacs. For example,
the following setting for the EDITOR environment variable will always give an editor, even
if Emacs is not running:

EDITOR="emacsclient --alternate-editor vi +%d %s"

The environment variable ALTERNATE EDITOR has the same effect, but the value of the
‘--alternate-editor’ takes precedence.

Alternatively, the file ‘etc/emacs.bash’ defines a bash function which will communicate
with a running Emacs server, or start one if none exists.

31.5 Hardcopy Output

The Emacs commands for making hardcopy let you print either an entire buffer or just
part of one, either with or without page headers. See also the hardcopy commands of Dired
(see Section 14.10 [Misc File Ops], page 143) and the diary (see Section 30.10.1 [Diary
Commands], page 342).

M-x print-buffer
Print hardcopy of current buffer with page headings containing the file name
and page number.

362 GNU Emacs Manual

M-x lpr-buffer
Print hardcopy of current buffer without page headings.

M-x print-region
Like print-buffer but print only the current region.

M-x lpr-region
Like lpr-buffer but print only the current region.

The hardcopy commands (aside from the Postscript commands) pass extra switches to
the lpr program based on the value of the variable lpr-switches. Its value should be a
list of strings, each string an option starting with ‘-’. For example, to specify a line width
of 80 columns for all the printing you do in Emacs, set lpr-switches like this:

(setq lpr-switches ’("-w80"))

You can specify the printer to use by setting the variable printer-name.
The variable lpr-command specifies the name of the printer program to run; the default

value depends on your operating system type. On most systems, the default is "lpr". The
variable lpr-headers-switches similarly specifies the extra switches to use to make page
headers. The variable lpr-add-switches controls whether to supply ‘-T’ and ‘-J’ options
(suitable for lpr) to the printer program: nil means don’t add them. lpr-add-switches
should be nil if your printer program is not compatible with lpr.

31.6 PostScript Hardcopy

These commands convert buffer contents to PostScript, either printing it or leaving it in
another Emacs buffer.

M-x ps-print-buffer
Print hardcopy of the current buffer in PostScript form.

M-x ps-print-region
Print hardcopy of the current region in PostScript form.

M-x ps-print-buffer-with-faces
Print hardcopy of the current buffer in PostScript form, showing the faces used
in the text by means of PostScript features.

M-x ps-print-region-with-faces
Print hardcopy of the current region in PostScript form, showing the faces used
in the text.

M-x ps-spool-buffer
Generate PostScript for the current buffer text.

M-x ps-spool-region
Generate PostScript for the current region.

M-x ps-spool-buffer-with-faces
Generate PostScript for the current buffer, showing the faces used.

M-x ps-spool-region-with-faces
Generate PostScript for the current region, showing the faces used.

Chapter 31: Miscellaneous Commands 363

M-x handwrite
Generates/prints PostScript for the current buffer as if handwritten.

The PostScript commands, ps-print-buffer and ps-print-region, print buffer con-
tents in PostScript form. One command prints the entire buffer; the other, just the re-
gion. The corresponding ‘-with-faces’ commands, ps-print-buffer-with-faces and
ps-print-region-with-faces, use PostScript features to show the faces (fonts and col-
ors) in the text properties of the text being printed.

If you are using a color display, you can print a buffer of program code with color
highlighting by turning on Font-Lock mode in that buffer, and using ps-print-buffer-
with-faces.

The commands whose names have ‘spool’ instead of ‘print’ generate the PostScript
output in an Emacs buffer instead of sending it to the printer.

M-x handwrite is more frivolous. It generates a PostScript rendition of the current
buffer as a cursive handwritten document. It can be customized in group handwrite. This
function only supports ISO 8859-1 characters.

31.7 Variables for PostScript Hardcopy

All the PostScript hardcopy commands use the variables ps-lpr-command and ps-lpr-
switches to specify how to print the output. ps-lpr-command specifies the command name
to run, ps-lpr-switches specifies command line options to use, and ps-printer-name
specifies the printer. If you don’t set the first two variables yourself, they take their initial
values from lpr-command and lpr-switches. If ps-printer-name is nil, printer-name
is used.

The variable ps-print-header controls whether these commands add header lines to
each page—set it to nil to turn headers off.

If your printer doesn’t support colors, you should turn off color processing by setting
ps-print-color-p to nil. By default, if the display supports colors, Emacs produces
hardcopy output with color information; on black-and-white printers, colors are emulated
with shades of gray. This might produce illegible output, even if your screen colors only use
shades of gray.

By default, PostScript printing ignores the background colors of the faces, unless the
variable ps-use-face-background is non-nil. This is to avoid unwanted interference with
the zebra stripes and background image/text.

The variable ps-paper-type specifies which size of paper to format for; legitimate val-
ues include a4, a3, a4small, b4, b5, executive, ledger, legal, letter, letter-small,
statement, tabloid. The default is letter. You can define additional paper sizes by
changing the variable ps-page-dimensions-database.

The variable ps-landscape-mode specifies the orientation of printing on the page. The
default is nil, which stands for “portrait” mode. Any non-nil value specifies “landscape”
mode.

The variable ps-number-of-columns specifies the number of columns; it takes effect in
both landscape and portrait mode. The default is 1.

364 GNU Emacs Manual

The variable ps-font-family specifies which font family to use for printing ordinary
text. Legitimate values include Courier, Helvetica, NewCenturySchlbk, Palatino and
Times. The variable ps-font-size specifies the size of the font for ordinary text. It
defaults to 8.5 points.

Emacs supports more scripts and characters than a typical PostScript printer. Thus,
some of the characters in your buffer might not be printable using the fonts built into your
printer. You can augment the fonts supplied with the printer with those from the GNU
Intlfonts package, or you can instruct Emacs to use Intlfonts exclusively. The variable ps-
multibyte-buffer controls this: the default value, nil, is appropriate for printing ASCII
and Latin-1 characters; a value of non-latin-printer is for printers which have the fonts
for ASCII, Latin-1, Japanese, and Korean characters built into them. A value of bdf-font
arranges for the BDF fonts from the Intlfonts package to be used for all characters. Finally,
a value of bdf-font-except-latin instructs the printer to use built-in fonts for ASCII and
Latin-1 characters, and Intlfonts BDF fonts for the rest.

To be able to use the BDF fonts, Emacs needs to know where to find them. The variable
bdf-directory-list holds the list of directories where Emacs should look for the fonts;
the default value includes a single directory ‘/usr/local/share/emacs/fonts/bdf’.

Many other customization variables for these commands are defined and described in
the Lisp files ‘ps-print.el’ and ‘ps-mule.el’.

31.8 Sorting Text

Emacs provides several commands for sorting text in the buffer. All operate on the
contents of the region (the text between point and the mark). They divide the text of the
region into many sort records, identify a sort key for each record, and then reorder the
records into the order determined by the sort keys. The records are ordered so that their
keys are in alphabetical order, or, for numeric sorting, in numeric order. In alphabetic
sorting, all upper-case letters ‘A’ through ‘Z’ come before lower-case ‘a’, in accord with the
ASCII character sequence.

The various sort commands differ in how they divide the text into sort records and in
which part of each record is used as the sort key. Most of the commands make each line
a separate sort record, but some commands use paragraphs or pages as sort records. Most
of the sort commands use each entire sort record as its own sort key, but some use only a
portion of the record as the sort key.

M-x sort-lines
Divide the region into lines, and sort by comparing the entire text of a line. A
numeric argument means sort into descending order.

M-x sort-paragraphs
Divide the region into paragraphs, and sort by comparing the entire text of a
paragraph (except for leading blank lines). A numeric argument means sort
into descending order.

M-x sort-pages
Divide the region into pages, and sort by comparing the entire text of a page
(except for leading blank lines). A numeric argument means sort into descend-
ing order.

Chapter 31: Miscellaneous Commands 365

M-x sort-fields
Divide the region into lines, and sort by comparing the contents of one field
in each line. Fields are defined as separated by whitespace, so the first run of
consecutive non-whitespace characters in a line constitutes field 1, the second
such run constitutes field 2, etc.
Specify which field to sort by with a numeric argument: 1 to sort by field 1,
etc. A negative argument means count fields from the right instead of from the
left; thus, minus 1 means sort by the last field. If several lines have identical
contents in the field being sorted, they keep the same relative order that they
had in the original buffer.

M-x sort-numeric-fields
Like M-x sort-fields except the specified field is converted to an integer for
each line, and the numbers are compared. ‘10’ comes before ‘2’ when considered
as text, but after it when considered as a number. By default, numbers are
interpreted according to sort-numeric-base, but numbers beginning with ‘0x’
or ‘0’ are interpreted as hexadecimal and octal, respectively.

M-x sort-columns
Like M-x sort-fields except that the text within each line used for comparison
comes from a fixed range of columns. See below for an explanation.

M-x reverse-region
Reverse the order of the lines in the region. This is useful for sorting into
descending order by fields or columns, since those sort commands do not have
a feature for doing that.

For example, if the buffer contains this:
On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
whether the file has changed on disk since it was last visited or
saved. If it has, you are asked to confirm that you want to change
the buffer.

applying M-x sort-lines to the entire buffer produces this:
On systems where clash detection (locking of files being edited) is
implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
whether the file has changed on disk since it was last visited or

where the upper-case ‘O’ sorts before all lower-case letters. If you use C-u 2 M-x
sort-fields instead, you get this:

implemented, Emacs also checks the first time you modify a buffer
saved. If it has, you are asked to confirm that you want to change
the buffer.
On systems where clash detection (locking of files being edited) is
whether the file has changed on disk since it was last visited or

where the sort keys were ‘Emacs’, ‘If’, ‘buffer’, ‘systems’ and ‘the’.
M-x sort-columns requires more explanation. You specify the columns by putting point

at one of the columns and the mark at the other column. Because this means you cannot

366 GNU Emacs Manual

put point or the mark at the beginning of the first line of the text you want to sort, this
command uses an unusual definition of “region”: all of the line point is in is considered part
of the region, and so is all of the line the mark is in, as well as all the lines in between.

For example, to sort a table by information found in columns 10 to 15, you could put
the mark on column 10 in the first line of the table, and point on column 15 in the last line
of the table, and then run sort-columns. Equivalently, you could run it with the mark on
column 15 in the first line and point on column 10 in the last line.

This can be thought of as sorting the rectangle specified by point and the mark, except
that the text on each line to the left or right of the rectangle moves along with the text
inside the rectangle. See Section 9.4 [Rectangles], page 73.

Many of the sort commands ignore case differences when comparing, if sort-fold-case
is non-nil.

31.9 Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest temporarily
inaccessible. The portion which you can still get to is called the accessible portion. Cancel-
ing the narrowing, which makes the entire buffer once again accessible, is called widening.
The amount of narrowing in effect in a buffer at any time is called the buffer’s restriction.

Narrowing can make it easier to concentrate on a single subroutine or paragraph by
eliminating clutter. It can also be used to restrict the range of operation of a replace
command or repeating keyboard macro.

C-x n n Narrow down to between point and mark (narrow-to-region).

C-x n w Widen to make the entire buffer accessible again (widen).

C-x n p Narrow down to the current page (narrow-to-page).

C-x n d Narrow down to the current defun (narrow-to-defun).

When you have narrowed down to a part of the buffer, that part appears to be all there
is. You can’t see the rest, you can’t move into it (motion commands won’t go outside the
accessible part), you can’t change it in any way. However, it is not gone, and if you save
the file all the inaccessible text will be saved. The word ‘Narrow’ appears in the mode line
whenever narrowing is in effect.

The primary narrowing command is C-x n n (narrow-to-region). It sets the current
buffer’s restrictions so that the text in the current region remains accessible, but all text
before the region or after the region is inaccessible. Point and mark do not change.

Alternatively, use C-x n p (narrow-to-page) to narrow down to the current page. See
Section 21.4 [Pages], page 202, for the definition of a page. C-x n d (narrow-to-defun)
narrows down to the defun containing point (see Section 22.2 [Defuns], page 226).

The way to cancel narrowing is to widen with C-x n w (widen). This makes all text in
the buffer accessible again.

You can get information on what part of the buffer you are narrowed down to using the
C-x = command. See Section 4.9 [Position Info], page 39.

Because narrowing can easily confuse users who do not understand it, narrow-to-region
is normally a disabled command. Attempting to use this command asks for confirmation

Chapter 31: Miscellaneous Commands 367

and gives you the option of enabling it; if you enable the command, confirmation will no
longer be required for it. See Section 32.4.11 [Disabling], page 402.

31.10 Two-Column Editing

Two-column mode lets you conveniently edit two side-by-side columns of text. It uses
two side-by-side windows, each showing its own buffer.

There are three ways to enter two-column mode:

〈F2〉 2 or C-x 6 2
Enter two-column mode with the current buffer on the left, and on the right,
a buffer whose name is based on the current buffer’s name (2C-two-columns).
If the right-hand buffer doesn’t already exist, it starts out empty; the current
buffer’s contents are not changed.
This command is appropriate when the current buffer is empty or contains just
one column and you want to add another column.

〈F2〉 s or C-x 6 s
Split the current buffer, which contains two-column text, into two buffers, and
display them side by side (2C-split). The current buffer becomes the left-hand
buffer, but the text in the right-hand column is moved into the right-hand buffer.
The current column specifies the split point. Splitting starts with the current
line and continues to the end of the buffer.
This command is appropriate when you have a buffer that already contains
two-column text, and you wish to separate the columns temporarily.

〈F2〉 b buffer 〈RET〉
C-x 6 b buffer 〈RET〉

Enter two-column mode using the current buffer as the left-hand buffer, and
using buffer buffer as the right-hand buffer (2C-associate-buffer).

〈F2〉 s or C-x 6 s looks for a column separator, which is a string that appears on each
line between the two columns. You can specify the width of the separator with a numeric
argument to 〈F2〉 s; that many characters, before point, constitute the separator string. By
default, the width is 1, so the column separator is the character before point.

When a line has the separator at the proper place, 〈F2〉 s puts the text after the separator
into the right-hand buffer, and deletes the separator. Lines that don’t have the column
separator at the proper place remain unsplit; they stay in the left-hand buffer, and the
right-hand buffer gets an empty line to correspond. (This is the way to write a line that
“spans both columns while in two-column mode”: write it in the left-hand buffer, and put
an empty line in the right-hand buffer.)

The command C-x 6 〈RET〉 or 〈F2〉 〈RET〉 (2C-newline) inserts a newline in each of the
two buffers at corresponding positions. This is the easiest way to add a new line to the
two-column text while editing it in split buffers.

When you have edited both buffers as you wish, merge them with 〈F2〉 1 or C-x 6 1 (2C-
merge). This copies the text from the right-hand buffer as a second column in the other
buffer. To go back to two-column editing, use 〈F2〉 s.

368 GNU Emacs Manual

Use 〈F2〉 d or C-x 6 d to dissociate the two buffers, leaving each as it stands (2C-
dissociate). If the other buffer, the one not current when you type 〈F2〉 d, is empty,
〈F2〉 d kills it.

31.11 Editing Binary Files

There is a special major mode for editing binary files: Hexl mode. To use it, use M-x
hexl-find-file instead of C-x C-f to visit the file. This command converts the file’s
contents to hexadecimal and lets you edit the translation. When you save the file, it is
converted automatically back to binary.

You can also use M-x hexl-mode to translate an existing buffer into hex. This is useful
if you visit a file normally and then discover it is a binary file.

Ordinary text characters overwrite in Hexl mode. This is to reduce the risk of acciden-
tally spoiling the alignment of data in the file. There are special commands for insertion.
Here is a list of the commands of Hexl mode:

C-M-d Insert a byte with a code typed in decimal.

C-M-o Insert a byte with a code typed in octal.

C-M-x Insert a byte with a code typed in hex.

C-x [Move to the beginning of a 1k-byte “page.”

C-x] Move to the end of a 1k-byte “page.”

M-g Move to an address specified in hex.

M-j Move to an address specified in decimal.

C-c C-c Leave Hexl mode, going back to the major mode this buffer had before you
invoked hexl-mode.

Other Hexl commands let you insert strings (sequences) of binary bytes, move by shorts
or ints, etc.; type C-h a hexl-〈RET〉 for details.

31.12 Saving Emacs Sessions

You can use the Desktop library to save the state of Emacs from one session to another.
Saving the state means that Emacs starts up with the same set of buffers, major modes,
buffer positions, and so on that the previous Emacs session had.

To use Desktop, you should use the Customization buffer (see Section 32.2.2 [Easy
Customization], page 380) to set desktop-enable to a non-nil value, or add these lines at
the end of your ‘.emacs’ file:

(desktop-load-default)
(desktop-read)

The first time you save the state of the Emacs session, you must do it manually, with the
command M-x desktop-save. Once you have done that, exiting Emacs will save the state
again—not only the present Emacs session, but also subsequent sessions. You can also save
the state at any time, without exiting Emacs, by typing M-x desktop-save again.

Chapter 31: Miscellaneous Commands 369

In order for Emacs to recover the state from a previous session, you must start it with the
same current directory as you used when you started the previous session. This is because
desktop-read looks in the current directory for the file to read. This means that you can
have separate saved sessions in different directories; the directory in which you start Emacs
will control which saved session to use.

The variable desktop-files-not-to-save controls which files are excluded from state
saving. Its value is a regular expression that matches the files to exclude. By default, remote
(ftp-accessed) files are excluded; this is because visiting them again in the subsequent session
would be slow. If you want to include these files in state saving, set desktop-files-not-
to-save to "^$". See Section 14.13 [Remote Files], page 145.

The Saveplace library provides a simpler feature that records your position in each file
when you kill its buffer (or kill Emacs), and jumps to the same position when you visit
the file again (even in another Emacs session). Use M-x toggle-save-place to turn on
place-saving in a given file. Customize the option save-place to turn it on for all files in
each session.

31.13 Recursive Editing Levels

A recursive edit is a situation in which you are using Emacs commands to perform
arbitrary editing while in the middle of another Emacs command. For example, when you
type C-r inside of a query-replace, you enter a recursive edit in which you can change the
current buffer. On exiting from the recursive edit, you go back to the query-replace.

Exiting the recursive edit means returning to the unfinished command, which continues
execution. The command to exit is C-M-c (exit-recursive-edit).

You can also abort the recursive edit. This is like exiting, but also quits the unfinished
command immediately. Use the command C-] (abort-recursive-edit) to do this. See
Section 33.1 [Quitting], page 409.

The mode line shows you when you are in a recursive edit by displaying square brackets
around the parentheses that always surround the major and minor mode names. Every
window’s mode line shows this in the same way, since being in a recursive edit is true of
Emacs as a whole rather than any particular window or buffer.

It is possible to be in recursive edits within recursive edits. For example, after typing
C-r in a query-replace, you may type a command that enters the debugger. This begins
a recursive editing level for the debugger, within the recursive editing level for C-r. Mode
lines display a pair of square brackets for each recursive editing level currently in progress.

Exiting the inner recursive edit (such as, with the debugger c command) resumes the
command running in the next level up. When that command finishes, you can then use
C-M-c to exit another recursive editing level, and so on. Exiting applies to the innermost
level only. Aborting also gets out of only one level of recursive edit; it returns immediately
to the command level of the previous recursive edit. If you wish, you can then abort the
next recursive editing level.

Alternatively, the command M-x top-level aborts all levels of recursive edits, returning
immediately to the top-level command reader.

The text being edited inside the recursive edit need not be the same text that you were
editing at top level. It depends on what the recursive edit is for. If the command that

370 GNU Emacs Manual

invokes the recursive edit selects a different buffer first, that is the buffer you will edit
recursively. In any case, you can switch buffers within the recursive edit in the normal
manner (as long as the buffer-switching keys have not been rebound). You could probably
do all the rest of your editing inside the recursive edit, visiting files and all. But this could
have surprising effects (such as stack overflow) from time to time. So remember to exit or
abort the recursive edit when you no longer need it.

In general, we try to minimize the use of recursive editing levels in GNU Emacs. This
is because they constrain you to “go back” in a particular order—from the innermost level
toward the top level. When possible, we present different activities in separate buffers so
that you can switch between them as you please. Some commands switch to a new major
mode which provides a command to switch back. These approaches give you more flexibility
to go back to unfinished tasks in the order you choose.

31.14 Emulation

GNU Emacs can be programmed to emulate (more or less) most other editors. Standard
facilities can emulate these:

CRiSP/Brief (PC editor)
You can turn on key bindings to emulate the CRiSP/Brief editor with M-x
crisp-mode. Note that this rebinds M-x to exit Emacs unless you change
the user option crisp-override-meta-x. You can also use the command M-x
scroll-all-mode or set the user option crisp-load-scroll-all to emulate
CRiSP’s scroll-all feature (scrolling all windows together).

EDT (DEC VMS editor)
Turn on EDT emulation with M-x edt-emulation-on. M-x
edt-emulation-off restores normal Emacs command bindings.
Most of the EDT emulation commands are keypad keys, and most standard
Emacs key bindings are still available. The EDT emulation rebindings are done
in the global keymap, so there is no problem switching buffers or major modes
while in EDT emulation.

“PC” bindings
The command M-x pc-bindings-mode sets up certain key bindings for “PC
compatibility”—what people are often used to on PCs—as follows: Delete and
its variants delete forward instead of backward, C-Backspace kills backward a
word (as C-Delete normally would), M-Backspace does undo, Home and End
move to beginning and end of line, C-Home and C-End move to beginning and
end of buffer and C-Escape does list-buffers.

PC Selection mode
The command M-x pc-selection-mode enables a global minor mode that em-
ulates the mark, copy, cut and paste commands of various other systems—an
interface known as CUA. It establishes the key bindings of PC mode, and also
modifies the bindings of the cursor keys and the next, prior, home and end
keys. It does not provide the full set of CUA key bindings—the fundamental
Emacs keys C-c, C-v and C-x are not changed.

Chapter 31: Miscellaneous Commands 371

The standard keys for moving around (right, left, up, down, home, end, prior,
next, called “move-keys”) deactivate the mark in PC selection mode. However,
using Shift together with the “move keys” activates the region over which they
move. The copy, cut and paste functions are available on C-insert, S-delete
and S-insert respectively.
The s-region package provides similar, but less complete, facilities.

TPU (DEC VMS editor)
M-x tpu-edt-on turns on emulation of the TPU editor emulating EDT.

vi (Berkeley editor)
Viper is the newest emulator for vi. It implements several levels of emulation;
level 1 is closest to vi itself, while level 5 departs somewhat from strict emulation
to take advantage of the capabilities of Emacs. To invoke Viper, type M-x
viper-mode; it will guide you the rest of the way and ask for the emulation
level. See Info file ‘viper’, node ‘Top’.

vi (another emulator)
M-x vi-mode enters a major mode that replaces the previously established ma-
jor mode. All of the vi commands that, in real vi, enter “input” mode are
programmed instead to return to the previous major mode. Thus, ordinary
Emacs serves as vi’s “input” mode.
Because vi emulation works through major modes, it does not work to switch
buffers during emulation. Return to normal Emacs first.
If you plan to use vi emulation much, you probably want to bind a key to the
vi-mode command.

vi (alternate emulator)
M-x vip-mode invokes another vi emulator, said to resemble real vi more thor-
oughly than M-x vi-mode. “Input” mode in this emulator is changed from
ordinary Emacs so you can use 〈ESC〉 to go back to emulated vi command mode.
To get from emulated vi command mode back to ordinary Emacs, type C-z.
This emulation does not work through major modes, and it is possible to switch
buffers in various ways within the emulator. It is not so necessary to assign a
key to the command vip-mode as it is with vi-mode because terminating insert
mode does not use it.
See Info file ‘vip’, node ‘Top’, for full information.

WordStar (old wordprocessor)
M-x wordstar-mode provides a major mode with WordStar-like key bindings.

31.15 Hyperlinking and Navigation Features

Various modes documented elsewhere have hypertext features so that you can follow
links, usually by clicking Mouse-2 on the link or typing 〈RET〉 while point is on the link. Info
mode, Help mode and the Dired-like modes are examples. The Tags facility links between
uses and definitions in source files, see Section 24.2 [Tags], page 268. Imenu provides
navigation amongst items indexed in the current buffer, see Section 22.2.3 [Imenu], page 227.

372 GNU Emacs Manual

Info-lookup provides mode-specific lookup of definitions in Info indexes, see Section 22.6
[Documentation], page 237. Speedbar maintains a frame in which links to files, and locations
in files are displayed, see Section 17.9 [Speedbar], page 169.

Other non-mode-specific facilities described in this section enable following links from
the current buffer in a context-sensitive fashion.

31.15.1 Following URLs

M-x browse-url 〈RET〉 url 〈RET〉
Load a URL into a Web browser.

The Browse-URL package provides facilities for following URLs specifying links on the
World Wide Web. Usually this works by invoking a web browser, but you can, for instance,
arrange to invoke compose-mail from ‘mailto:’ URLs.

The general way to use this feature is to type M-x browse-url, which displays a specified
URL. If point is located near a plausible URL, that URL is used as the default. Other
commands are available which you might like to bind to keys, such as browse-url-at-
point and browse-url-at-mouse.

You can customize Browse-URL’s behavior via various options in the browse-url Cus-
tomize group, particularly browse-url-browser-function. You can invoke actions depen-
dent on the type of URL by defining browse-url-browser-function as an association list.
The package’s commentary available via C-h p provides more information. Packages with
facilities for following URLs should always go through Browse-URL, so that the customiza-
tion options for Browse-URL will affect all browsing in Emacs.

31.15.2 Activating URLs

M-x goto-address
Activate URLs and e-mail addresses in the current buffer.

You can make URLs in the current buffer active with M-x goto-address. This finds all
the URLs in the buffer, and establishes bindings for Mouse-2 and C-c 〈RET〉 on them. After
activation, if you click on a URL with Mouse-2, or move to a URL and type C-c 〈RET〉, that
will display the web page that the URL specifies. For a ‘mailto’ URL, it sends mail instead,
using your selected mail-composition method (see Section 27.6 [Mail Methods], page 300).

It can be useful to add goto-address to mode hooks and the hooks used to display
an incoming message. rmail-show-message-hook is the appropriate hook for Rmail, and
mh-show-mode-hook for MH-E. This is not needed for Gnus, which has a similar feature of
its own.

31.15.3 Finding Files and URLs at Point

FFAP mode replaces certain key bindings for finding files, including C-x C-f, with com-
mands that provide more sensitive defaults. These commands behave like the ordinary ones
when given a prefix argument. Otherwise, they get the default file name or URL from the
text around point. If what is found in the buffer has the form of a URL rather than a file
name, the commands use browse-url to view it.

Chapter 31: Miscellaneous Commands 373

This feature is useful for following references in mail or news buffers, ‘README’ files,
‘MANIFEST’ files, and so on. The ‘ffap’ package’s commentary available via C-h p and the
ffap Custom group provide details.

You can turn on FFAP minor mode to make the following key bindings and to install
hooks for using ffap in Rmail, Gnus and VM article buffers.

C-x C-f filename 〈RET〉
Find filename, guessing a default from text around point (find-file-at-
point).

C-x 4 f ffap-other-window, analogous to find-file-other-window.

C-x 5 f ffap-other-frame, analogous to find-file-other-frame.

M-x ffap-next
Search buffer for next file name or URL, then find that file or URL.

C-x d directory 〈RET〉
Start Dired on directory, defaulting to the directory name at point (ffap-
dired-at-point).

S-Mouse-3
ffap-at-mouse finds the file guessed from text around the position of a mouse
click.

C-S-Mouse-3
Display a menu of files and URLs mentioned in current buffer, then find the
one you select (ffap-menu).

31.15.4 Finding Function and Variable Definitions

M-x find-function 〈RET〉 function 〈RET〉
Find the definition of function in its source file.

M-x find-variable 〈RET〉 variable 〈RET〉
Find the definition of variable in its source file.

M-x find-function-on-key 〈RET〉 key
Find the definition of the function that key invokes.

These commands provide an easy way to find the definitions of Emacs Lisp functions
and variables. They are similar in purpose to the Tags facility (see Section 24.2 [Tags],
page 268), but don’t require a tags table; on the other hand, they only work for function
and variable definitions that are already loaded in the Emacs session.

To find the definition of a function, use M-x find-function. M-x find-variable finds
the definition of a specified variable. M-x find-function-on-key finds the definition of the
function bound to a specified key.

To use these commands, you must have the Lisp source (‘.el’) files available along with
the compiled (‘.elc’) files, in directories in load-path. You can use compressed source files
if you enable Auto Compression mode. These commands only handle definitions written in
Lisp, not primitive functions or variables defined in the C code of Emacs.

374 GNU Emacs Manual

31.16 Dissociated Press

M-x dissociated-press is a command for scrambling a file of text either word by word
or character by character. Starting from a buffer of straight English, it produces extremely
amusing output. The input comes from the current Emacs buffer. Dissociated Press writes
its output in a buffer named ‘*Dissociation*’, and redisplays that buffer after every couple
of lines (approximately) so you can read the output as it comes out.

Dissociated Press asks every so often whether to continue generating output. Answer n
to stop it. You can also stop at any time by typing C-g. The dissociation output remains
in the ‘*Dissociation*’ buffer for you to copy elsewhere if you wish.

Dissociated Press operates by jumping at random from one point in the buffer to another.
In order to produce plausible output rather than gibberish, it insists on a certain amount
of overlap between the end of one run of consecutive words or characters and the start of
the next. That is, if it has just output ‘president’ and then decides to jump to a different
point in the file, it might spot the ‘ent’ in ‘pentagon’ and continue from there, producing
‘presidentagon’.2 Long sample texts produce the best results.

A positive argument to M-x dissociated-press tells it to operate character by charac-
ter, and specifies the number of overlap characters. A negative argument tells it to operate
word by word and specifies the number of overlap words. In this mode, whole words are
treated as the elements to be permuted, rather than characters. No argument is equiva-
lent to an argument of two. For your againformation, the output goes only into the buffer
‘*Dissociation*’. The buffer you start with is not changed.

Dissociated Press produces nearly the same results as a Markov chain based on a fre-
quency table constructed from the sample text. It is, however, an independent, ignoriginal
invention. Dissociated Press techniquitously copies several consecutive characters from the
sample between random choices, whereas a Markov chain would choose randomly for each
word or character. This makes for more plausible sounding results, and runs faster.

It is a mustatement that too much use of Dissociated Press can be a developediment
to your real work. Sometimes to the point of outragedy. And keep dissociwords out of
your documentation, if you want it to be well userenced and properbose. Have fun. Your
buggestions are welcome.

31.17 Other Amusements

If you are a little bit bored, you can try M-x hanoi. If you are considerably bored, give
it a numeric argument. If you are very, very bored, try an argument of 9. Sit back and
watch.

If you want a little more personal involvement, try M-x gomoku, which plays the game
Go Moku with you.

M-x blackbox, M-x mpuz and M-x 5x5 are kinds of puzzles. blackbox challenges you to
determine the location of objects inside a box by tomography. mpuz displays a multiplication
puzzle with letters standing for digits in a code that you must guess—to guess a value, type
a letter and then the digit you think it stands for. The aim of 5x5 is to fill in all the squares.

2 This dissociword actually appeared during the Vietnam War, when it was very appropriate.

Chapter 31: Miscellaneous Commands 375

M-x decipher helps you to cryptanalyze a buffer which is encrypted in a simple monoal-
phabetic substitution cipher.

M-x dunnet runs an adventure-style exploration game, which is a bigger sort of puzzle.
M-x lm runs a relatively non-participatory game in which a robot attempts to maneuver

towards a tree at the center of the window based on unique olfactory cues from each of the
four directions.

M-x life runs Conway’s “Life” cellular automaton.
M-x morse-region converts text in a region to Morse code and M-x unmorse-region

converts it back. No cause for remorse.
M-x pong plays a Pong-like game, bouncing the ball off opposing bats.
M-x solitaire plays a game of solitaire in which you jump pegs across other pegs.
M-x studlify-region studlify-cases the region, producing text like this:

M-x stUdlIfY-RegioN stUdlIfY-CaSeS thE region.

M-x tetris runs an implementation of the well-known Tetris game. Likewise, M-x snake
provides an implementation of Snake.

When you are frustrated, try the famous Eliza program. Just do M-x doctor. End each
input by typing 〈RET〉 twice.

When you are feeling strange, type M-x yow.
The command M-x zone plays games with the display when Emacs is idle.

376 GNU Emacs Manual

Chapter 32: Customization 377

32 Customization

This chapter talks about various topics relevant to adapting the behavior of Emacs in
minor ways. See The Emacs Lisp Reference Manual for how to make more far-reaching
changes.

Customization that you do within Emacs normally affects only the particular Emacs ses-
sion that you do it in–it does not persist between sessions unless you save the customization
in a file such as ‘.emacs’ or ‘.Xdefaults’ that will affect future sessions. See Section 32.7
[Init File], page 403. In the customization buffer, when you save customizations for future
sessions, this actually works by editing ‘.emacs’ for you.

32.1 Minor Modes

Minor modes are optional features which you can turn on or off. For example, Auto Fill
mode is a minor mode in which 〈SPC〉 breaks lines between words as you type. All the minor
modes are independent of each other and of the selected major mode. Most minor modes
say in the mode line when they are on; for example, ‘Fill’ in the mode line means that
Auto Fill mode is on.

Append -mode to the name of a minor mode to get the name of a command function
that turns the mode on or off. Thus, the command to enable or disable Auto Fill mode is
called M-x auto-fill-mode. These commands are usually invoked with M-x, but you can
bind keys to them if you wish. With no argument, the function turns the mode on if it was
off and off if it was on. This is known as toggling. A positive argument always turns the
mode on, and an explicit zero argument or a negative argument always turns it off.

Some minor modes are global: while enabled, they affect everything you do in the Emacs
session, in all buffers. Other minor modes are buffer-local; they apply only to the current
buffer, so you can enable the mode in certain buffers and not others.

For most minor modes, the command name is also the name of a variable which directly
controls the mode. The mode is enabled whenever this variable’s value is non-nil, and the
minor-mode command works by setting the variable. For example, the command outline-
minor-mode works by setting the value of outline-minor-mode as a variable; it is this
variable that directly turns Outline minor mode on and off. To check whether a given
minor mode works this way, use C-h v to ask for documentation on the variable name.

These minor-mode variables provide a good way for Lisp programs to turn minor modes
on and off; they are also useful in a file’s local variables list. But please think twice before
setting minor modes with a local variables list, because most minor modes are matter of
user preference—other users editing the same file might not want the same minor modes
you prefer.

The buffer-local minor modes include Abbrev mode, Auto Fill mode, Auto Save mode,
Font-Lock mode, Glasses mode, ISO Accents mode, Outline minor mode, Overwrite mode,
and Binary Overwrite mode.

Abbrev mode allows you to define abbreviations that automatically expand as you type
them. For example, ‘amd’ might expand to ‘abbrev mode’. See Chapter 25 [Abbrevs],
page 283, for full information.

378 GNU Emacs Manual

Auto Fill mode allows you to enter filled text without breaking lines explicitly. Emacs
inserts newlines as necessary to prevent lines from becoming too long. See Section 21.5
[Filling], page 203.

Auto Save mode causes the contents of a buffer to be saved periodically to reduce the
amount of work you can lose in case of a system crash. See Section 14.5 [Auto Save],
page 120.

Enriched mode enables editing and saving of formatted text. See Section 21.11 [Format-
ted Text], page 218.

Flyspell mode automatically highlights misspelled words. See Section 13.4 [Spelling],
page 106.

Font-Lock mode automatically highlights certain textual units found in programs, such
as comments, strings, and function names being defined. This requires a window system
that can display multiple fonts. See Section 11.1 [Faces], page 79.

ISO Accents mode makes the characters ‘‘’, ‘’’, ‘"’, ‘^’, ‘/’ and ‘~’ combine with the
following letter, to produce an accented letter in the ISO Latin-1 character set. The newer
and more general feature of input methods more or less supersedes ISO Accents mode. See
Section 18.13 [Single-Byte Character Support], page 190.

Outline minor mode provides the same facilities as the major mode called Outline mode;
but since it is a minor mode instead, you can combine it with any major mode. See
Section 21.8 [Outline Mode], page 208.

Overwrite mode causes ordinary printing characters to replace existing text instead of
shoving it to the right. For example, if point is in front of the ‘B’ in ‘FOOBAR’, then in
Overwrite mode typing a G changes it to ‘FOOGAR’, instead of producing ‘FOOGBAR’ as usual.
In Overwrite mode, the command C-q inserts the next character whatever it may be, even
if it is a digit—this gives you a way to insert a character instead of replacing an existing
character.

The command overwrite-mode is an exception to the rule that commands which toggle
minor modes are normally not bound to keys: it is bound to the 〈INSERT〉 function key. This
is because many other programs bind 〈INSERT〉 to similar functions.

Binary Overwrite mode is a variant of Overwrite mode for editing binary files; it treats
newlines and tabs like other characters, so that they overwrite other characters and can be
overwritten by them. In Binary Overwrite mode, digits after C-q specify an octal character
code, as usual.

The following minor modes normally apply to all buffers at once. Since each is enabled
or disabled by the value of a variable, you can set them differently for particular buffers,
by explicitly making the corresponding variables local in those buffers. See Section 32.2.4
[Locals], page 387.

Icomplete mode displays an indication of available completions when you are in the
minibuffer and completion is active. See Section 5.3.4 [Completion Options], page 47.

Line Number mode enables continuous display in the mode line of the line number of
point, and Column Number mode enables display of the column number. See Section 1.3
[Mode Line], page 23.

Scroll Bar mode gives each window a scroll bar (see Section 17.13 [Scroll Bars], page 171).
Menu Bar mode gives each frame a menu bar (see Section 17.15 [Menu Bars], page 172).
Both of these modes are enabled by default when you use the X Window System.

Chapter 32: Customization 379

In Transient Mark mode, every change in the buffer contents “deactivates” the mark,
so that commands that operate on the region will get an error. This means you must
either set the mark, or explicitly “reactivate” it, before each command that uses the region.
The advantage of Transient Mark mode is that Emacs can display the region highlighted
(currently only when using X). See Chapter 8 [Mark], page 61.

32.2 Variables

A variable is a Lisp symbol which has a value. The symbol’s name is also called the
name of the variable. A variable name can contain any characters that can appear in a file,
but conventionally variable names consist of words separated by hyphens. A variable can
have a documentation string which describes what kind of value it should have and how the
value will be used.

Lisp allows any variable to have any kind of value, but most variables that Emacs uses
require a value of a certain type. Often the value should always be a string, or should
always be a number. Sometimes we say that a certain feature is turned on if a variable is
“non-nil,” meaning that if the variable’s value is nil, the feature is off, but the feature is
on for any other value. The conventional value to use to turn on the feature—since you
have to pick one particular value when you set the variable—is t.

Emacs uses many Lisp variables for internal record keeping, as any Lisp program must,
but the most interesting variables for you are the ones that exist for the sake of customiza-
tion. Emacs does not (usually) change the values of these variables; instead, you set the
values, and thereby alter and control the behavior of certain Emacs commands. These
variables are called user options. Most user options are documented in this manual, and
appear in the Variable Index (see [Variable Index], page 513).

One example of a variable which is a user option is fill-column, which specifies the
position of the right margin (as a number of characters from the left margin) to be used by
the fill commands (see Section 21.5 [Filling], page 203).

32.2.1 Examining and Setting Variables

C-h v var 〈RET〉
Display the value and documentation of variable var (describe-variable).

M-x set-variable 〈RET〉 var 〈RET〉 value 〈RET〉
Change the value of variable var to value.

To examine the value of a single variable, use C-h v (describe-variable), which reads
a variable name using the minibuffer, with completion. It displays both the value and the
documentation of the variable. For example,

C-h v fill-column 〈RET〉
displays something like this:

fill-column’s value is 70

Documentation:
*Column beyond which automatic line-wrapping should happen.
Automatically becomes buffer-local when set in any fashion.

380 GNU Emacs Manual

The star at the beginning of the documentation indicates that this variable is a user option.
C-h v is not restricted to user options; it allows any variable name.

The most convenient way to set a specific user option is with M-x set-variable. This
reads the variable name with the minibuffer (with completion), and then reads a Lisp
expression for the new value using the minibuffer a second time. For example,

M-x set-variable 〈RET〉 fill-column 〈RET〉 75 〈RET〉
sets fill-column to 75.

M-x set-variable is limited to user option variables, but you can set any variable with
a Lisp expression, using the function setq. Here is a setq expression to set fill-column:

(setq fill-column 75)

To execute an expression like this one, go to the ‘*scratch*’ buffer, type in the expres-
sion, and then type C-j. See Section 23.9 [Lisp Interaction], page 264.

Setting variables, like all means of customizing Emacs except where otherwise stated,
affects only the current Emacs session.

32.2.2 Easy Customization Interface

A convenient way to find the user option variables that you want to change, and then
change them, is with M-x customize. This command creates a customization buffer with
which you can browse through the Emacs user options in a logically organized structure,
then edit and set their values. You can also use the customization buffer to save settings
permanently. (Not all Emacs user options are included in this structure as of yet, but we
are adding the rest.)

The appearance of the example buffers in the following is typically different under a
window system where faces can be used to indicate the active fields and other features.

32.2.2.1 Customization Groups

For customization purposes, user options are organized into groups to help you find
them. Groups are collected into bigger groups, all the way up to a master group called
Emacs.

M-x customize creates a customization buffer that shows the top-level Emacs group and
the second-level groups immediately under it. It looks like this, in part:

/- Emacs group: ---\
[State]: visible group members are all at standard settings.

Customization of the One True Editor.
See also [Manual].

Confirm Kill Emacs: [Hide] [Value Menu] Don’t confirm
[State]: this option is unchanged from its standard setting.

How to ask for confirmation when leaving Emacs. [More]

Editing group: [Go to Group]
Basic text editing facilities.

External group: [Go to Group]

Chapter 32: Customization 381

Interfacing to external utilities.

more second-level groups

\- Emacs group end --/

This says that the buffer displays the contents of the Emacs group. The other groups are
listed because they are its contents. But they are listed differently, without indentation and
dashes, because their contents are not included. Each group has a single-line documentation
string; the Emacs group also has a ‘[State]’ line.

Most of the text in the customization buffer is read-only, but it typically includes some
editable fields that you can edit. There are also active fields; this means a field that does
something when you invoke it. To invoke an active field, either click on it with Mouse-1, or
move point to it and type 〈RET〉.

For example, the phrase ‘[Go to Group]’ that appears in a second-level group is an active
field. Invoking the ‘[Go to Group]’ field for a group creates a new customization buffer,
which shows that group and its contents. This field is a kind of hypertext link to another
group.

The Emacs group includes a few user options itself, but mainly it contains other groups,
which contain more groups, which contain the user options. By browsing the hierarchy of
groups, you will eventually find the feature you are interested in customizing. Then you can
use the customization buffer to set the options and faces pertaining to that feature. You can
also go straight to a particular group by name, using the command M-x customize-group.

You can view the structure of customization groups on a larger scale with M-x
customize-browse. This command creates a special kind of customization buffer which
shows only the names of the groups (and options and faces), and their structure.

In this buffer, you can show the contents of a group by invoking ‘[+]’. When the group
contents are visible, this button changes to ‘[-]’; invoking that hides the group contents.

Each group, option or face name in this buffer has an active field which says ‘[Group]’,
‘[Option]’ or ‘[Face]’. Invoking that active field creates an ordinary customization buffer
showing just that group and its contents, just that option, or just that face. This is the
way to set values in it.

32.2.2.2 Changing an Option

Here is an example of what a user option looks like in the customization buffer:
Kill Ring Max: [Hide] 60

[State]: this option is unchanged from its standard setting.
Maximum length of kill ring before oldest elements are thrown away.

The text following ‘[Hide]’, ‘60’ in this case, indicates the current value of the option.
If you see ‘[Show]’ instead of ‘[Hide]’, it means that the value is hidden; the customization
buffer initially hides values that take up several lines. Invoke ‘[Show]’ to show the value.

The line after the option name indicates the customization state of the option: in the
example above, it says you have not changed the option yet. The word ‘[State]’ at the
beginning of this line is active; you can get a menu of various operations by invoking it with
Mouse-1 or 〈RET〉. These operations are essential for customizing the variable.

382 GNU Emacs Manual

The line after the ‘[State]’ line displays the beginning of the option’s documentation
string. If there are more lines of documentation, this line ends with ‘[More]’; invoke this
to show the full documentation string.

To enter a new value for ‘Kill Ring Max’, move point to the value and edit it textually.
For example, you can type M-d, then insert another number.

When you begin to alter the text, you will see the ‘[State]’ line change to say that you
have edited the value:

[State]: you have edited the value as text, but not set the option.

Editing the value does not actually set the option variable. To do that, you must set
the option. To do this, invoke the word ‘[State]’ and choose ‘Set for Current Session’.

The state of the option changes visibly when you set it:
[State]: you have set this option, but not saved it for future sessions.

You don’t have to worry about specifying a value that is not valid; setting the option
checks for validity and will not really install an unacceptable value.

While editing a value or field that is a file name, directory name, command name, or
anything else for which completion is defined, you can type M-〈TAB〉 (widget-complete) to
do completion.

Some options have a small fixed set of possible legitimate values. These options don’t
let you edit the value textually. Instead, an active field ‘[Value Menu]’ appears before the
value; invoke this field to edit the value. For a boolean “on or off” value, the active field
says ‘[Toggle]’, and it changes to the other value. ‘[Value Menu]’ and ‘[Toggle]’ edit the
buffer; the changes take effect when you use the ‘Set for Current Session’ operation.

Some options have values with complex structure. For example, the value of file-
coding-system-alist is an association list. Here is how it appears in the customization
buffer:

File Coding System Alist: [Hide]
[INS] [DEL] File regexp: \.elc\’

Choice: [Value Menu] Encoding/decoding pair:
Decoding: emacs-mule
Encoding: emacs-mule

[INS] [DEL] File regexp: \(\‘\|/\)loaddefs.el\’
Choice: [Value Menu] Encoding/decoding pair:
Decoding: raw-text
Encoding: raw-text-unix

[INS] [DEL] File regexp: \.tar\’
Choice: [Value Menu] Encoding/decoding pair:
Decoding: no-conversion
Encoding: no-conversion

[INS] [DEL] File regexp:
Choice: [Value Menu] Encoding/decoding pair:
Decoding: undecided
Encoding: nil

[INS]
[State]: this option is unchanged from its standard setting.

Alist to decide a coding system to use for a file I/O operation. [Hide]
The format is ((PATTERN . VAL) ...),

Chapter 32: Customization 383

where PATTERN is a regular expression matching a file name,
[. . .more lines of documentation. . .]

Each association in the list appears on four lines, with several editable or “active” fields.
You can edit the regexps and coding systems using ordinary editing commands. You can
also invoke ‘[Value Menu]’ to switch to a kind of value—for instance, to specify a function
instead of a pair of coding systems.

To delete an association from the list, invoke the ‘[DEL]’ button for that item. To add
an association, invoke ‘[INS]’ at the position where you want to add it. There is an ‘[INS]’
button between each pair of association, another at the beginning and another at the end,
so you can add the new association at any position in the list.

Two special commands, 〈TAB〉 and S-〈TAB〉, are useful for moving through the customiza-
tion buffer. 〈TAB〉 (widget-forward) moves forward to the next active or editable field;
S-〈TAB〉 (widget-backward) moves backward to the previous active or editable field.

Typing 〈RET〉 on an editable field also moves forward, just like 〈TAB〉. We set it up this
way because people often type 〈RET〉 when they are finished editing a field. To insert a
newline within an editable field, use C-o or C-q C-j.

Setting the option changes its value in the current Emacs session; saving the value
changes it for future sessions as well. This works by writing code into your ‘~/.emacs’ file
so as to set the option variable again each time you start Emacs. To save the option, invoke
‘[State]’ and select the ‘Save for Future Sessions’ operation.

If Emacs was invoked with the ‘-q’ or ‘--no-init-file’ options (see Section B.2 [Initial
Options], page 424), it will not let you save your customizations in your ‘~/.emacs’ init
file. This is because saving customizations from such a session would wipe out all the other
customizations you might have on your init file.

You can also restore the option to its standard value by invoking ‘[State]’ and selecting
the ‘Erase Customization’ operation. There are actually three reset operations:

‘Reset’ If you have made some modifications and not yet set the option, this restores
the text in the customization buffer to match the actual value.

‘Reset to Saved’
This restores the value of the option to the last saved value, and updates the
text accordingly.

‘Erase Customization’
This sets the option to its standard value, and updates the text accordingly.
This also eliminates any saved value for the option, so that you will get the
standard value in future Emacs sessions.

Sometimes it is useful to record a comment about a specific customization. Use the ‘Add
Comment’ item from the ‘[State]’ menu to create a field for entering the comment. The
comment you enter will be saved, and displayed again if you again view the same option in
a customization buffer, even in another session.

The state of a group indicates whether anything in that group has been edited, set or
saved. You can select ‘Set for Current Session’, ‘Save for Future Sessions’ and the
various kinds of ‘Reset’ operation for the group; these operations on the group apply to all
options in the group and its subgroups.

384 GNU Emacs Manual

Near the top of the customization buffer there are two lines containing several active
fields:

[Set for Current Session] [Save for Future Sessions]
[Reset] [Reset to Saved] [Erase Customization] [Finish]

Invoking ‘[Finish]’ either buries or kills this customization buffer according to the setting
of the option custom-buffer-done-function; the default is to bury the buffer. Each of
the other fields performs an operation—set, save or reset—on each of the items in the buffer
that could meaningfully be set, saved or reset.

32.2.2.3 Customizing Faces

In addition to user options, some customization groups also include faces. When you
show the contents of a group, both the user options and the faces in the group appear in
the customization buffer. Here is an example of how a face looks:

Custom Changed Face: (sample) [Hide]
[State]: this face is unchanged from its standard setting.

Parent groups: [Custom Magic Faces]
Attributes: [] Font family: [Value Menu] *

[] Width: [Value Menu] *
[] Height: [Value Menu] *
[] Weight: [Value Menu] *
[] Slant: [Value Menu] *
[] Underline: [Value Menu] *
[] Overline: [Value Menu] *
[] Strike-through: [Value Menu] *
[] Box around text: [Value Menu] *
[] Inverse-video: [Value Menu] *
[X] Foreground: [Value Menu] Color: white (sample)
[X] Background: [Value Menu] Color: blue (sample)
[] Stipple: [Value Menu] *
[] Inherit:

Each face attribute has its own line. The ‘[x]’ field before the attribute name indicates
whether the attribute is enabled; ‘X’ means that it is. You can enable or disable the attribute
by invoking that field. When the attribute is enabled, you can change the attribute value
in the usual ways.

On a black-and-white display, the colors you can use for the background are ‘black’,
‘white’, ‘gray’, ‘gray1’, and ‘gray3’. Emacs supports these shades of gray by using back-
ground stipple patterns instead of a color.

Setting, saving and resetting a face work like the same operations for options (see Sec-
tion 32.2.2.2 [Changing an Option], page 381).

A face can specify different appearances for different types of display. For example, a
face can make text red on a color display, but use a bold font on a monochrome display. To
specify multiple appearances for a face, select ‘Show all display specs’ in the menu you
get from invoking ‘[State]’.

Another more basic way to set the attributes of a specific face is with M-x modify-face.
This command reads the name of a face, then reads the attributes one by one. For the color

Chapter 32: Customization 385

and stipple attributes, the attribute’s current value is the default—type just 〈RET〉 if you
don’t want to change that attribute. Type ‘none’ if you want to clear out the attribute.

32.2.2.4 Customizing Specific Items

Instead of finding the options you want to change by moving down through the structure
of groups, you can specify the particular option, face or group that you want to customize.

M-x customize-option 〈RET〉 option 〈RET〉
Set up a customization buffer with just one option, option.

M-x customize-face 〈RET〉 face 〈RET〉
Set up a customization buffer with just one face, face.

M-x customize-group 〈RET〉 group 〈RET〉
Set up a customization buffer with just one group, group.

M-x customize-apropos 〈RET〉 regexp 〈RET〉
Set up a customization buffer with all the options, faces and groups that match
regexp.

M-x customize-changed-options 〈RET〉 version 〈RET〉
Set up a customization buffer with all the options, faces and groups whose
meaning has changed since Emacs version version.

M-x customize-saved
Set up a customization buffer containing all options and faces that you have
saved with customization buffers.

M-x customize-customized
Set up a customization buffer containing all options and faces that you have
customized but not saved.

If you want to alter a particular user option variable with the customization buffer,
and you know its name, you can use the command M-x customize-option and specify the
option name. This sets up the customization buffer with just one option—the one that you
asked for. Editing, setting and saving the value work as described above, but only for the
specified option.

Likewise, you can modify a specific face, chosen by name, using M-x customize-face.
You can also set up the customization buffer with a specific group, using M-x

customize-group. The immediate contents of the chosen group, including option
variables, faces, and other groups, all appear as well. However, these subgroups’ own
contents start out hidden. You can show their contents in the usual way, by invoking
‘[Show]’.

To control more precisely what to customize, you can use M-x customize-apropos. You
specify a regular expression as argument; then all options, faces and groups whose names
match this regular expression are set up in the customization buffer. If you specify an empty
regular expression, this includes all groups, options and faces in the customization buffer
(but that takes a long time).

When you upgrade to a new Emacs version, you might want to customize new op-
tions and options whose meanings or default values have changed. To do this, use M-x

386 GNU Emacs Manual

customize-changed-options and specify a previous Emacs version number using the mini-
buffer. It creates a customization buffer which shows all the options (and groups) whose
definitions have been changed since the specified version.

If you change option values and then decide the change was a mistake, you can use two
special commands to revisit your previous changes. Use M-x customize-saved to look at
the options and faces that you have saved. Use M-x customize-customized to look at the
options and faces that you have set but not saved.

32.2.3 Hooks

Hooks are an important mechanism for customization of Emacs. A hook is a Lisp variable
which holds a list of functions, to be called on some well-defined occasion. (This is called
running the hook.) The individual functions in the list are called the hook functions of the
hook. With rare exceptions, hooks in Emacs are empty when Emacs starts up, so the only
hook functions in any given hook are the ones you explicitly put there as customization.

Most major modes run one or more mode hooks as the last step of initialization. This
makes it easy for you to customize the behavior of the mode, by setting up a hook function to
override the local variable assignments already made by the mode. But hooks are also used
in other contexts. For example, the hook suspend-hook runs just before Emacs suspends
itself (see Section 3.1 [Exiting], page 31).

Most Emacs hooks are normal hooks. This means that running the hook operates by
calling all the hook functions, unconditionally, with no arguments. We have made an effort
to keep most hooks normal so that you can use them in a uniform way. Every variable in
Emacs whose name ends in ‘-hook’ is a normal hook.

There are also a few abnormal hooks. These variables’ names end in ‘-hooks’ or
‘-functions’, instead of ‘-hook’. What makes these hooks abnormal is that there is some-
thing peculiar about the way its functions are called—perhaps they are given arguments,
or perhaps the values they return are used in some way. For example, find-file-not-
found-hooks (see Section 14.2 [Visiting], page 110) is abnormal because as soon as one
hook function returns a non-nil value, the rest are not called at all. The documentation of
each abnormal hook variable explains in detail what is peculiar about it.

The recommended way to add a hook function to a hook (either normal or abnormal) is
by calling add-hook. You can use any valid Lisp function as the hook function, provided it
can handle the proper number of arguments (zero arguments, in the case of a normal hook).
Of course, not every Lisp function is useful in any particular hook.

For example, here’s how to set up a hook to turn on Auto Fill mode when entering Text
mode and other modes based on Text mode:

(add-hook ’text-mode-hook ’turn-on-auto-fill)

The next example shows how to use a hook to customize the indentation of C code.
(People often have strong personal preferences for one format compared to another.) Here
the hook function is an anonymous lambda expression.

(setq my-c-style
’((c-comment-only-line-offset . 4)
(c-cleanup-list . (scope-operator

empty-defun-braces
defun-close-semi))

Chapter 32: Customization 387

(c-offsets-alist . ((arglist-close . c-lineup-arglist)
(substatement-open . 0)))))

(add-hook ’c-mode-common-hook
’(lambda ()

(c-add-style "my-style" my-c-style t)))

It is best to design your hook functions so that the order in which they are executed
does not matter. Any dependence on the order is “asking for trouble.” However, the order
is predictable: the most recently added hook functions are executed first.

32.2.4 Local Variables

M-x make-local-variable 〈RET〉 var 〈RET〉
Make variable var have a local value in the current buffer.

M-x kill-local-variable 〈RET〉 var 〈RET〉
Make variable var use its global value in the current buffer.

M-x make-variable-buffer-local 〈RET〉 var 〈RET〉
Mark variable var so that setting it will make it local to the buffer that is
current at that time.

Almost any variable can be made local to a specific Emacs buffer. This means that its
value in that buffer is independent of its value in other buffers. A few variables are always
local in every buffer. Every other Emacs variable has a global value which is in effect in all
buffers that have not made the variable local.

M-x make-local-variable reads the name of a variable and makes it local to the current
buffer. Further changes in this buffer will not affect others, and further changes in the global
value will not affect this buffer.

M-x make-variable-buffer-local reads the name of a variable and changes the future
behavior of the variable so that it will become local automatically when it is set. More
precisely, once a variable has been marked in this way, the usual ways of setting the variable
automatically do make-local-variable first. We call such variables per-buffer variables.

Major modes (see Chapter 19 [Major Modes], page 193) always make variables local to
the buffer before setting the variables. This is why changing major modes in one buffer
has no effect on other buffers. Minor modes also work by setting variables—normally, each
minor mode has one controlling variable which is non-nil when the mode is enabled (see
Section 32.1 [Minor Modes], page 377). For most minor modes, the controlling variable is
per buffer.

Emacs contains a number of variables that are always per-buffer. These include
abbrev-mode, auto-fill-function, case-fold-search, comment-column, ctl-arrow,
fill-column, fill-prefix, indent-tabs-mode, left-margin, mode-line-format,
overwrite-mode, selective-display-ellipses, selective-display, tab-width, and
truncate-lines. Some other variables are always local in every buffer, but they are used
for internal purposes.

A few variables cannot be local to a buffer because they are always local to each display
instead (see Section 17.10 [Multiple Displays], page 169). If you try to make one of these
variables buffer-local, you’ll get an error message.

388 GNU Emacs Manual

M-x kill-local-variable reads the name of a variable and makes it cease to be local
to the current buffer. The global value of the variable henceforth is in effect in this buffer.
Setting the major mode kills all the local variables of the buffer except for a few variables
specially marked as permanent locals.

To set the global value of a variable, regardless of whether the variable has a local value
in the current buffer, you can use the Lisp construct setq-default. This construct is used
just like setq, but it sets variables’ global values instead of their local values (if any). When
the current buffer does have a local value, the new global value may not be visible until you
switch to another buffer. Here is an example:

(setq-default fill-column 75)

setq-default is the only way to set the global value of a variable that has been marked
with make-variable-buffer-local.

Lisp programs can use default-value to look at a variable’s default value. This function
takes a symbol as argument and returns its default value. The argument is evaluated;
usually you must quote it explicitly. For example, here’s how to obtain the default value of
fill-column:

(default-value ’fill-column)

32.2.5 Local Variables in Files

A file can specify local variable values for use when you edit the file with Emacs. Visiting
the file checks for local variable specifications; it automatically makes these variables local
to the buffer, and sets them to the values specified in the file.

There are two ways to specify local variable values: in the first line, or with a local
variables list. Here’s how to specify them in the first line:

-*- mode: modename; var: value; ... -*-

You can specify any number of variables/value pairs in this way, each pair with a colon and
semicolon as shown above. mode: modename; specifies the major mode; this should come
first in the line. The values are not evaluated; they are used literally. Here is an example
that specifies Lisp mode and sets two variables with numeric values:

;; -*- mode: Lisp; fill-column: 75; comment-column: 50; -*-

You can also specify the coding system for a file in this way: just specify a value for
the “variable” named coding. The “value” must be a coding system name that Emacs
recognizes. See Section 18.7 [Coding Systems], page 181.

The eval pseudo-variable, described below, can be specified in the first line as well.
In shell scripts, the first line is used to identify the script interpreter, so you cannot put

any local variables there. To accommodate for this, when Emacs visits a shell script, it
looks for local variable specifications in the second line.

A local variables list goes near the end of the file, in the last page. (It is often best to
put it on a page by itself.) The local variables list starts with a line containing the string
‘Local Variables:’, and ends with a line containing the string ‘End:’. In between come
the variable names and values, one set per line, as ‘variable: value’. The values are not
evaluated; they are used literally. If a file has both a local variables list and a ‘-*-’ line,
Emacs processes everything in the ‘-*-’ line first, and everything in the local variables list
afterward.

Chapter 32: Customization 389

Here is an example of a local variables list:

;;; Local Variables: ***
;;; mode:lisp ***
;;; comment-column:0 ***
;;; comment-start: ";;; " ***
;;; comment-end:"***" ***
;;; End: ***

As you see, each line starts with the prefix ‘;;; ’ and each line ends with the suffix ‘
***’. Emacs recognizes these as the prefix and suffix based on the first line of the list,
by finding them surrounding the magic string ‘Local Variables:’; then it automatically
discards them from the other lines of the list.

The usual reason for using a prefix and/or suffix is to embed the local variables list in
a comment, so it won’t confuse other programs that the file is intended as input for. The
example above is for a language where comment lines start with ‘;;; ’ and end with ‘***’;
the local values for comment-start and comment-end customize the rest of Emacs for this
unusual syntax. Don’t use a prefix (or a suffix) if you don’t need one.

Two “variable names” have special meanings in a local variables list: a value for the
variable mode really sets the major mode, and a value for the variable eval is simply
evaluated as an expression and the value is ignored. mode and eval are not real variables;
setting variables named mode and eval in any other context has no special meaning. If
mode is used to set a major mode, it should be the first “variable” in the list. Otherwise,
the entries that precede it in the list of the local variables are likely to be ignored, since
most modes kill all local variables as part of their initialization.

You can use the mode “variable” to set minor modes as well as major modes; in fact, you
can use it more than once, first to set the major mode and then to set minor modes which
are specific to particular buffers. But most minor modes should not be specified in the file
in any fashion, because they represent user preferences.

For example, you may be tempted to try to turn on Auto Fill mode with a local variable
list. That is a mistake. The choice of Auto Fill mode or not is a matter of individual taste,
not a matter of the contents of particular files. If you want to use Auto Fill, set up major
mode hooks with your ‘.emacs’ file to turn it on (when appropriate) for you alone (see
Section 32.7 [Init File], page 403). Don’t use a local variable list to impose your taste on
everyone.

The start of the local variables list must be no more than 3000 characters from the end
of the file, and must be in the last page if the file is divided into pages. Otherwise, Emacs
will not notice it is there. The purpose of this rule is so that a stray ‘Local Variables:’
not in the last page does not confuse Emacs, and so that visiting a long file that is all one
page and has no local variables list need not take the time to search the whole file.

Use the command normal-mode to reset the local variables and major mode of a buffer
according to the file name and contents, including the local variables list if any. See Sec-
tion 19.1 [Choosing Modes], page 193.

The variable enable-local-variables controls whether to process local variables in
files, and thus gives you a chance to override them. Its default value is t, which means
do process local variables in files. If you set the value to nil, Emacs simply ignores local

390 GNU Emacs Manual

variables in files. Any other value says to query you about each file that has local variables,
showing you the local variable specifications so you can judge.

The eval “variable,” and certain actual variables, create a special risk; when you visit
someone else’s file, local variable specifications for these could affect your Emacs in arbi-
trary ways. Therefore, the option enable-local-eval controls whether Emacs processes
eval variables, as well variables with names that end in ‘-hook’, ‘-hooks’, ‘-function’
or ‘-functions’, and certain other variables. The three possibilities for the option’s value
are t, nil, and anything else, just as for enable-local-variables. The default is maybe,
which is neither t nor nil, so normally Emacs does ask for confirmation about file settings
for these variables.

32.3 Keyboard Macros

A keyboard macro is a command defined by the user to stand for another sequence of
keys. For example, if you discover that you are about to type C-n C-d forty times, you can
speed your work by defining a keyboard macro to do C-n C-d and calling it with a repeat
count of forty.

C-x (Start defining a keyboard macro (start-kbd-macro).

C-x) End the definition of a keyboard macro (end-kbd-macro).

C-x e Execute the most recent keyboard macro (call-last-kbd-macro).

C-u C-x (Re-execute last keyboard macro, then add more keys to its definition.

C-x q When this point is reached during macro execution, ask for confirmation (kbd-
macro-query).

M-x name-last-kbd-macro
Give a command name (for the duration of the session) to the most recently
defined keyboard macro.

M-x insert-kbd-macro
Insert in the buffer a keyboard macro’s definition, as Lisp code.

C-x C-k Edit a previously defined keyboard macro (edit-kbd-macro).

M-x apply-macro-to-region-lines
Run the last keyboard macro on each complete line in the region.

Keyboard macros differ from ordinary Emacs commands in that they are written in
the Emacs command language rather than in Lisp. This makes it easier for the novice to
write them, and makes them more convenient as temporary hacks. However, the Emacs
command language is not powerful enough as a programming language to be useful for
writing anything intelligent or general. For such things, Lisp must be used.

You define a keyboard macro while executing the commands which are the definition.
Put differently, as you define a keyboard macro, the definition is being executed for the first
time. This way, you can see what the effects of your commands are, so that you don’t have
to figure them out in your head. When you are finished, the keyboard macro is defined
and also has been, in effect, executed once. You can then do the whole thing over again by
invoking the macro.

Chapter 32: Customization 391

32.3.1 Basic Use

To start defining a keyboard macro, type the C-x (command (start-kbd-macro). From
then on, your keys continue to be executed, but also become part of the definition of the
macro. ‘Def’ appears in the mode line to remind you of what is going on. When you are
finished, the C-x) command (end-kbd-macro) terminates the definition (without becoming
part of it!). For example,

C-x (M-f foo C-x)

defines a macro to move forward a word and then insert ‘foo’.

The macro thus defined can be invoked again with the C-x e command (call-last-
kbd-macro), which may be given a repeat count as a numeric argument to execute the
macro many times. C-x) can also be given a repeat count as an argument, in which case
it repeats the macro that many times right after defining it, but defining the macro counts
as the first repetition (since it is executed as you define it). Therefore, giving C-x) an
argument of 4 executes the macro immediately 3 additional times. An argument of zero to
C-x e or C-x) means repeat the macro indefinitely (until it gets an error or you type C-g
or, on MS-DOS, C-〈BREAK〉).

If you wish to repeat an operation at regularly spaced places in the text, define a macro
and include as part of the macro the commands to move to the next place you want to use
it. For example, if you want to change each line, you should position point at the start of
a line, and define a macro to change that line and leave point at the start of the next line.
Then repeating the macro will operate on successive lines.

When a command reads an argument with the minibuffer, your minibuffer input becomes
part of the macro along with the command. So when you replay the macro, the command
gets the same argument as when you entered the macro. For example,

C-x (C-a C-〈SPC〉 C-n M-w C-x b f o o 〈RET〉 C-y C-x b 〈RET〉 C-x)

defines a macro that copies the current line into the buffer ‘foo’, then returns to the original
buffer.

You can use function keys in a keyboard macro, just like keyboard keys. You can even
use mouse events, but be careful about that: when the macro replays the mouse event, it
uses the original mouse position of that event, the position that the mouse had while you
were defining the macro. The effect of this may be hard to predict. (Using the current
mouse position would be even less predictable.)

One thing that doesn’t always work well in a keyboard macro is the command C-M-c
(exit-recursive-edit). When this command exits a recursive edit that started within
the macro, it works as you’d expect. But if it exits a recursive edit that started before you
invoked the keyboard macro, it also necessarily exits the keyboard macro as part of the
process.

After you have terminated the definition of a keyboard macro, you can add to the end
of its definition by typing C-u C-x (. This is equivalent to plain C-x (followed by retyping
the whole definition so far. As a consequence it re-executes the macro as previously defined.

You can edit a keyboard macro already defined by typing C-x C-k (edit-kbd-macro).
Follow that with the keyboard input that you would use to invoke the macro—C-x e or M-x
name or some other key sequence. This formats the macro definition in a buffer and enters

392 GNU Emacs Manual

a specialized major mode for editing it. Type C-h m once in that buffer to display details
of how to edit the macro. When you are finished editing, type C-c C-c.

The command M-x apply-macro-to-region-lines repeats the last defined keyboard
macro on each complete line within the current region. It does this line by line, by moving
point to the beginning of the line and then executing the macro.

32.3.2 Naming and Saving Keyboard Macros

If you wish to save a keyboard macro for longer than until you define the next one, you
must give it a name using M-x name-last-kbd-macro. This reads a name as an argument
using the minibuffer and defines that name to execute the macro. The macro name is a
Lisp symbol, and defining it in this way makes it a valid command name for calling with
M-x or for binding a key to with global-set-key (see Section 32.4.1 [Keymaps], page 393).
If you specify a name that has a prior definition other than another keyboard macro, an
error message is shown and nothing is changed.

Once a macro has a command name, you can save its definition in a file. Then it can
be used in another editing session. First, visit the file you want to save the definition in.
Then use this command:

M-x insert-kbd-macro 〈RET〉 macroname 〈RET〉
This inserts some Lisp code that, when executed later, will define the same macro with
the same definition it has now. (You need not understand Lisp code to do this, because
insert-kbd-macro writes the Lisp code for you.) Then save the file. You can load the file
later with load-file (see Section 23.7 [Lisp Libraries], page 262). If the file you save in
is your init file ‘~/.emacs’ (see Section 32.7 [Init File], page 403) then the macro will be
defined each time you run Emacs.

If you give insert-kbd-macro a numeric argument, it makes additional Lisp code to
record the keys (if any) that you have bound to the keyboard macro, so that the macro will
be reassigned the same keys when you load the file.

32.3.3 Executing Macros with Variations

Using C-x q (kbd-macro-query), you can get an effect similar to that of query-replace,
where the macro asks you each time around whether to make a change. While defining the
macro, type C-x q at the point where you want the query to occur. During macro definition,
the C-x q does nothing, but when you run the macro later, C-x q asks you interactively
whether to continue.

The valid responses when C-x q asks are 〈SPC〉 (or y), 〈DEL〉 (or n), 〈RET〉 (or q), C-l and
C-r. The answers are the same as in query-replace, though not all of the query-replace
options are meaningful.

These responses include 〈SPC〉 to continue, and 〈DEL〉 to skip the remainder of this repe-
tition of the macro and start right away with the next repetition. 〈RET〉 means to skip the
remainder of this repetition and cancel further repetitions. C-l redraws the screen and asks
you again for a character to say what to do.

C-r enters a recursive editing level, in which you can perform editing which is not part
of the macro. When you exit the recursive edit using C-M-c, you are asked again how to
continue with the keyboard macro. If you type a 〈SPC〉 at this time, the rest of the macro

Chapter 32: Customization 393

definition is executed. It is up to you to leave point and the text in a state such that the
rest of the macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument, performs a completely different
function. It enters a recursive edit reading input from the keyboard, both when you type
it during the definition of the macro, and when it is executed from the macro. During
definition, the editing you do inside the recursive edit does not become part of the macro.
During macro execution, the recursive edit gives you a chance to do some particularized
editing on each repetition. See Section 31.13 [Recursive Edit], page 369.

Another way to vary the behavior of a keyboard macro is to use a register as a counter,
incrementing it on each repetition of the macro. See Section 10.5 [RegNumbers], page 77.

32.4 Customizing Key Bindings

This section describes key bindings, which map keys to commands, and keymaps, which
record key bindings. It also explains how to customize key bindings.

Recall that a command is a Lisp function whose definition provides for interactive use.
Like every Lisp function, a command has a function name which usually consists of lower-
case letters and hyphens.

32.4.1 Keymaps

The bindings between key sequences and command functions are recorded in data struc-
tures called keymaps. Emacs has many of these, each used on particular occasions.

Recall that a key sequence (key, for short) is a sequence of input events that have a
meaning as a unit. Input events include characters, function keys and mouse buttons—all
the inputs that you can send to the computer with your terminal. A key sequence gets its
meaning from its binding, which says what command it runs. The function of keymaps is
to record these bindings.

The global keymap is the most important keymap because it is always in effect. The
global keymap defines keys for Fundamental mode; most of these definitions are common
to most or all major modes. Each major or minor mode can have its own keymap which
overrides the global definitions of some keys.

For example, a self-inserting character such as g is self-inserting because the global
keymap binds it to the command self-insert-command. The standard Emacs editing
characters such as C-a also get their standard meanings from the global keymap. Commands
to rebind keys, such as M-x global-set-key, actually work by storing the new binding in
the proper place in the global map. See Section 32.4.5 [Rebinding], page 396.

Meta characters work differently; Emacs translates each Meta character into a pair of
characters starting with 〈ESC〉. When you type the character M-a in a key sequence, Emacs
replaces it with 〈ESC〉 a. A meta key comes in as a single input event, but becomes two
events for purposes of key bindings. The reason for this is historical, and we might change
it someday.

Most modern keyboards have function keys as well as character keys. Function keys
send input events just as character keys do, and keymaps can have bindings for them.

394 GNU Emacs Manual

On many terminals, typing a function key actually sends the computer a sequence of
characters; the precise details of the sequence depends on which function key and on the
model of terminal you are using. (Often the sequence starts with 〈ESC〉 [.) If Emacs under-
stands your terminal type properly, it recognizes the character sequences forming function
keys wherever they occur in a key sequence (not just at the beginning). Thus, for most
purposes, you can pretend the function keys reach Emacs directly and ignore their encoding
as character sequences.

Mouse buttons also produce input events. These events come with other data—the
window and position where you pressed or released the button, and a time stamp. But only
the choice of button matters for key bindings; the other data matters only if a command
looks at it. (Commands designed for mouse invocation usually do look at the other data.)

A keymap records definitions for single events. Interpreting a key sequence of multiple
events involves a chain of keymaps. The first keymap gives a definition for the first event;
this definition is another keymap, which is used to look up the second event in the sequence,
and so on.

Key sequences can mix function keys and characters. For example, C-x 〈SELECT〉 is
meaningful. If you make 〈SELECT〉 a prefix key, then 〈SELECT〉 C-n makes sense. You can
even mix mouse events with keyboard events, but we recommend against it, because such
key sequences are inconvenient to use.

As a user, you can redefine any key; but it is usually best to stick to key sequences
that consist of C-c followed by a letter. These keys are “reserved for users,” so they won’t
conflict with any properly designed Emacs extension. The function keys 〈F5〉 through 〈F9〉
are also reserved for users. If you redefine some other key, your definition may be overridden
by certain extensions or major modes which redefine the same key.

32.4.2 Prefix Keymaps

A prefix key such as C-x or 〈ESC〉 has its own keymap, which holds the definition for the
event that immediately follows that prefix.

The definition of a prefix key is usually the keymap to use for looking up the following
event. The definition can also be a Lisp symbol whose function definition is the following
keymap; the effect is the same, but it provides a command name for the prefix key that can
be used as a description of what the prefix key is for. Thus, the binding of C-x is the symbol
Ctl-X-Prefix, whose function definition is the keymap for C-x commands. The definitions
of C-c, C-x, C-h and 〈ESC〉 as prefix keys appear in the global map, so these prefix keys are
always available.

Aside from ordinary prefix keys, there is a fictitious “prefix key” which represents the
menu bar; see section “Menu Bar” in The Emacs Lisp Reference Manual, for special infor-
mation about menu bar key bindings. Mouse button events that invoke pop-up menus are
also prefix keys; see section “Menu Keymaps” in The Emacs Lisp Reference Manual, for
more details.

Some prefix keymaps are stored in variables with names:

• ctl-x-map is the variable name for the map used for characters that follow C-x.

• help-map is for characters that follow C-h.

Chapter 32: Customization 395

• esc-map is for characters that follow 〈ESC〉. Thus, all Meta characters are actually
defined by this map.

• ctl-x-4-map is for characters that follow C-x 4.
• mode-specific-map is for characters that follow C-c.

32.4.3 Local Keymaps

So far we have explained the ins and outs of the global map. Major modes customize
Emacs by providing their own key bindings in local keymaps. For example, C mode overrides
〈TAB〉 to make it indent the current line for C code. Portions of text in the buffer can specify
their own keymaps to substitute for the keymap of the buffer’s major mode.

Minor modes can also have local keymaps. Whenever a minor mode is in effect, the
definitions in its keymap override both the major mode’s local keymap and the global
keymap.

The local keymaps for Lisp mode and several other major modes always exist even when
not in use. These are kept in variables named lisp-mode-map and so on. For major modes
less often used, the local keymap is normally constructed only when the mode is used for
the first time in a session. This is to save space. If you wish to change one of these keymaps,
you must use the major mode’s mode hook—see below.

All minor mode keymaps are created in advance. There is no way to defer their creation
until the first time the minor mode is enabled.

A local keymap can locally redefine a key as a prefix key by defining it as a prefix
keymap. If the key is also defined globally as a prefix, then its local and global definitions
(both keymaps) effectively combine: both of them are used to look up the event that follows
the prefix key. Thus, if the mode’s local keymap defines C-c as another keymap, and that
keymap defines C-z as a command, this provides a local meaning for C-c C-z. This does
not affect other sequences that start with C-c; if those sequences don’t have their own local
bindings, their global bindings remain in effect.

Another way to think of this is that Emacs handles a multi-event key sequence by looking
in several keymaps, one by one, for a binding of the whole key sequence. First it checks the
minor mode keymaps for minor modes that are enabled, then it checks the major mode’s
keymap, and then it checks the global keymap. This is not precisely how key lookup works,
but it’s good enough for understanding ordinary circumstances.

To change the local bindings of a major mode, you must change the mode’s local keymap.
Normally you must wait until the first time the mode is used, because most major modes
don’t create their keymaps until then. If you want to specify something in your ‘~/.emacs’
file to change a major mode’s bindings, you must use the mode’s mode hook to delay the
change until the mode is first used.

For example, the command texinfo-mode to select Texinfo mode runs the hook
texinfo-mode-hook. Here’s how you can use the hook to add local bindings (not very
useful, we admit) for C-c n and C-c p in Texinfo mode:

(add-hook ’texinfo-mode-hook
’(lambda ()

(define-key texinfo-mode-map "\C-cp"
’backward-paragraph)

396 GNU Emacs Manual

(define-key texinfo-mode-map "\C-cn"
’forward-paragraph)))

See Section 32.2.3 [Hooks], page 386.

32.4.4 Minibuffer Keymaps

The minibuffer has its own set of local keymaps; they contain various completion and
exit commands.
• minibuffer-local-map is used for ordinary input (no completion).
• minibuffer-local-ns-map is similar, except that 〈SPC〉 exits just like 〈RET〉. This is

used mainly for Mocklisp compatibility.
• minibuffer-local-completion-map is for permissive completion.
• minibuffer-local-must-match-map is for strict completion and for cautious comple-

tion.

32.4.5 Changing Key Bindings Interactively

The way to redefine an Emacs key is to change its entry in a keymap. You can change
the global keymap, in which case the change is effective in all major modes (except those
that have their own overriding local definitions for the same key). Or you can change the
current buffer’s local map, which affects all buffers using the same major mode.

M-x global-set-key 〈RET〉 key cmd 〈RET〉
Define key globally to run cmd.

M-x local-set-key 〈RET〉 key cmd 〈RET〉
Define key locally (in the major mode now in effect) to run cmd.

M-x global-unset-key 〈RET〉 key
Make key undefined in the global map.

M-x local-unset-key 〈RET〉 key
Make key undefined locally (in the major mode now in effect).

For example, suppose you like to execute commands in a subshell within an Emacs buffer,
instead of suspending Emacs and executing commands in your login shell. Normally, C-z
is bound to the function suspend-emacs (when not using the X Window System), but you
can change C-z to invoke an interactive subshell within Emacs, by binding it to shell as
follows:

M-x global-set-key 〈RET〉 C-z shell 〈RET〉
global-set-key reads the command name after the key. After you press the key, a message
like this appears so that you can confirm that you are binding the key you want:

Set key C-z to command:

You can redefine function keys and mouse events in the same way; just type the function
key or click the mouse when it’s time to specify the key to rebind.

You can rebind a key that contains more than one event in the same way. Emacs keeps
reading the key to rebind until it is a complete key (that is, not a prefix key). Thus, if you
type C-f for key, that’s the end; the minibuffer is entered immediately to read cmd. But if

Chapter 32: Customization 397

you type C-x, another character is read; if that is 4, another character is read, and so on.
For example,

M-x global-set-key 〈RET〉 C-x 4 $ spell-other-window 〈RET〉
redefines C-x 4 $ to run the (fictitious) command spell-other-window.

The two-character keys consisting of C-c followed by a letter are reserved for user cus-
tomizations. Lisp programs are not supposed to define these keys, so the bindings you make
for them will be available in all major modes and will never get in the way of anything.

You can remove the global definition of a key with global-unset-key. This makes the
key undefined; if you type it, Emacs will just beep. Similarly, local-unset-key makes a
key undefined in the current major mode keymap, which makes the global definition (or
lack of one) come back into effect in that major mode.

If you have redefined (or undefined) a key and you subsequently wish to retract the
change, undefining the key will not do the job—you need to redefine the key with its standard
definition. To find the name of the standard definition of a key, go to a Fundamental mode
buffer and use C-h c. The documentation of keys in this manual also lists their command
names.

If you want to prevent yourself from invoking a command by mistake, it is better to
disable the command than to undefine the key. A disabled command is less work to invoke
when you really want to. See Section 32.4.11 [Disabling], page 402.

32.4.6 Rebinding Keys in Your Init File

If you have a set of key bindings that you like to use all the time, you can specify them
in your ‘.emacs’ file by using their Lisp syntax. (See Section 32.7 [Init File], page 403.)

The simplest method for doing this works for ASCII characters and Meta-modified ASCII
characters only. This method uses a string to represent the key sequence you want to rebind.
For example, here’s how to bind C-z to shell:

(global-set-key "\C-z" ’shell)

This example uses a string constant containing one character, C-z. The single-quote before
the command name, shell, marks it as a constant symbol rather than a variable. If you
omit the quote, Emacs would try to evaluate shell immediately as a variable. This probably
causes an error; it certainly isn’t what you want.

Here is another example that binds a key sequence two characters long:
(global-set-key "\C-xl" ’make-symbolic-link)

To put 〈TAB〉, 〈RET〉, 〈ESC〉, or 〈DEL〉 in the string, you can use the Emacs Lisp escape
sequences, ‘\t’, ‘\r’, ‘\e’, and ‘\d’. Here is an example which binds C-x 〈TAB〉:

(global-set-key "\C-x\t" ’indent-rigidly)

These examples show how to write some other special ASCII characters in strings for
key bindings:

(global-set-key "\r" ’newline) ;; 〈RET〉
(global-set-key "\d" ’delete-backward-char) ;; 〈DEL〉
(global-set-key "\C-x\e\e" ’repeat-complex-command) ;; 〈ESC〉

When the key sequence includes function keys or mouse button events, or non-ASCII
characters such as C-= or H-a, you must use the more general method of rebinding, which
uses a vector to specify the key sequence.

398 GNU Emacs Manual

The way to write a vector in Emacs Lisp is with square brackets around the vector
elements. Use spaces to separate the elements. If an element is a symbol, simply write the
symbol’s name—no other delimiters or punctuation are needed. If a vector element is a
character, write it as a Lisp character constant: ‘?’ followed by the character as it would
appear in a string.

Here are examples of using vectors to rebind C-= (a control character not in ASCII),
C-M-= (not in ASCII because C-= is not), H-a (a Hyper character; ASCII doesn’t have
Hyper at all), 〈F7〉 (a function key), and C-Mouse-1 (a keyboard-modified mouse button):

(global-set-key [?\C-=] ’make-symbolic-link)
(global-set-key [?\M-\C-=] ’make-symbolic-link)
(global-set-key [?\H-a] ’make-symbolic-link)
(global-set-key [f7] ’make-symbolic-link)
(global-set-key [C-mouse-1] ’make-symbolic-link)

You can use a vector for the simple cases too. Here’s how to rewrite the first three
examples above, using vectors to bind C-z, C-x l, and C-x 〈TAB〉:

(global-set-key [?\C-z] ’shell)
(global-set-key [?\C-x ?l] ’make-symbolic-link)
(global-set-key [?\C-x ?\t] ’indent-rigidly)
(global-set-key [?\r] ’newline)
(global-set-key [?\d] ’delete-backward-char)
(global-set-key [?\C-x ?\e ?\e] ’repeat-complex-command)

As you see, you represent a multi-character key sequence with a vector by listing each of
the characters within the square brackets that delimit the vector.

32.4.7 Rebinding Function Keys

Key sequences can contain function keys as well as ordinary characters. Just as Lisp
characters (actually integers) represent keyboard characters, Lisp symbols represent func-
tion keys. If the function key has a word as its label, then that word is also the name of
the corresponding Lisp symbol. Here are the conventional Lisp names for common function
keys:

left, up, right, down
Cursor arrow keys.

begin, end, home, next, prior
Other cursor repositioning keys.

select, print, execute, backtab
insert, undo, redo, clearline
insertline, deleteline, insertchar, deletechar

Miscellaneous function keys.

f1, f2, . . . f35
Numbered function keys (across the top of the keyboard).

kp-add, kp-subtract, kp-multiply, kp-divide
kp-backtab, kp-space, kp-tab, kp-enter
kp-separator, kp-decimal, kp-equal

Keypad keys (to the right of the regular keyboard), with names or punctuation.

Chapter 32: Customization 399

kp-0, kp-1, . . . kp-9
Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

These names are conventional, but some systems (especially when using X) may use
different names. To make certain what symbol is used for a given function key on your
terminal, type C-h c followed by that key.

A key sequence which contains function key symbols (or anything but ASCII characters)
must be a vector rather than a string. The vector syntax uses spaces between the elements,
and square brackets around the whole vector. Thus, to bind function key ‘f1’ to the
command rmail, write the following:

(global-set-key [f1] ’rmail)

To bind the right-arrow key to the command forward-char, you can use this expression:
(global-set-key [right] ’forward-char)

This uses the Lisp syntax for a vector containing the symbol right. (This binding is present
in Emacs by default.)

See Section 32.4.6 [Init Rebinding], page 397, for more information about using vectors
for rebinding.

You can mix function keys and characters in a key sequence. This example binds C-x
〈NEXT〉 to the command forward-page.

(global-set-key [?\C-x next] ’forward-page)

where ?\C-x is the Lisp character constant for the character C-x. The vector element next
is a symbol and therefore does not take a question mark.

You can use the modifier keys 〈CTRL〉, 〈META〉, 〈HYPER〉, 〈SUPER〉, 〈ALT〉 and 〈SHIFT〉 with
function keys. To represent these modifiers, add the strings ‘C-’, ‘M-’, ‘H-’, ‘s-’, ‘A-’ and
‘S-’ at the front of the symbol name. Thus, here is how to make Hyper-Meta-〈RIGHT〉 move
forward a word:

(global-set-key [H-M-right] ’forward-word)

32.4.8 Named ASCII Control Characters

〈TAB〉, 〈RET〉, 〈BS〉, 〈LFD〉, 〈ESC〉 and 〈DEL〉 started out as names for certain ASCII control
characters, used so often that they have special keys of their own. Later, users found it
convenient to distinguish in Emacs between these keys and the “same” control characters
typed with the 〈CTRL〉 key.

Emacs distinguishes these two kinds of input, when the keyboard reports these keys
to Emacs. It treats the “special” keys as function keys named tab, return, backspace,
linefeed, escape, and delete. These function keys translate automatically into the cor-
responding ASCII characters if they have no bindings of their own. As a result, neither
users nor Lisp programs need to pay attention to the distinction unless they care to.

If you do not want to distinguish between (for example) 〈TAB〉 and C-i, make just one
binding, for the ASCII character 〈TAB〉 (octal code 011). If you do want to distinguish, make
one binding for this ASCII character, and another for the “function key” tab.

400 GNU Emacs Manual

With an ordinary ASCII terminal, there is no way to distinguish between 〈TAB〉 and C-i
(and likewise for other such pairs), because the terminal sends the same character in both
cases.

32.4.9 Non-ASCII Characters on the Keyboard

If your keyboard has keys that send non-ASCII characters, such as accented letters,
rebinding these keys is a bit tricky. There are two solutions you can use. One is to specify
a keyboard coding system, using set-keyboard-coding-system (see Section 18.9 [Specify
Coding], page 185). Then you can bind these keys in the usual way1, like this:

(global-set-key [?char] ’some-function)

Type C-q followed by the key you want to bind, to insert char.
If you don’t specify the keyboard coding system, that approach won’t work. Instead,

you need to find out the actual code that the terminal sends. The easiest way to do this
in Emacs is to create an empty buffer with C-x b temp 〈RET〉, make it unibyte with M-x
toggle-enable-multibyte-characters 〈RET〉, then type the key to insert the character
into this buffer.

Move point before the character, then type C-x =. This displays a message in the mini-
buffer, showing the character code in three ways, octal, decimal and hexadecimal, all within
a set of parentheses. Use the second of the three numbers, the decimal one, inside the vector
to bind:

(global-set-key [decimal-code] ’some-function)

If you bind 8-bit characters like this in your init file, you may find it convenient to specify
that it is unibyte. See Section 18.2 [Enabling Multibyte], page 176.

32.4.10 Rebinding Mouse Buttons

Emacs uses Lisp symbols to designate mouse buttons, too. The ordinary mouse events
in Emacs are click events; these happen when you press a button and release it without
moving the mouse. You can also get drag events, when you move the mouse while holding
the button down. Drag events happen when you finally let go of the button.

The symbols for basic click events are mouse-1 for the leftmost button, mouse-2 for the
next, and so on. Here is how you can redefine the second mouse button to split the current
window:

(global-set-key [mouse-2] ’split-window-vertically)

The symbols for drag events are similar, but have the prefix ‘drag-’ before the word
‘mouse’. For example, dragging the first button generates a drag-mouse-1 event.

You can also define bindings for events that occur when a mouse button is pressed down.
These events start with ‘down-’ instead of ‘drag-’. Such events are generated only if they
have key bindings. When you get a button-down event, a corresponding click or drag event
will always follow.

If you wish, you can distinguish single, double, and triple clicks. A double click means
clicking a mouse button twice in approximately the same place. The first click generates

1 Note that you should avoid the string syntax for binding 8-bit characters, since they will be interpreted
as meta keys. See section “Strings of Events” in The Emacs Lisp Reference Manual.

Chapter 32: Customization 401

an ordinary click event. The second click, if it comes soon enough, generates a double-click
event instead. The event type for a double-click event starts with ‘double-’: for example,
double-mouse-3.

This means that you can give a special meaning to the second click at the same place,
but it must act on the assumption that the ordinary single click definition has run when
the first click was received.

This constrains what you can do with double clicks, but user interface designers say that
this constraint ought to be followed in any case. A double click should do something similar
to the single click, only “more so.” The command for the double-click event should perform
the extra work for the double click.

If a double-click event has no binding, it changes to the corresponding single-click event.
Thus, if you don’t define a particular double click specially, it executes the single-click
command twice.

Emacs also supports triple-click events whose names start with ‘triple-’. Emacs does
not distinguish quadruple clicks as event types; clicks beyond the third generate additional
triple-click events. However, the full number of clicks is recorded in the event list, so you
can distinguish if you really want to. We don’t recommend distinct meanings for more than
three clicks, but sometimes it is useful for subsequent clicks to cycle through the same set
of three meanings, so that four clicks are equivalent to one click, five are equivalent to two,
and six are equivalent to three.

Emacs also records multiple presses in drag and button-down events. For example,
when you press a button twice, then move the mouse while holding the button, Emacs gets
a ‘double-drag-’ event. And at the moment when you press it down for the second time,
Emacs gets a ‘double-down-’ event (which is ignored, like all button-down events, if it has
no binding).

The variable double-click-time specifies how much time can elapse between clicks and
still allow them to be grouped as a multiple click. Its value is in units of milliseconds. If
the value is nil, double clicks are not detected at all. If the value is t, then there is no
time limit. The default is 500.

The variable double-click-fuzz specifies how much the mouse can move between clicks
still allow them to be grouped as a multiple click. Its value is in units of pixels on windowed
displays and in units of 1/8 of a character cell on text-mode terminals; the default is 3.

The symbols for mouse events also indicate the status of the modifier keys, with the usual
prefixes ‘C-’, ‘M-’, ‘H-’, ‘s-’, ‘A-’ and ‘S-’. These always precede ‘double-’ or ‘triple-’,
which always precede ‘drag-’ or ‘down-’.

A frame includes areas that don’t show text from the buffer, such as the mode line and
the scroll bar. You can tell whether a mouse button comes from a special area of the screen
by means of dummy “prefix keys.” For example, if you click the mouse in the mode line,
you get the prefix key mode-line before the ordinary mouse-button symbol. Thus, here is
how to define the command for clicking the first button in a mode line to run scroll-up:

(global-set-key [mode-line mouse-1] ’scroll-up)

Here is the complete list of these dummy prefix keys and their meanings:

mode-line
The mouse was in the mode line of a window.

402 GNU Emacs Manual

vertical-line
The mouse was in the vertical line separating side-by-side windows. (If you use
scroll bars, they appear in place of these vertical lines.)

vertical-scroll-bar
The mouse was in a vertical scroll bar. (This is the only kind of scroll bar
Emacs currently supports.)

You can put more than one mouse button in a key sequence, but it isn’t usual to do so.

32.4.11 Disabling Commands

Disabling a command marks the command as requiring confirmation before it can be
executed. The purpose of disabling a command is to prevent beginning users from executing
it by accident and being confused.

An attempt to invoke a disabled command interactively in Emacs displays a window
containing the command’s name, its documentation, and some instructions on what to
do immediately; then Emacs asks for input saying whether to execute the command as
requested, enable it and execute it, or cancel. If you decide to enable the command, you are
asked whether to do this permanently or just for the current session. (Enabling permanently
works by automatically editing your ‘.emacs’ file.) You can also type ! to enable all
commands, for the current session only.

The direct mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. Here is the Lisp program to do this:

(put ’delete-region ’disabled t)

If the value of the disabled property is a string, that string is included in the message
displayed when the command is used:

(put ’delete-region ’disabled
"It’s better to use ‘kill-region’ instead.\n")

You can make a command disabled either by editing the ‘.emacs’ file directly or with
the command M-x disable-command, which edits the ‘.emacs’ file for you. Likewise, M-x
enable-command edits ‘.emacs’ to enable a command permanently. See Section 32.7 [Init
File], page 403.

Whether a command is disabled is independent of what key is used to invoke it; disabling
also applies if the command is invoked using M-x. Disabling a command has no effect on
calling it as a function from Lisp programs.

32.5 Keyboard Translations

Some keyboards do not make it convenient to send all the special characters that Emacs
uses. The most common problem case is the 〈DEL〉 character. Some keyboards provide no
convenient way to type this very important character—usually because they were designed
to expect the character C-h to be used for deletion. On these keyboards, if you press the
key normally used for deletion, Emacs handles the C-h as a prefix character and offers you
a list of help options, which is not what you want.

You can work around this problem within Emacs by setting up keyboard translations to
turn C-h into 〈DEL〉 and 〈DEL〉 into C-h, as follows:

Chapter 32: Customization 403

;; Translate C-h to 〈DEL〉.
(keyboard-translate ?\C-h ?\C-?)

;; Translate 〈DEL〉 to C-h.
(keyboard-translate ?\C-? ?\C-h)

Keyboard translations are not the same as key bindings in keymaps (see Section 32.4.1
[Keymaps], page 393). Emacs contains numerous keymaps that apply in different situations,
but there is only one set of keyboard translations, and it applies to every character that
Emacs reads from the terminal. Keyboard translations take place at the lowest level of
input processing; the keys that are looked up in keymaps contain the characters that result
from keyboard translation.

On a window system, the keyboard key named 〈DELETE〉 is a function key and is distinct
from the ASCII character named 〈DEL〉. See Section 32.4.8 [Named ASCII Chars], page 399.
Keyboard translations affect only ASCII character input, not function keys; thus, the above
example used on a window system does not affect the 〈DELETE〉 key. However, the translation
above isn’t necessary on window systems, because Emacs can also distinguish between the
〈BACKSPACE〉 key and C-h; and it normally treats 〈BACKSPACE〉 as 〈DEL〉.

For full information about how to use keyboard translations, see section “Translating
Input” in The Emacs Lisp Reference Manual.

32.6 The Syntax Table

All the Emacs commands which parse words or balance parentheses are controlled by
the syntax table. The syntax table says which characters are opening delimiters, which are
parts of words, which are string quotes, and so on. It does this by assigning each character
to one of fifteen-odd syntax classes. In some cases it specifies some additional information
also.

Each major mode has its own syntax table (though related major modes sometimes
share one syntax table) which it installs in each buffer that uses the mode. The syntax
table installed in the current buffer is the one that all commands use, so we call it “the”
syntax table.

To display a description of the contents of the current syntax table, type C-h s
(describe-syntax). The description of each character includes both the string you would
have to give to modify-syntax-entry to set up that character’s current syntax, starting
with the character which designates its syntax class, plus some English text to explain its
meaning.

A syntax table is actually a Lisp object, a char-table, whose elements are cons cells.
For full information on the syntax table, see section “Syntax Tables” in The Emacs Lisp
Reference Manual.

32.7 The Init File, ‘~/.emacs’

When Emacs is started, it normally loads a Lisp program from the file ‘.emacs’ or
‘.emacs.el’ in your home directory. We call this file your init file because it specifies how
to initialize Emacs for you. You can use the command line switch ‘-q’ to prevent loading

404 GNU Emacs Manual

your init file, and ‘-u’ (or ‘--user’) to specify a different user’s init file (see Chapter 3
[Entering Emacs], page 31).

There can also be a default init file, which is the library named ‘default.el’, found via
the standard search path for libraries. The Emacs distribution contains no such library;
your site may create one for local customizations. If this library exists, it is loaded whenever
you start Emacs (except when you specify ‘-q’). But your init file, if any, is loaded first; if
it sets inhibit-default-init non-nil, then ‘default’ is not loaded.

Your site may also have a site startup file; this is named ‘site-start.el’, if it exists.
Like ‘default.el’, Emacs finds this file via the standard search path for Lisp libraries.
Emacs loads this library before it loads your init file. To inhibit loading of this library, use
the option ‘-no-site-file’. See Section B.2 [Initial Options], page 424.

You can place ‘default.el’ and ‘site-start.el’ in any of the directories which Emacs
searches for Lisp libraries. The variable load-path (see Section 23.7 [Lisp Libraries],
page 262) specifies these directories. Many sites put these files in the ‘site-lisp’ subdirec-
tory of the Emacs installation directory, typically ‘/usr/local/share/emacs/site-lisp’.

If you have a large amount of code in your ‘.emacs’ file, you should rename it to
‘~/.emacs.el’, and byte-compile it. See section “Byte Compilation” in the Emacs Lisp
Reference Manual, for more information about compiling Emacs Lisp programs.

If you are going to write actual Emacs Lisp programs that go beyond minor customiza-
tion, you should read the Emacs Lisp Reference Manual.

32.7.1 Init File Syntax

The ‘.emacs’ file contains one or more Lisp function call expressions. Each of these
consists of a function name followed by arguments, all surrounded by parentheses. For
example, (setq fill-column 60) calls the function setq to set the variable fill-column
(see Section 21.5 [Filling], page 203) to 60.

The second argument to setq is an expression for the new value of the variable. This
can be a constant, a variable, or a function call expression. In ‘.emacs’, constants are used
most of the time. They can be:

Numbers: Numbers are written in decimal, with an optional initial minus sign.

Strings: Lisp string syntax is the same as C string syntax with a few extra features. Use
a double-quote character to begin and end a string constant.
In a string, you can include newlines and special characters literally. But often
it is cleaner to use backslash sequences for them: ‘\n’ for newline, ‘\b’ for
backspace, ‘\r’ for carriage return, ‘\t’ for tab, ‘\f’ for formfeed (control-L),
‘\e’ for escape, ‘\\’ for a backslash, ‘\"’ for a double-quote, or ‘\ooo’ for the
character whose octal code is ooo. Backslash and double-quote are the only
characters for which backslash sequences are mandatory.
‘\C-’ can be used as a prefix for a control character, as in ‘\C-s’ for ASCII
control-S, and ‘\M-’ can be used as a prefix for a Meta character, as in ‘\M-a’
for Meta-A or ‘\M-\C-a’ for Control-Meta-A.
If you want to include non-ASCII characters in strings in your init file, you
should consider putting a ‘-*-coding: coding-system-*-’ tag on the first line

Chapter 32: Customization 405

which states the coding system used to save your ‘.emacs’, as explained in
Section 18.8 [Recognize Coding], page 183. This is because the defaults for
decoding non-ASCII text might not yet be set up by the time Emacs reads
those parts of your init file which use such strings, possibly leading Emacs to
decode those strings incorrectly.

Characters:
Lisp character constant syntax consists of a ‘?’ followed by either a character or
an escape sequence starting with ‘\’. Examples: ?x, ?\n, ?\", ?\). Note that
strings and characters are not interchangeable in Lisp; some contexts require
one and some contexts require the other.

See Section 32.4.9 [Non-ASCII Rebinding], page 400, for information about
binding commands to keys which send non-ASCII characters.

True: t stands for ‘true’.

False: nil stands for ‘false’.

Other Lisp objects:
Write a single-quote (’) followed by the Lisp object you want.

32.7.2 Init File Examples

Here are some examples of doing certain commonly desired things with Lisp expressions:

• Make 〈TAB〉 in C mode just insert a tab if point is in the middle of a line.

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for ‘true’ and the alternative is nil
for ‘false’.

• Make searches case sensitive by default (in all buffers that do not override this).

(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do not have local values
for the variable. Setting case-fold-search with setq affects only the current buffer’s
local value, which is not what you probably want to do in an init file.

• Specify your own email address, if Emacs can’t figure it out correctly.

(setq user-mail-address "coon@yoyodyne.com")

Various Emacs packages that need your own email address use the value of user-mail-
address.

• Make Text mode the default mode for new buffers.

(setq default-major-mode ’text-mode)

Note that text-mode is used because it is the command for entering Text mode. The
single-quote before it makes the symbol a constant; otherwise, text-mode would be
treated as a variable name.

406 GNU Emacs Manual

• Set up defaults for the Latin-1 character set which supports most of the languages of
Western Europe.

(set-language-environment "Latin-1")

• Turn on Auto Fill mode automatically in Text mode and related modes.
(add-hook ’text-mode-hook
’(lambda () (auto-fill-mode 1)))

This shows how to add a hook function to a normal hook variable (see Section 32.2.3
[Hooks], page 386). The function we supply is a list starting with lambda, with a
single-quote in front of it to make it a list constant rather than an expression.
It’s beyond the scope of this manual to explain Lisp functions, but for this example it
is enough to know that the effect is to execute (auto-fill-mode 1) when Text mode is
entered. You can replace that with any other expression that you like, or with several
expressions in a row.
Emacs comes with a function named turn-on-auto-fill whose definition is (lambda
() (auto-fill-mode 1)). Thus, a simpler way to write the above example is as follows:

(add-hook ’text-mode-hook ’turn-on-auto-fill)

• Load the installed Lisp library named ‘foo’ (actually a file ‘foo.elc’ or ‘foo.el’ in a
standard Emacs directory).

(load "foo")

When the argument to load is a relative file name, not starting with ‘/’ or ‘~’, load
searches the directories in load-path (see Section 23.7 [Lisp Libraries], page 262).

• Load the compiled Lisp file ‘foo.elc’ from your home directory.
(load "~/foo.elc")

Here an absolute file name is used, so no searching is done.
• Tell Emacs to find the definition for the function myfunction by loading a Lisp library

named ‘mypackage’ (i.e. a file ‘mypackage.elc’ or ‘mypackage.el’):
(autoload ’myfunction "mypackage" "Do what I say." t)

Here the string "Do what I say." is the function’s documentation string. You specify
it in the autoload definition so it will be available for help commands even when the
package is not loaded. The last argument, t, indicates that this function is interactive;
that is, it can be invoked interactively by typing M-x myfunction 〈RET〉 or by binding
it to a key. If the function is not interactive, omit the t or use nil.

• Rebind the key C-x l to run the function make-symbolic-link.
(global-set-key "\C-xl" ’make-symbolic-link)

or
(define-key global-map "\C-xl" ’make-symbolic-link)

Note once again the single-quote used to refer to the symbol make-symbolic-link
instead of its value as a variable.

• Do the same thing for Lisp mode only.
(define-key lisp-mode-map "\C-xl" ’make-symbolic-link)

• Redefine all keys which now run next-line in Fundamental mode so that they run
forward-line instead.

Chapter 32: Customization 407

(substitute-key-definition ’next-line ’forward-line
global-map)

• Make C-x C-v undefined.
(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix. Simply defining C-x
C-v anything will make C-x C-v a prefix, but C-x C-v must first be freed of its usual
non-prefix definition.

• Make ‘$’ have the syntax of punctuation in Text mode. Note the use of a character
constant for ‘$’.

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

• Enable the use of the command narrow-to-region without confirmation.
(put ’narrow-to-region ’disabled nil)

32.7.3 Terminal-specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when it is run on that
type of terminal. For a terminal type named termtype, the library is called ‘term/termtype’
and it is found by searching the directories load-path as usual and trying the suffixes ‘.elc’
and ‘.el’. Normally it appears in the subdirectory ‘term’ of the directory where most Emacs
libraries are kept.

The usual purpose of the terminal-specific library is to map the escape sequences used
by the terminal’s function keys onto more meaningful names, using function-key-map. See
the file ‘term/lk201.el’ for an example of how this is done. Many function keys are mapped
automatically according to the information in the Termcap data base; the terminal-specific
library needs to map only the function keys that Termcap does not specify.

When the terminal type contains a hyphen, only the part of the name before the first
hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’ and
‘aaa-30-rv’ both use the library ‘term/aaa’. The code in the library can use (getenv
"TERM") to find the full terminal type name.

The library’s name is constructed by concatenating the value of the variable term-
file-prefix and the terminal type. Your ‘.emacs’ file can prevent the loading of the
terminal-specific library by setting term-file-prefix to nil.

Emacs runs the hook term-setup-hook at the end of initialization, after both your
‘.emacs’ file and any terminal-specific library have been read in. Add hook functions to
this hook if you wish to override part of any of the terminal-specific libraries and to define
initializations for terminals that do not have a library. See Section 32.2.3 [Hooks], page 386.

32.7.4 How Emacs Finds Your Init File

Normally Emacs uses the environment variable HOME to find ‘.emacs’; that’s what ‘~’
means in a file name. But if you run Emacs from a shell started by su, Emacs tries to find
your own ‘.emacs’, not that of the user you are currently pretending to be. The idea is that
you should get your own editor customizations even if you are running as the super user.

More precisely, Emacs first determines which user’s init file to use. It gets the user name
from the environment variables LOGNAME and USER; if neither of those exists, it uses effective

408 GNU Emacs Manual

user-ID. If that user name matches the real user-ID, then Emacs uses HOME; otherwise, it
looks up the home directory corresponding to that user name in the system’s data base of
users.

Chapter 33: Dealing with Common Problems 409

33 Dealing with Common Problems

If you type an Emacs command you did not intend, the results are often mysterious.
This chapter tells what you can do to cancel your mistake or recover from a mysterious
situation. Emacs bugs and system crashes are also considered.

33.1 Quitting and Aborting

C-g
C-〈BREAK〉 (MS-DOS only)

Quit: cancel running or partially typed command.

C-] Abort innermost recursive editing level and cancel the command which invoked
it (abort-recursive-edit).

〈ESC〉 〈ESC〉 〈ESC〉
Either quit or abort, whichever makes sense (keyboard-escape-quit).

M-x top-level
Abort all recursive editing levels that are currently executing.

C-x u Cancel a previously made change in the buffer contents (undo).

There are two ways of canceling commands which are not finished executing: quitting
with C-g, and aborting with C-] or M-x top-level. Quitting cancels a partially typed
command or one which is already running. Aborting exits a recursive editing level and
cancels the command that invoked the recursive edit. (See Section 31.13 [Recursive Edit],
page 369.)

Quitting with C-g is used for getting rid of a partially typed command, or a numeric
argument that you don’t want. It also stops a running command in the middle in a relatively
safe way, so you can use it if you accidentally give a command which takes a long time. In
particular, it is safe to quit out of killing; either your text will all still be in the buffer, or
it will all be in the kill ring (or maybe both). Quitting an incremental search does special
things documented under searching; in general, it may take two successive C-g characters
to get out of a search (see Section 12.1 [Incremental Search], page 91).

On MS-DOS, the character C-〈BREAK〉 serves as a quit character like C-g. The reason is
that it is not feasible, on MS-DOS, to recognize C-g while a command is running, between
interactions with the user. By contrast, it is feasible to recognize C-〈BREAK〉 at all times.
See Section E.1 [MS-DOS Input], page 451.

C-g works by setting the variable quit-flag to t the instant C-g is typed; Emacs Lisp
checks this variable frequently and quits if it is non-nil. C-g is only actually executed as
a command if you type it while Emacs is waiting for input. In that case, the command it
runs is keyboard-quit.

If you quit with C-g a second time before the first C-g is recognized, you activate the
“emergency escape” feature and return to the shell. See Section 33.2.8 [Emergency Escape],
page 413.

There may be times when you cannot quit. When Emacs is waiting for the operating
system to do something, quitting is impossible unless special pains are taken for the partic-
ular system call within Emacs where the waiting occurs. We have done this for the system

410 GNU Emacs Manual

calls that users are likely to want to quit from, but it’s possible you will find another. In
one very common case—waiting for file input or output using NFS—Emacs itself knows
how to quit, but many NFS implementations simply do not allow user programs to stop
waiting for NFS when the NFS server is hung.

Aborting with C-] (abort-recursive-edit) is used to get out of a recursive editing level
and cancel the command which invoked it. Quitting with C-g does not do this, and could
not do this, because it is used to cancel a partially typed command within the recursive
editing level. Both operations are useful. For example, if you are in a recursive edit and
type C-u 8 to enter a numeric argument, you can cancel that argument with C-g and remain
in the recursive edit.

The command 〈ESC〉 〈ESC〉 〈ESC〉 (keyboard-escape-quit) can either quit or abort. This
key was defined because 〈ESC〉 is used to “get out” in many PC programs. It can cancel a
prefix argument, clear a selected region, or get out of a Query Replace, like C-g. It can get
out of the minibuffer or a recursive edit, like C-]. It can also get out of splitting the frame
into multiple windows, like C-x 1. One thing it cannot do, however, is stop a command
that is running. That’s because it executes as an ordinary command, and Emacs doesn’t
notice it until it is ready for a command.

The command M-x top-level is equivalent to “enough” C-] commands to get you out
of all the levels of recursive edits that you are in. C-] gets you out one level at a time,
but M-x top-level goes out all levels at once. Both C-] and M-x top-level are like all
other commands, and unlike C-g, in that they take effect only when Emacs is ready for a
command. C-] is an ordinary key and has its meaning only because of its binding in the
keymap. See Section 31.13 [Recursive Edit], page 369.

C-x u (undo) is not strictly speaking a way of canceling a command, but you can think of
it as canceling a command that already finished executing. See Section 4.4 [Undo], page 36,
for more information about the undo facility.

33.2 Dealing with Emacs Trouble

This section describes various conditions in which Emacs fails to work normally, and how
to recognize them and correct them. For a list of additional problems you might encounter,
see section “Bugs and problems” in GNU Emacs FAQ, and the file ‘etc/PROBLEMS’ in the
Emacs distribution. Type C-h F to read the FAQ; type C-h P to read the ‘PROBLEMS’ file.

33.2.1 If 〈DEL〉 Fails to Delete

Every keyboard has a large key, a little ways above the 〈RET〉 or 〈ENTER〉 key, which you
normally use outside Emacs to erase the last character that you typed. We call this key the
usual erasure key. In Emacs, it is supposed to be equivalent to 〈DEL〉, and when Emacs is
properly configured for your terminal, it translates that key into the character 〈DEL〉.

When Emacs starts up using a window system, it determines automatically which key
should be 〈DEL〉. In some unusual cases Emacs gets the wrong information from the sys-
tem. If the usual erasure key deletes forwards instead of backwards, that is probably what
happened—Emacs ought to be treating the 〈DELETE〉 key as 〈DEL〉, but it isn’t.

With a window system, if the usual erasure key is labeled 〈BACKSPACE〉 and there is a
〈DELETE〉 key elsewhere, but the 〈DELETE〉 key deletes backward instead of forward, that

Chapter 33: Dealing with Common Problems 411

too suggests Emacs got the wrong information—but in the opposite sense. It ought to be
treating the 〈BACKSPACE〉 key as 〈DEL〉, and treating 〈DELETE〉 differently, but it isn’t.

On a text-only terminal, if you find the usual erasure key prompts for a Help command,
like Control-h, instead of deleting a character, it means that key is actually sending the
〈BS〉 character. Emacs ought to be treating 〈BS〉 as 〈DEL〉, but it isn’t.

In all of those cases, the immediate remedy is the same: use the command M-x
normal-erase-is-backspace-mode. This toggles between the two modes that Emacs
supports for handling 〈DEL〉, so if Emacs starts in the wrong mode, it should switch to the
right mode. On a text-only terminal, if you want to ask for help when 〈BS〉 is treated as
〈DEL〉, use 〈F1〉; C-? may also work, if it sends character code 127.

To fix the problem automatically for every Emacs session, you can put one of the fol-
lowing lines into your ‘.emacs’ file (see Section 32.7 [Init File], page 403). For the first case
above, where 〈DELETE〉 deletes forwards instead of backwards, use this line to make 〈DELETE〉
act as 〈DEL〉 (resulting in behavior compatible with Emacs 20 and previous versions):

(normal-erase-is-backspace-mode 0)

For the other two cases, where 〈BACKSPACE〉 ought to act as 〈DEL〉, use this line:
(normal-erase-is-backspace-mode 1)

Another way to fix the problem for every Emacs session is to customize the variable
normal-erase-is-backspace: the value t specifies the mode where 〈BS〉 or 〈BACKSPACE〉 is
〈DEL〉, and nil specifies the other mode. See Section 32.2.2 [Easy Customization], page 380.

With a window system, it can also happen that the usual erasure key is labeled
〈BACKSPACE〉, there is a 〈DELETE〉 key elsewhere, and both keys delete forward. This
probably means that someone has redefined your 〈BACKSPACE〉 key as a 〈DELETE〉 key. With
X, this is typically done with a command to the xmodmap program when you start the
server or log in. The most likely motive for this customization was to support old versions
of Emacs, so we recommend you simply remove it now.

33.2.2 Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but they can seem
like malfunctions to the user who does not understand them.

If the mode line has square brackets ‘[...]’ around the parentheses that contain the
names of the major and minor modes, you have entered a recursive editing level. If you
did not do this on purpose, or if you don’t understand what that means, you should just
get out of the recursive editing level. To do so, type M-x top-level. This is called getting
back to top level. See Section 31.13 [Recursive Edit], page 369.

33.2.3 Garbage on the Screen

If the data on the screen looks wrong, the first thing to do is see whether the text is
really wrong. Type C-l to redisplay the entire screen. If the screen appears correct after
this, the problem was entirely in the previous screen update. (Otherwise, see the following
section.)

Display updating problems often result from an incorrect termcap entry for the terminal
you are using. The file ‘etc/TERMS’ in the Emacs distribution gives the fixes for known

412 GNU Emacs Manual

problems of this sort. ‘INSTALL’ contains general advice for these problems in one of its
sections. Very likely there is simply insufficient padding for certain display operations. To
investigate the possibility that you have this sort of problem, try Emacs on another terminal
made by a different manufacturer. If problems happen frequently on one kind of terminal
but not another kind, it is likely to be a bad termcap entry, though it could also be due to
a bug in Emacs that appears for terminals that have or that lack specific features.

33.2.4 Garbage in the Text

If C-l shows that the text is wrong, try undoing the changes to it using C-x u until it
gets back to a state you consider correct. Also try C-h l to find out what command you
typed to produce the observed results.

If a large portion of text appears to be missing at the beginning or end of the buffer,
check for the word ‘Narrow’ in the mode line. If it appears, the text you don’t see is
probably still present, but temporarily off-limits. To make it accessible again, type C-x n
w. See Section 31.9 [Narrowing], page 366.

33.2.5 Spontaneous Entry to Incremental Search

If Emacs spontaneously displays ‘I-search:’ at the bottom of the screen, it means that
the terminal is sending C-s and C-q according to the poorly designed xon/xoff “flow control”
protocol.

If this happens to you, your best recourse is to put the terminal in a mode where it will
not use flow control, or give it so much padding that it will never send a C-s. (One way to
increase the amount of padding is to set the variable baud-rate to a larger value. Its value
is the terminal output speed, measured in the conventional units of baud.)

If you don’t succeed in turning off flow control, the next best thing is to tell Emacs to
cope with it. To do this, call the function enable-flow-control.

Typically there are particular terminal types with which you must use flow control.
You can conveniently ask for flow control on those terminal types only, using enable-
flow-control-on. For example, if you find you must use flow control on VT-100 and H19
terminals, put the following in your ‘.emacs’ file:

(enable-flow-control-on "vt100" "h19")

When flow control is enabled, you must type C-\ to get the effect of a C-s, and type
C-^ to get the effect of a C-q. (These aliases work by means of keyboard translations; see
Section 32.5 [Keyboard Translations], page 402.)

33.2.6 Running out of Memory

If you get the error message ‘Virtual memory exceeded’, save your modified buffers with
C-x s. This method of saving them has the smallest need for additional memory. Emacs
keeps a reserve of memory which it makes available when this error happens; that should
be enough to enable C-x s to complete its work.

Once you have saved your modified buffers, you can exit this Emacs job and start another,
or you can use M-x kill-some-buffers to free space in the current Emacs job. If you kill
buffers containing a substantial amount of text, you can safely go on editing. Emacs refills

Chapter 33: Dealing with Common Problems 413

its memory reserve automatically when it sees sufficient free space available, in case you
run out of memory another time.

Do not use M-x buffer-menu to save or kill buffers when you run out of memory, because
the buffer menu needs a fair amount of memory itself, and the reserve supply may not be
enough.

33.2.7 Recovery After a Crash

If Emacs or the computer crashes, you can recover the files you were editing at the time
of the crash from their auto-save files. To do this, start Emacs again and type the command
M-x recover-session.

This command initially displays a buffer which lists interrupted session files, each with
its date. You must choose which session to recover from. Typically the one you want is the
most recent one. Move point to the one you choose, and type C-c C-c.

Then recover-session asks about each of the files that you were editing during that
session; it asks whether to recover that file. If you answer y for a file, it shows the dates of
that file and its auto-save file, then asks once again whether to recover that file. For the
second question, you must confirm with yes. If you do, Emacs visits the file but gets the
text from the auto-save file.

When recover-session is done, the files you’ve chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

33.2.8 Emergency Escape

Because at times there have been bugs causing Emacs to loop without checking quit-
flag, a special feature causes Emacs to be suspended immediately if you type a second
C-g while the flag is already set, so you can always get out of GNU Emacs. Normally
Emacs recognizes and clears quit-flag (and quits!) quickly enough to prevent this from
happening. (On MS-DOS and compatible systems, type C-〈BREAK〉 twice.)

When you resume Emacs after a suspension caused by multiple C-g, it asks two questions
before going back to what it had been doing:

Auto-save? (y or n)
Abort (and dump core)? (y or n)

Answer each one with y or n followed by 〈RET〉.
Saying y to ‘Auto-save?’ causes immediate auto-saving of all modified buffers in which

auto-saving is enabled.

Saying y to ‘Abort (and dump core)?’ causes an illegal instruction to be executed, dump-
ing core. This is to enable a wizard to figure out why Emacs was failing to quit in the first
place. Execution does not continue after a core dump. If you answer n, execution does
continue. With luck, GNU Emacs will ultimately check quit-flag and quit normally. If
not, and you type another C-g, it is suspended again.

If Emacs is not really hung, just slow, you may invoke the double C-g feature without
really meaning to. Then just resume and answer n to both questions, and you will arrive
at your former state. Presumably the quit you requested will happen soon.

414 GNU Emacs Manual

The double C-g feature is turned off when Emacs is running under the X Window System,
since you can use the window manager to kill Emacs or to create another window and run
another program.

On MS-DOS and compatible systems, the emergency escape feature is sometimes un-
available, even if you press C-〈BREAK〉 twice, when some system call (MS-DOS or BIOS)
hangs, or when Emacs is stuck in a very tight endless loop (in C code, not in Lisp code).

33.2.9 Help for Total Frustration

If using Emacs (or something else) becomes terribly frustrating and none of the tech-
niques described above solve the problem, Emacs can still help you.

First, if the Emacs you are using is not responding to commands, type C-g C-g to get
out of it and then start a new one.

Second, type M-x doctor 〈RET〉.
The doctor will help you feel better. Each time you say something to the doctor, you

must end it by typing 〈RET〉 〈RET〉. This lets the doctor know you are finished.

33.3 Reporting Bugs

Sometimes you will encounter a bug in Emacs. Although we cannot promise we can
or will fix the bug, and we might not even agree that it is a bug, we want to hear about
problems you encounter. Often we agree they are bugs and want to fix them.

To make it possible for us to fix a bug, you must report it. In order to do so effectively,
you must know when and how to do it.

Before reporting a bug, it is a good idea to see if it is already known. You can find the
list of known problems in the file ‘etc/PROBLEMS’ in the Emacs distribution; type C-h P to
read it. Some additional user-level problems can be found in section “Bugs and problems”
in GNU Emacs FAQ. Looking up your problem in these two documents might provide you
with a solution or a work-around, or give you additional information about related issues.

33.3.1 When Is There a Bug

If Emacs executes an illegal instruction, or dies with an operating system error message
that indicates a problem in the program (as opposed to something like “disk full”), then it
is certainly a bug.

If Emacs updates the display in a way that does not correspond to what is in the buffer,
then it is certainly a bug. If a command seems to do the wrong thing but the problem
corrects itself if you type C-l, it is a case of incorrect display updating.

Taking forever to complete a command can be a bug, but you must make certain that it
was really Emacs’s fault. Some commands simply take a long time. Type C-g (C-〈BREAK〉 on
MS-DOS) and then C-h l to see whether the input Emacs received was what you intended
to type; if the input was such that you know it should have been processed quickly, report a
bug. If you don’t know whether the command should take a long time, find out by looking
in the manual or by asking for assistance.

If a command you are familiar with causes an Emacs error message in a case where its
usual definition ought to be reasonable, it is probably a bug.

Chapter 33: Dealing with Common Problems 415

If a command does the wrong thing, that is a bug. But be sure you know for certain
what it ought to have done. If you aren’t familiar with the command, or don’t know for
certain how the command is supposed to work, then it might actually be working right.
Rather than jumping to conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be the best possible definition for
editing with. This is a very important sort of problem, but it is also a matter of judgment.
Also, it is easy to come to such a conclusion out of ignorance of some of the existing
features. It is probably best not to complain about such a problem until you have checked
the documentation in the usual ways, feel confident that you understand it, and know for
certain that what you want is not available. If you are not sure what the command is
supposed to do after a careful reading of the manual, check the index and glossary for any
terms that may be unclear.

If after careful rereading of the manual you still do not understand what the command
should do, that indicates a bug in the manual, which you should report. The manual’s job
is to make everything clear to people who are not Emacs experts—including you. It is just
as important to report documentation bugs as program bugs.

If the on-line documentation string of a function or variable disagrees with the manual,
one of them must be wrong; that is a bug.

33.3.2 Understanding Bug Reporting

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, starting with the shell command to run Emacs, until the problem happens.

The most important principle in reporting a bug is to report facts. Hypotheses and
verbal descriptions are no substitute for the detailed raw data. Reporting the facts is
straightforward, but many people strain to posit explanations and report them instead of
the facts. If the explanations are based on guesses about how Emacs is implemented, they
will be useless; meanwhile, lacking the facts, we will have no real information about the
bug.

For example, suppose that you type C-x C-f /glorp/baz.ugh 〈RET〉, visiting a file which
(you know) happens to be rather large, and Emacs displayed ‘I feel pretty today’. The
best way to report the bug is with a sentence like the preceding one, because it gives all the
facts.

A bad way would be to assume that the problem is due to the size of the file and say,
“I visited a large file, and Emacs displayed ‘I feel pretty today’.” This is what we mean
by “guessing explanations.” The problem is just as likely to be due to the fact that there
is a ‘z’ in the file name. If this is so, then when we got your report, we would try out the
problem with some “large file,” probably with no ‘z’ in its name, and not see any problem.
There is no way in the world that we could guess that we should try visiting a file with a
‘z’ in its name.

Alternatively, the problem might be due to the fact that the file starts with exactly 25
spaces. For this reason, you should make sure that you inform us of the exact contents of
any file that is needed to reproduce the bug. What if the problem only occurs when you
have typed the C-x C-a command previously? This is why we ask you to give the exact
sequence of characters you typed since starting the Emacs session.

416 GNU Emacs Manual

You should not even say “visit a file” instead of C-x C-f unless you know that it makes
no difference which visiting command is used. Similarly, rather than saying “if I have three
characters on the line,” say “after I type 〈RET〉 A B C 〈RET〉 C-p,” if that is the way you
entered the text.

So please don’t guess any explanations when you report a bug. If you want to actually
debug the problem, and report explanations that are more than guesses, that is useful—but
please include the facts as well.

33.3.3 Checklist for Bug Reports

The best way to send a bug report is to mail it electronically to the Emacs maintainers
at bug-gnu-emacs@gnu.org, or to emacs-pretest-bug@gnu.org if you are pretesting an
Emacs beta release. (If you want to suggest a change as an improvement, use the same
address.)

If you’d like to read the bug reports, you can find them on the newsgroup
‘gnu.emacs.bug’; keep in mind, however, that as a spectator you should not criticize
anything about what you see there. The purpose of bug reports is to give information
to the Emacs maintainers. Spectators are welcome only as long as they do not interfere
with this. In particular, some bug reports contain fairly large amounts of data; spectators
should not complain about this.

Please do not post bug reports using netnews; mail is more reliable than netnews about
reporting your correct address, which we may need in order to ask you for more information.
If your data is more than 500,000 bytes, please don’t include it directly in the bug report;
instead, offer to send it on request, or make it available by ftp and say where.

If you can’t send electronic mail, then mail the bug report on paper or machine-readable
media to this address:
GNU Emacs Bugs
Free Software Foundation
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA

We do not promise to fix the bug; but if the bug is serious, or ugly, or easy to fix, chances
are we will want to.

A convenient way to send a bug report for Emacs is to use the command M-x
report-emacs-bug. This sets up a mail buffer (see Chapter 27 [Sending Mail], page 293)
and automatically inserts some of the essential information. However, it cannot supply all
the necessary information; you should still read and follow the guidelines below, so you
can enter the other crucial information by hand before you send the message.

To enable maintainers to investigate a bug, your report should include all these things:
• The version number of Emacs. Without this, we won’t know whether there is any point

in looking for the bug in the current version of GNU Emacs.
You can get the version number by typing M-x emacs-version 〈RET〉. If that command
does not work, you probably have something other than GNU Emacs, so you will have
to report the bug somewhere else.

• The type of machine you are using, and the operating system name and version number.
M-x emacs-version 〈RET〉 provides this information too. Copy its output from the
‘*Messages*’ buffer, so that you get it all and get it accurately.

Chapter 33: Dealing with Common Problems 417

• The operands given to the configure command when Emacs was installed.
• A complete list of any modifications you have made to the Emacs source. (We may

not have time to investigate the bug unless it happens in an unmodified Emacs. But
if you’ve made modifications and you don’t tell us, you are sending us on a wild goose
chase.)
Be precise about these changes. A description in English is not enough—send a context
diff for them.
Adding files of your own, or porting to another machine, is a modification of the source.

• Details of any other deviations from the standard procedure for installing GNU Emacs.
• The complete text of any files needed to reproduce the bug.

If you can tell us a way to cause the problem without visiting any files, please do so.
This makes it much easier to debug. If you do need files, make sure you arrange for us
to see their exact contents. For example, it can often matter whether there are spaces
at the ends of lines, or a newline after the last line in the buffer (nothing ought to care
whether the last line is terminated, but try telling the bugs that).

• The precise commands we need to type to reproduce the bug.
The easy way to record the input to Emacs precisely is to write a dribble file. To start
the file, execute the Lisp expression

(open-dribble-file "~/dribble")

using M-: or from the ‘*scratch*’ buffer just after starting Emacs. From then on,
Emacs copies all your input to the specified dribble file until the Emacs process is
killed.

• For possible display bugs, the terminal type (the value of environment variable TERM),
the complete termcap entry for the terminal from ‘/etc/termcap’ (since that file is not
identical on all machines), and the output that Emacs actually sent to the terminal.
The way to collect the terminal output is to execute the Lisp expression

(open-termscript "~/termscript")

using M-: or from the ‘*scratch*’ buffer just after starting Emacs. From then on,
Emacs copies all terminal output to the specified termscript file as well, until the Emacs
process is killed. If the problem happens when Emacs starts up, put this expression
into your ‘.emacs’ file so that the termscript file will be open when Emacs displays the
screen for the first time.
Be warned: it is often difficult, and sometimes impossible, to fix a terminal-dependent
bug without access to a terminal of the type that stimulates the bug.

• If non-ASCII text or internationalization is relevant, the locale that was current when
you started Emacs. On GNU/Linux and Unix systems, or if you use a Posix-style shell
such as Bash, you can use this shell command to view the relevant values:

echo LC_ALL=$LC_ALL LC_COLLATE=$LC_COLLATE LC_TYPE=$LC_TYPE \
LC_MESSAGES=$LC_MESSAGES LC_TIME=$LC_TIME LANG=$LANG

Alternatively, use the locale command, if your system has it, to display your locale
settings.
You can use the M-! command to execute these commands from Emacs, and then copy
the output from the ‘*Messages*’ buffer into the bug report. Alternatively, M-x getenv

418 GNU Emacs Manual

〈RET〉 LC_ALL 〈RET〉 will display the value of LC_ALL in the echo area, and you can copy
its output from the ‘*Messages*’ buffer.

• A description of what behavior you observe that you believe is incorrect. For example,
“The Emacs process gets a fatal signal,” or, “The resulting text is as follows, which I
think is wrong.”

Of course, if the bug is that Emacs gets a fatal signal, then one can’t miss it. But if
the bug is incorrect text, the maintainer might fail to notice what is wrong. Why leave
it to chance?

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the source is out of sync,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and the copy here might not. If you said to expect a crash,
then when Emacs here fails to crash, we would know that the bug was not happening.
If you don’t say to expect a crash, then we would not know whether the bug was
happening—we would not be able to draw any conclusion from our observations.

• If the bug is that the Emacs Manual or the Emacs Lisp Reference Manual fails to
describe the actual behavior of Emacs, or that the text is confusing, copy in the text
from the online manual which you think is at fault. If the section is small, just the
section name is enough.

• If the manifestation of the bug is an Emacs error message, it is important to report
the precise text of the error message, and a backtrace showing how the Lisp program
in Emacs arrived at the error.

To get the error message text accurately, copy it from the ‘*Messages*’ buffer into the
bug report. Copy all of it, not just part.

To make a backtrace for the error, use M-x toggle-debug-on-error before the error
happens (that is to say, you must give that command and then make the bug happen).
This causes the error to run the Lisp debugger, which shows you a backtrace. Copy
the text of the debugger’s backtrace into the bug report. See section “The Lisp Debug-
ger” in the Emacs Lisp Reference Manual, for information on debugging Emacs Lisp
programs with the Edebug package.

This use of the debugger is possible only if you know how to make the bug happen
again. If you can’t make it happen again, at least copy the whole error message.

• Check whether any programs you have loaded into the Lisp world, including your
‘.emacs’ file, set any variables that may affect the functioning of Emacs. Also, see
whether the problem happens in a freshly started Emacs without loading your ‘.emacs’
file (start Emacs with the -q switch to prevent loading the init file). If the problem
does not occur then, you must report the precise contents of any programs that you
must load into the Lisp world in order to cause the problem to occur.

• If the problem does depend on an init file or other Lisp programs that are not part
of the standard Emacs system, then you should make sure it is not a bug in those
programs by complaining to their maintainers first. After they verify that they are
using Emacs in a way that is supposed to work, they should report the bug.

• If you wish to mention something in the GNU Emacs source, show the line of code with
a few lines of context. Don’t just give a line number.

Chapter 33: Dealing with Common Problems 419

The line numbers in the development sources don’t match those in your sources. It
would take extra work for the maintainers to determine what code is in your version
at a given line number, and we could not be certain.

• Additional information from a C debugger such as GDB might enable someone to find
a problem on a machine which he does not have available. If you don’t know how to
use GDB, please read the GDB manual—it is not very long, and using GDB is easy.
You can find the GDB distribution, including the GDB manual in online form, in most
of the same places you can find the Emacs distribution. To run Emacs under GDB,
you should switch to the ‘src’ subdirectory in which Emacs was compiled, then do ‘gdb
emacs’. It is important for the directory ‘src’ to be current so that GDB will read the
‘.gdbinit’ file in this directory.
However, you need to think when you collect the additional information if you want it
to show what causes the bug.
For example, many people send just a backtrace, but that is not very useful by itself.
A simple backtrace with arguments often conveys little about what is happening inside
GNU Emacs, because most of the arguments listed in the backtrace are pointers to
Lisp objects. The numeric values of these pointers have no significance whatever; all
that matters is the contents of the objects they point to (and most of the contents are
themselves pointers).
To provide useful information, you need to show the values of Lisp objects in Lisp
notation. Do this for each variable which is a Lisp object, in several stack frames near
the bottom of the stack. Look at the source to see which variables are Lisp objects,
because the debugger thinks of them as integers.
To show a variable’s value in Lisp syntax, first print its value, then use the user-defined
GDB command pr to print the Lisp object in Lisp syntax. (If you must use another
debugger, call the function debug_print with the object as an argument.) The pr
command is defined by the file ‘.gdbinit’, and it works only if you are debugging a
running process (not with a core dump).
To make Lisp errors stop Emacs and return to GDB, put a breakpoint at Fsignal.
For a short listing of Lisp functions running, type the GDB command xbacktrace.
The file ‘.gdbinit’ defines several other commands that are useful for examining the
data types and contents of Lisp objects. Their names begin with ‘x’. These commands
work at a lower level than pr, and are less convenient, but they may work even when pr
does not, such as when debugging a core dump or when Emacs has had a fatal signal.
More detailed advice and other useful techniques for debugging Emacs are available
in the file ‘etc/DEBUG’ in the Emacs distribution. That file also includes instructions
for investigating problems whereby Emacs stops responding (many people assume that
Emacs is “hung,” whereas in fact it might be in an infinite loop).
To find the file ‘etc/DEBUG’ in your Emacs installation, use the directory name stored
in the variable data-directory.

Here are some things that are not necessary in a bug report:
• A description of the envelope of the bug—this is not necessary for a reproducible bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

420 GNU Emacs Manual

This is often time-consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. You might as well save time by not searching for
additional examples. It is better to send the bug report right away, go back to editing,
and find another bug to report.

Of course, if you can find a simpler example to report instead of the original one, that is
a convenience. Errors in the output will be easier to spot, running under the debugger
will take less time, etc.

However, simplification is not vital; if you can’t do this or don’t have time to try, please
report the bug with your original test case.

• A core dump file.

Debugging the core dump might be useful, but it can only be done on your machine,
with your Emacs executable. Therefore, sending the core dump file to the Emacs
maintainers won’t be useful. Above all, don’t include the core file in an email bug
report! Such a large message can be extremely inconvenient.

• A system-call trace of Emacs execution.

System-call traces are very useful for certain special kinds of debugging, but in most
cases they give little useful information. It is therefore strange that many people seem
to think that the way to report information about a crash is to send a system-call trace.
Perhaps this is a habit formed from experience debugging programs that don’t have
source code or debugging symbols.

In most programs, a backtrace is normally far, far more informative than a system-call
trace. Even in Emacs, a simple backtrace is generally more informative, though to give
full information you should supplement the backtrace by displaying variable values and
printing them as Lisp objects with pr (see above).

• A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the other information
that a bug report needs, such as the test case, on the assumption that a patch is
sufficient. We might see problems with your patch and decide to fix the problem
another way, or we might not understand it at all. And if we can’t understand what
bug you are trying to fix, or why your patch should be an improvement, we mustn’t
install it.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even experts can’t guess right about such things
without first using the debugger to find the facts.

33.3.4 Sending Patches for GNU Emacs

If you would like to write bug fixes or improvements for GNU Emacs, that is very
helpful. When you send your changes, please follow these guidelines to make it easy for the
maintainers to use them. If you don’t follow these guidelines, your information might still
be useful, but using it will take extra work. Maintaining GNU Emacs is a lot of work in
the best of circumstances, and we can’t keep up unless you do your best to help.

Chapter 33: Dealing with Common Problems 421

• Send an explanation with your changes of what problem they fix or what improvement
they bring about. For a bug fix, just include a copy of the bug report, and explain why
the change fixes the bug.
(Referring to a bug report is not as good as including it, because then we will have to
look it up, and we have probably already deleted it if we’ve already fixed the bug.)

• Always include a proper bug report for the problem you think you have fixed. We
need to convince ourselves that the change is right before installing it. Even if it is
correct, we might have trouble understanding it if we don’t have a way to reproduce
the problem.

• Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.
If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one. If you send them all jumbled together in a
single set of diffs, we have to do extra work to disentangle them—to figure out which
parts of the change serve which purpose. If we don’t have time for this, we might have
to ignore your changes entirely.
If you send each change as soon as you have written it, with its own explanation, then
two changes never get tangled up, and we can consider each one properly without any
extra work to disentangle them.

• Send each change as soon as that change is finished. Sometimes people think they are
helping us by accumulating many changes to send them all together. As explained
above, this is absolutely the worst thing you could do.
Since you should send each change separately, you might as well send it right away.
That gives us the option of installing it immediately if it is important.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard to install reliably.
More than that, they are hard to study; we must always study a patch to decide
whether we want to install it. Unidiff format is better than contextless diffs, but not
as easy to read as ‘-c’ format.
If you have GNU diff, use ‘diff -c -F’^[_a-zA-Z0-9$]+ *(’’ when making diffs of C
code. This shows the name of the function that each change occurs in.

• Avoid any ambiguity as to which is the old version and which is the new. Please make
the old version the first argument to diff, and the new version the second argument.
And please give one version or the other a name that indicates whether it is the old
version or your new changed one.

• Write the change log entries for your changes. This is both to save us the extra work
of writing them, and to help explain your changes so we can understand them.
The purpose of the change log is to show people where to find what was changed. So
you need to be specific about what functions you changed; in large functions, it’s often
helpful to indicate where within the function the change was.
On the other hand, once you have shown people where to find the change, you need not
explain its purpose in the change log. Thus, if you add a new function, all you need to
say about it is that it is new. If you feel that the purpose needs explaining, it probably
does—but put the explanation in comments in the code. It will be more useful there.

422 GNU Emacs Manual

Please read the ‘ChangeLog’ files in the ‘src’ and ‘lisp’ directories to see what sorts of
information to put in, and to learn the style that we use. If you would like your name
to appear in the header line, showing who made the change, send us the header line.
See Section 24.1 [Change Log], page 267.

• When you write the fix, keep in mind that we can’t install a change that would break
other systems. Please think about what effect your change will have if compiled on
another type of system.
Sometimes people send fixes that might be an improvement in general—but it is hard
to be sure of this. It’s hard to install such changes because we have to study them very
carefully. Of course, a good explanation of the reasoning by which you concluded the
change was correct can help convince us.
The safest changes are changes to the configuration files for a particular machine. These
are safe because they can’t create new bugs on other machines.
Please help us keep up with the workload by designing the patch in a form that is
clearly safe to install.

33.4 Contributing to Emacs Development

If you would like to help pretest Emacs releases to assure they work well, or
if you would like to work on improving Emacs, please contact the maintainers at
bug-gnu-emacs@gnu.org. A pretester should be prepared to investigate bugs as well as
report them. If you’d like to work on improving Emacs, please ask for suggested projects
or suggest your own ideas.

If you have already written an improvement, please tell us about it. If you have not yet
started work, it is useful to contact bug-gnu-emacs@gnu.org before you start; it might be
possible to suggest ways to make your extension fit in better with the rest of Emacs.

33.5 How To Get Help with GNU Emacs

If you need help installing, using or changing GNU Emacs, there are two ways to find it:
• Send a message to the mailing list help-gnu-emacs@gnu.org, or post your request on

newsgroup gnu.emacs.help. (This mailing list and newsgroup interconnect, so it does
not matter which one you use.)

• Look in the service directory for someone who might help you for a fee. The service
directory is found in the file named ‘etc/SERVICE’ in the Emacs distribution.

Appendix B: Command Line Arguments 423

Appendix B Command Line Arguments

GNU Emacs supports command line arguments to request various actions when invoking
Emacs. These are for compatibility with other editors and for sophisticated activities. We
don’t recommend using them for ordinary editing.

Arguments starting with ‘-’ are options. Other arguments specify files to visit. Emacs
visits the specified files while it starts up. The last file name on your command line becomes
the current buffer; the other files are also visited in other buffers. If there are two files, they
are both displayed; otherwise the last file is displayed along with a buffer list that shows
what other buffers there are. As with most programs, the special argument ‘--’ says that
all subsequent arguments are file names, not options, even if they start with ‘-’.

Emacs command options can specify many things, such as the size and position of the
X window Emacs uses, its colors, and so on. A few options support advanced usage, such
as running Lisp functions on files in batch mode. The sections of this chapter describe the
available options, arranged according to their purpose.

There are two ways of writing options: the short forms that start with a single ‘-’, and
the long forms that start with ‘--’. For example, ‘-d’ is a short form and ‘--display’ is
the corresponding long form.

The long forms with ‘--’ are easier to remember, but longer to type. However, you don’t
have to spell out the whole option name; any unambiguous abbreviation is enough. When
a long option takes an argument, you can use either a space or an equal sign to separate the
option name and the argument. Thus, you can write either ‘--display sugar-bombs:0.0’
or ‘--display=sugar-bombs:0.0’. We recommend an equal sign because it makes the
relationship clearer, and the tables below always show an equal sign.

Most options specify how to initialize Emacs, or set parameters for the Emacs session.
We call them initial options. A few options specify things to do: for example, load libraries,
call functions, or terminate Emacs. These are called action options. These and file names
together are called action arguments. Emacs processes all the action arguments in the order
they are written.

B.1 Action Arguments

Here is a table of the action arguments and options:

‘file’
‘--visit=file’
‘--file=file’

Visit file using find-file. See Section 14.2 [Visiting], page 110.

‘+linenum file’
Visit file using find-file, then go to line number linenum in it.

‘+linenum:columnnum file’
Visit file using find-file, then go to line number linenum and put point at
column number columnnum.

424 GNU Emacs Manual

‘-l file’
‘--load=file’

Load a Lisp library named file with the function load. See Section 23.7 [Lisp
Libraries], page 262. The library can be found either in the current directory,
or in the Emacs library search path as specified with EMACSLOADPATH (see Sec-
tion B.5.1 [General Variables], page 427).

‘-f function’
‘--funcall=function’

Call Lisp function function with no arguments.

‘--eval=expression’
‘--execute=expression’

Evaluate Lisp expression expression.

‘--insert=file’
Insert the contents of file into the current buffer. This is like what M-x
insert-file does. See Section 14.10 [Misc File Ops], page 143.

‘--kill’ Exit from Emacs without asking for confirmation.

The init file can access the values of the action arguments as the elements of a list in the
variable command-line-args. The init file can override the normal processing of the action
arguments, or define new ones, by reading and setting this variable.

B.2 Initial Options

The initial options specify parameters for the Emacs session. This section describes
the more general initial options; some other options specifically related to the X Window
System appear in the following sections.

Some initial options affect the loading of init files. The normal actions of Emacs are to
first load ‘site-start.el’ if it exists, then your own init file ‘~/.emacs’ if it exists, and
finally ‘default.el’ if it exists; certain options prevent loading of some of these files or
substitute other files for them.

‘-t device’
‘--terminal=device’

Use device as the device for terminal input and output.

‘-d display ’
‘--display=display ’

Use the X Window System and use the display named display to open the
initial Emacs frame. See Section B.6 [Display X], page 430, for more details.

‘-nw’
‘--no-windows’

Don’t communicate directly with the window system, disregarding the DISPLAY
environment variable even if it is set. This forces Emacs to run as if the display
were a text-only terminal.

Appendix B: Command Line Arguments 425

‘-batch’
‘--batch’ Run Emacs in batch mode, which means that the text being edited is not

displayed and the standard terminal interrupt characters such as C-z and C-c
continue to have their normal effect. Emacs in batch mode outputs to stderr
only what would normally be displayed in the echo area under program control,
and functions which would normally read from the minibuffer take their input
from stdin.
Batch mode is used for running programs written in Emacs Lisp from shell
scripts, makefiles, and so on. Normally the ‘-l’ option or ‘-f’ option will be
used as well, to invoke a Lisp program to do the batch processing.
‘-batch’ implies ‘-q’ (do not load an init file). It also causes Emacs to exit
after processing all the command options. In addition, it disables auto-saving
except in buffers for which it has been explicitly requested.

‘-q’
‘--no-init-file’

Do not load your Emacs init file ‘~/.emacs’, or ‘default.el’ either. When
invoked like this, Emacs does not allow saving options changed with the M-x
customize command and its variants. See Section 32.2.2 [Easy Customization],
page 380.

‘--no-site-file’
Do not load ‘site-start.el’. The options ‘-q’, ‘-u’ and ‘-batch’ have no
effect on the loading of this file—this is the only option that blocks it.

‘-u user’
‘--user=user’

Load user’s Emacs init file ‘~user/.emacs’ instead of your own.

‘--debug-init’
Enable the Emacs Lisp debugger for errors in the init file.

‘--unibyte’
Do almost everything with single-byte buffers and strings. All buffers and
strings are unibyte unless you (or a Lisp program) explicitly ask for a multi-
byte buffer or string. (Note that Emacs always loads Lisp files in multibyte
mode, even if ‘--unibyte’ is specified; see Section 18.2 [Enabling Multibyte],
page 176.) Setting the environment variable EMACS_UNIBYTE has the same ef-
fect.

‘--multibyte’
Inhibit the effect of EMACS_UNIBYTE, so that Emacs uses multibyte characters
by default, as usual.

B.3 Command Argument Example

Here is an example of using Emacs with arguments and options. It assumes you have a
Lisp program file called ‘hack-c.el’ which, when loaded, performs some useful operation
on the current buffer, expected to be a C program.

426 GNU Emacs Manual

emacs -batch foo.c -l hack-c -f save-buffer >& log

This says to visit ‘foo.c’, load ‘hack-c.el’ (which makes changes in the visited file), save
‘foo.c’ (note that save-buffer is the function that C-x C-s is bound to), and then exit
back to the shell (because of ‘-batch’). ‘-batch’ also guarantees there will be no problem
redirecting output to ‘log’, because Emacs will not assume that it has a display terminal
to work with.

B.4 Resuming Emacs with Arguments

You can specify action arguments for Emacs when you resume it after a suspension. To
prepare for this, put the following code in your ‘.emacs’ file (see Section 32.2.3 [Hooks],
page 386):

(add-hook ’suspend-hook ’resume-suspend-hook)
(add-hook ’suspend-resume-hook ’resume-process-args)

As further preparation, you must execute the shell script ‘emacs.csh’ (if you use csh as
your shell) or ‘emacs.bash’ (if you use bash as your shell). These scripts define an alias
named edit, which will resume Emacs giving it new command line arguments such as files
to visit. The scripts are found in the ‘etc’ subdirectory of the Emacs distribution.

Only action arguments work properly when you resume Emacs. Initial arguments are
not recognized—it’s too late to execute them anyway.

Note that resuming Emacs (with or without arguments) must be done from within the
shell that is the parent of the Emacs job. This is why edit is an alias rather than a program
or a shell script. It is not possible to implement a resumption command that could be run
from other subjobs of the shell; there is no way to define a command that could be made
the value of EDITOR, for example. Therefore, this feature does not take the place of the
Emacs Server feature (see Section 31.3 [Emacs Server], page 360).

The aliases use the Emacs Server feature if you appear to have a server Emacs running.
However, they cannot determine this with complete accuracy. They may think that a server
is still running when in actuality you have killed that Emacs, because the file ‘/tmp/esrv...’
still exists. If this happens, find that file and delete it.

B.5 Environment Variables

The environment is a feature of the operating system; it consists of a collection of vari-
ables with names and values. Each variable is called an environment variable; environment
variable names are case-sensitive, and it is conventional to use upper case letters only. The
values are all text strings.

What makes the environment useful is that subprocesses inherit the environment auto-
matically from their parent process. This means you can set up an environment variable in
your login shell, and all the programs you run (including Emacs) will automatically see it.
Subprocesses of Emacs (such as shells, compilers, and version-control software) inherit the
environment from Emacs, too.

Inside Emacs, the command M-x getenv gets the value of an environment variable. M-x
setenv sets a variable in the Emacs environment. The way to set environment variables
outside of Emacs depends on the operating system, and especially the shell that you are

Appendix B: Command Line Arguments 427

using. For example, here’s how to set the environment variable ORGANIZATION to ‘not very
much’ using Bash:

export ORGANIZATION="not very much"

and here’s how to do it in csh or tcsh:
setenv ORGANIZATION "not very much"

When Emacs is uses the X Window System, it inherits the use of a large number of
environment variables from the X libraries. See the X documentation for more information.

B.5.1 General Variables

Here is an alphabetical list of specific environment variables that have special meanings
in Emacs, giving the name of each variable and its meaning. Most of these variables are also
used by some other programs. Emacs does not require any of these environment variables
to be set, but it uses their values if they are set.

CDPATH Used by the cd command to search for the directory you specify, when you
specify a relative directory name.

EMACS_UNIBYTE
Defining this environment variable with a nonempty value directs Emacs to
do almost everything with single-byte buffers and strings. It is equivalent to
using the ‘--unibyte’ command-line option on each invocation. See Section B.2
[Initial Options], page 424.

EMACSDATA
Directory for the architecture-independent files that come with Emacs. This is
used to initialize the Lisp variable data-directory.

EMACSDOC Directory for the documentation string file, ‘DOC-emacsversion’. This is used
to initialize the Lisp variable doc-directory.

EMACSLOADPATH
A colon-separated list of directories1 to search for Emacs Lisp files—used to
initialize load-path.

EMACSPATH
A colon-separated list of directories to search for executable files—used to ini-
tialize exec-path.

ESHELL Used for shell-mode to override the SHELL environment variable.

HISTFILE The name of the file that shell commands are saved in between logins. This
variable defaults to ‘~/.bash_history’ if you use Bash, to ‘~/.sh_history’ if
you use ksh, and to ‘~/.history’ otherwise.

HOME The location of the user’s files in the directory tree; used for expansion of file
names starting with a tilde (‘~’). On MS-DOS, it defaults to the directory from
which Emacs was started, with ‘/bin’ removed from the end if it was present.
On Windows, the default value of HOME is ‘C:/’, the root directory of drive ‘C:’.

1 Here and below, whenever we say “colon-separated list of directories”, it pertains to Unix and
GNU/Linux systems. On MS-DOS and MS-Windows, the directories are separated by semi-colons
instead, since DOS/Windows file names might include a colon after a drive letter.

428 GNU Emacs Manual

HOSTNAME The name of the machine that Emacs is running on.

INCPATH A colon-separated list of directories. Used by the complete package to search
for files.

INFOPATH A colon-separated list of directories in which to search for Info files.

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
LANG The user’s preferred locale. The locale has six categories, specified by the

environment variables LC_COLLATE for sorting, LC_CTYPE for character encod-
ing, LC_MESSAGES for system messages, LC_MONETARY for monetary formats,
LC_NUMERIC for numbers, and LC_TIME for dates and times. If one of these
variables is not set, the category defaults to the value of the LANG environment
variable, or to the default ‘C’ locale if LANG is not set. But if LC_ALL is specified,
it overrides the settings of all the other locale environment variables.
The value of the LC CTYPE category is matched against entries in
locale-language-names, locale-charset-language-names, and locale-
preferred-coding-systems, to select a default language environment and
coding system. See Section 18.3 [Language Environments], page 177.

LOGNAME The user’s login name. See also USER.

MAIL The name of the user’s system mail inbox.

MAILRC Name of file containing mail aliases. (The default is ‘~/.mailrc’.)

MH Name of setup file for the mh system. (The default is ‘~/.mh_profile’.)

NAME The real-world name of the user.

NNTPSERVER
The name of the news server. Used by the mh and Gnus packages.

ORGANIZATION
The name of the organization to which you belong. Used for setting the ‘Orga-
nization:’ header in your posts from the Gnus package.

PATH A colon-separated list of directories in which executables reside. This is used
to initialize the Emacs Lisp variable exec-path.

PWD If set, this should be the default directory when Emacs was started.

REPLYTO If set, this specifies an initial value for the variable mail-default-reply-to.
See Section 27.2 [Mail Headers], page 294.

SAVEDIR The name of a directory in which news articles are saved by default. Used by
the Gnus package.

SHELL The name of an interpreter used to parse and execute programs run from inside
Emacs.

Appendix B: Command Line Arguments 429

TERM The type of the terminal that Emacs is using. This variable must be set unless
Emacs is run in batch mode. On MS-DOS, it defaults to ‘internal’, which
specifies a built-in terminal emulation that handles the machine’s own display.
If the value of TERM indicates that Emacs runs in non-windowed mode from
xterm or a similar terminal emulator, the background mode defaults to ‘light’,
and Emacs will choose colors that are appropriate for a light background.

TERMCAP The name of the termcap library file describing how to program the terminal
specified by the TERM variable. This defaults to ‘/etc/termcap’.

TMPDIR Used by the Emerge package as a prefix for temporary files.

TZ This specifies the current time zone and possibly also daylight saving time in-
formation. On MS-DOS, if TZ is not set in the environment when Emacs starts,
Emacs defines a default value as appropriate for the country code returned by
DOS. On MS-Windows, Emacs does not use TZ at all.

USER The user’s login name. See also LOGNAME. On MS-DOS, this defaults to ‘root’.

VERSION_CONTROL
Used to initialize the version-control variable (see Section 14.3.1.1 [Backup
Names], page 115).

B.5.2 Miscellaneous Variables

These variables are used only on particular configurations:

COMSPEC On MS-DOS and MS-Windows, the name of the command interpreter to use
when invoking batch files and commands internal to the shell. On MS-DOS
this is also used to make a default value for the SHELL environment variable.

NAME On MS-DOS, this variable defaults to the value of the USER variable.

TEMP
TMP On MS-DOS and MS-Windows, these specify the name of the directory for

storing temporary files in.

EMACSTEST
On MS-DOS, this specifies a file to use to log the operation of the internal
terminal emulator. This feature is useful for submitting bug reports.

EMACSCOLORS
On MS-DOS, this specifies the screen colors. It is useful to set them this way,
since otherwise Emacs would display the default colors momentarily when it
starts up.
The value of this variable should be the two-character encoding of the fore-
ground (the first character) and the background (the second character) colors
of the default face. Each character should be the hexadecimal code for the
desired color on a standard PC text-mode display. For example, to get blue
text on a light gray background, specify ‘EMACSCOLORS=17’, since 1 is the code
of the blue color and 7 is the code of the light gray color.
The PC display usually supports only eight background colors. However, Emacs
switches the DOS display to a mode where all 16 colors can be used for the
background, so all four bits of the background color are actually used.

430 GNU Emacs Manual

WINDOW_GFX
Used when initializing the Sun windows system.

B.6 Specifying the Display Name

The environment variable DISPLAY tells all X clients, including Emacs, where to display
their windows. Its value is set by default in ordinary circumstances, when you start an X
server and run jobs locally. Occasionally you may need to specify the display yourself; for
example, if you do a remote login and want to run a client program remotely, displaying on
your local screen.

With Emacs, the main reason people change the default display is to let them log into
another system, run Emacs on that system, but have the window displayed at their local
terminal. You might need to log in to another system because the files you want to edit are
there, or because the Emacs executable file you want to run is there.

The syntax of the DISPLAY environment variable is ‘host:display.screen’, where host is
the host name of the X Window System server machine, display is an arbitrarily-assigned
number that distinguishes your server (X terminal) from other servers on the same machine,
and screen is a rarely-used field that allows an X server to control multiple terminal screens.
The period and the screen field are optional. If included, screen is usually zero.

For example, if your host is named ‘glasperle’ and your server is the first (or perhaps
the only) server listed in the configuration, your DISPLAY is ‘glasperle:0.0’.

You can specify the display name explicitly when you run Emacs, either by changing
the DISPLAY variable, or with the option ‘-d display ’ or ‘--display=display ’. Here is an
example:

emacs --display=glasperle:0 &

You can inhibit the direct use of the window system and GUI with the ‘-nw’ option.
It tells Emacs to display using ordinary ASCII on its controlling terminal. This is also an
initial option.

Sometimes, security arrangements prevent a program on a remote system from displaying
on your local system. In this case, trying to run Emacs produces messages like this:

Xlib: connection to "glasperle:0.0" refused by server

You might be able to overcome this problem by using the xhost command on the local
system to give permission for access from your remote machine.

B.7 Font Specification Options

By default, Emacs displays text in the font named ‘9x15’, which makes each character
nine pixels wide and fifteen pixels high. You can specify a different font on your command
line through the option ‘-fn name’ (or ‘--font’, which is an alias for ‘-fn’).

‘-fn name’
‘--font=name’

Use font name as the default font.

Under X, each font has a long name which consists of eleven words or numbers, separated
by dashes. Some fonts also have shorter nicknames—‘9x15’ is such a nickname. You can

Appendix B: Command Line Arguments 431

use either kind of name. You can use wildcard patterns for the font name; then Emacs lets
X choose one of the fonts that match the pattern. Here is an example, which happens to
specify the font whose nickname is ‘6x13’:

emacs -fn "-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1" &

You can also specify the font in your ‘.Xdefaults’ file:
emacs.font: -misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

A long font name has the following form:
-maker-family-weight-slant-widthtype-style...
...-pixels-height-horiz-vert-spacing-width-charset

maker This is the name of the font manufacturer.

family This is the name of the font family—for example, ‘courier’.

weight This is normally ‘bold’, ‘medium’ or ‘light’. Other words may appear here in
some font names.

slant This is ‘r’ (roman), ‘i’ (italic), ‘o’ (oblique), ‘ri’ (reverse italic), or ‘ot’ (other).

widthtype This is normally ‘condensed’, ‘extended’, ‘semicondensed’ or ‘normal’. Other
words may appear here in some font names.

style This is an optional additional style name. Usually it is empty—most long font
names have two hyphens in a row at this point.

pixels This is the font height, in pixels.

height This is the font height on the screen, measured in tenths of a printer’s point—
approximately 1/720 of an inch. In other words, it is the point size of the font,
times ten. For a given vertical resolution, height and pixels are proportional;
therefore, it is common to specify just one of them and use ‘*’ for the other.

horiz This is the horizontal resolution, in pixels per inch, of the screen for which the
font is intended.

vert This is the vertical resolution, in pixels per inch, of the screen for which the font
is intended. Normally the resolution of the fonts on your system is the right
value for your screen; therefore, you normally specify ‘*’ for this and horiz.

spacing This is ‘m’ (monospace), ‘p’ (proportional) or ‘c’ (character cell).

width This is the average character width, in pixels, multiplied by ten.

charset This is the character set that the font depicts. Normally you should use
‘iso8859-1’.

You will probably want to use a fixed-width default font—that is, a font in which all
characters have the same width. Any font with ‘m’ or ‘c’ in the spacing field of the long name
is a fixed-width font. Here’s how to use the xlsfonts program to list all the fixed-width
fonts available on your system:

xlsfonts -fn ’*x*’ | egrep "^[0-9]+x[0-9]+"
xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-m*’
xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-c*’

To see what a particular font looks like, use the xfd command. For example:

432 GNU Emacs Manual

xfd -fn 6x13

displays the entire font ‘6x13’.
While running Emacs, you can set the font of the current frame (see Section 17.12 [Frame

Parameters], page 170) or for a specific kind of text (see Section 11.1 [Faces], page 79).

B.8 Window Color Options

On a color display, you can specify which color to use for various parts of the Emacs dis-
play. To find out what colors are available on your system, type M-x list-colors-display,
or press C-Mouse-2 and select ‘Display Colors’ from the pop-up menu. If you do not spec-
ify colors, on windowed displays the default for the background is white and the default for
all other colors is black. On a monochrome display, the foreground is black, the background
is white, and the border is gray if the display supports that. On terminals, the background
is usually black and the foreground is white.

Here is a list of the command-line options for specifying colors:

‘-fg color’
‘--foreground-color=color’

Specify the foreground color. color should be a standard color name, or a nu-
meric specification of the color’s red, green, and blue components as in ‘#4682B4’
or ‘RGB:46/82/B4’.

‘-bg color’
‘--background-color=color’

Specify the background color.

‘-bd color’
‘--border-color=color’

Specify the color of the border of the X window.

‘-cr color’
‘--cursor-color=color’

Specify the color of the Emacs cursor which indicates where point is.

‘-ms color’
‘--mouse-color=color’

Specify the color for the mouse cursor when the mouse is in the Emacs window.

‘-r’
‘-rv’
‘--reverse-video’

Reverse video—swap the foreground and background colors.

For example, to use a coral mouse cursor and a slate blue text cursor, enter:
emacs -ms coral -cr ’slate blue’ &

You can reverse the foreground and background colors through the ‘-rv’ option or with
the X resource ‘reverseVideo’.

The ‘-fg’, ‘-bg’, and ‘-rv’ options function on text-only terminals as well as on window
systems.

Appendix B: Command Line Arguments 433

B.9 Options for Window Geometry

The ‘--geometry’ option controls the size and position of the initial Emacs frame. Here
is the format for specifying the window geometry:

‘-g widthxheight[{+-}xoffset{+-}yoffset]]’
Specify window size width and height (measured in character columns and
lines), and positions xoffset and yoffset (measured in pixels).

‘--geometry=widthxheight[{+-}xoffset{+-}yoffset]]’
This is another way of writing the same thing.

{+-} means either a plus sign or a minus sign. A plus sign before xoffset means it is the
distance from the left side of the screen; a minus sign means it counts from the right side. A
plus sign before yoffset means it is the distance from the top of the screen, and a minus sign
there indicates the distance from the bottom. The values xoffset and yoffset may themselves
be positive or negative, but that doesn’t change their meaning, only their direction.

Emacs uses the same units as xterm does to interpret the geometry. The width and
height are measured in characters, so a large font creates a larger frame than a small font.
(If you specify a proportional font, Emacs uses its maximum bounds width as the width
unit.) The xoffset and yoffset are measured in pixels.

Since the mode line and the echo area occupy the last 2 lines of the frame, the height of
the initial text window is 2 less than the height specified in your geometry. In non-X-toolkit
versions of Emacs, the menu bar also takes one line of the specified number. But in the X
toolkit version, the menu bar is additional and does not count against the specified height.
The tool bar, if present, is also additional.

You do not have to specify all of the fields in the geometry specification.
If you omit both xoffset and yoffset, the window manager decides where to put the Emacs

frame, possibly by letting you place it with the mouse. For example, ‘164x55’ specifies a
window 164 columns wide, enough for two ordinary width windows side by side, and 55
lines tall.

The default width for Emacs is 80 characters and the default height is 40 lines. You
can omit either the width or the height or both. If you start the geometry with an integer,
Emacs interprets it as the width. If you start with an ‘x’ followed by an integer, Emacs
interprets it as the height. Thus, ‘81’ specifies just the width; ‘x45’ specifies just the height.

If you start with ‘+’ or ‘-’, that introduces an offset, which means both sizes are omitted.
Thus, ‘-3’ specifies the xoffset only. (If you give just one offset, it is always xoffset.) ‘+3-3’
specifies both the xoffset and the yoffset, placing the frame near the bottom left of the
screen.

You can specify a default for any or all of the fields in ‘.Xdefaults’ file, and then override
selected fields with a ‘--geometry’ option.

B.10 Internal and External Borders

An Emacs frame has an internal border and an external border. The internal border is
an extra strip of the background color around the text portion of the frame. Emacs itself
draws the internal border. The external border is added by the window manager outside

434 GNU Emacs Manual

the frame; depending on the window manager you use, it may contain various boxes you
can click on to move or iconify the window.

‘-ib width’
‘--internal-border=width’

Specify width as the width of the internal border, in pixels.

‘-bw width’
‘--border-width=width’

Specify width as the width of the main border, in pixels.

When you specify the size of the frame, that does not count the borders. The frame’s
position is measured from the outside edge of the external border.

Use the ‘-ib n’ option to specify an internal border n pixels wide. The default is 1. Use
‘-bw n’ to specify the width of the external border (though the window manager may not
pay attention to what you specify). The default width of the external border is 2.

B.11 Frame Titles

An Emacs frame may or may not have a specified title. The frame title, if specified,
appears in window decorations and icons as the name of the frame. If an Emacs frame has
no specified title, the default title has the form ‘invocation-name@machine’ (if there is only
one frame) or the selected window’s buffer name (if there is more than one frame).

You can specify a title for the initial Emacs frame with a command line option:

‘-title title’
‘--title=title’
‘-T title’ Specify title as the title for the initial Emacs frame.

The ‘--name’ option (see Section B.13 [Resources X], page 435) also specifies the title
for the initial Emacs frame.

B.12 Icons

Most window managers allow the user to “iconify” a frame, removing it from sight, and
leaving a small, distinctive “icon” window in its place. Clicking on the icon window makes
the frame itself appear again. If you have many clients running at once, you can avoid
cluttering up the screen by iconifying most of the clients.

‘-i’
‘--icon-type’

Use a picture of a gnu as the Emacs icon.

‘-iconic’
‘--iconic’

Start Emacs in iconified state.

The ‘-i’ or ‘--icon-type’ option tells Emacs to use an icon window containing a picture
of the GNU gnu. If omitted, Emacs lets the window manager choose what sort of icon to
use—usually just a small rectangle containing the frame’s title.

Appendix B: Command Line Arguments 435

The ‘-iconic’ option tells Emacs to begin running as an icon, rather than showing a
frame right away. In this situation, the icon is the only indication that Emacs has started;
the text frame doesn’t appear until you deiconify it.

B.13 X Resources

Programs running under the X Window System organize their user options under a
hierarchy of classes and resources. You can specify default values for these options in your
X resources file, usually named ‘~/.Xdefaults’.

Each line in the file specifies a value for one option or for a collection of related options,
for one program or for several programs (optionally even for all programs).

MS-Windows systems don’t support ‘~/.Xdefaults’ files, but Emacs com-
piled for Windows looks for X resources in the Windows Registry, under the keys
‘HKEY_CURRENT_USER\SOFTWARE\GNU\Emacs’ and ‘HKEY_LOCAL_MACHINE\SOFTWARE\GNU\Emacs’.

Programs define named resources with particular meanings. They also define how to
group resources into named classes. For instance, in Emacs, the ‘internalBorder’ resource
controls the width of the internal border, and the ‘borderWidth’ resource controls the width
of the external border. Both of these resources are part of the ‘BorderWidth’ class. Case
distinctions are significant in these names.

In ‘~/.Xdefaults’, you can specify a value for a single resource on one line, like this:

emacs.borderWidth: 2

Or you can use a class name to specify the same value for all resources in that class. Here’s
an example:

emacs.BorderWidth: 2

If you specify a value for a class, it becomes the default for all resources in that class. You
can specify values for individual resources as well; these override the class value, for those
particular resources. Thus, this example specifies 2 as the default width for all borders, but
overrides this value with 4 for the external border:

emacs.BorderWidth: 2
emacs.borderWidth: 4

The order in which the lines appear in the file does not matter. Also, command-line
options always override the X resources file.

The string ‘emacs’ in the examples above is also a resource name. It actually represents
the name of the executable file that you invoke to run Emacs. If Emacs is installed under
a different name, it looks for resources under that name instead of ‘emacs’.

‘-name name’
‘--name=name’

Use name as the resource name (and the title) for the initial Emacs frame. This
option does not affect subsequent frames, but Lisp programs can specify frame
names when they create frames.

If you don’t specify this option, the default is to use the Emacs executable’s
name as the resource name.

436 GNU Emacs Manual

‘-xrm resource-values’
‘--xrm=resource-values’

Specify X resource values for this Emacs job (see below).

For consistency, ‘-name’ also specifies the name to use for other resource values that do
not belong to any particular frame.

The resources that name Emacs invocations also belong to a class; its name is ‘Emacs’.
If you write ‘Emacs’ instead of ‘emacs’, the resource applies to all frames in all Emacs jobs,
regardless of frame titles and regardless of the name of the executable file. Here is an
example:

Emacs.BorderWidth: 2
Emacs.borderWidth: 4

You can specify a string of additional resource values for Emacs to use with the command
line option ‘-xrm resources’. The text resources should have the same format that you would
use inside a file of X resources. To include multiple resource specifications in resources, put
a newline between them, just as you would in a file. You can also use ‘#include "filename"’
to include a file full of resource specifications. Resource values specified with ‘-xrm’ take
precedence over all other resource specifications.

The following table lists the resource names that designate options for Emacs, each with
the class that it belongs to:

background (class Background)
Background color name.

bitmapIcon (class BitmapIcon)
Use a bitmap icon (a picture of a gnu) if ‘on’, let the window manager choose
an icon if ‘off’.

borderColor (class BorderColor)
Color name for the external border.

borderWidth (class BorderWidth)
Width in pixels of the external border.

cursorColor (class Foreground)
Color name for text cursor (point).

font (class Font)
Font name for text (or fontset name, see Section 18.10 [Fontsets], page 188).

foreground (class Foreground)
Color name for text.

geometry (class Geometry)
Window size and position. Be careful not to specify this resource as
‘emacs*geometry’, because that may affect individual menus as well as the
Emacs frame itself.
If this resource specifies a position, that position applies only to the initial
Emacs frame (or, in the case of a resource for a specific frame name, only that
frame). However, the size, if specified here, applies to all frames.

Appendix B: Command Line Arguments 437

iconName (class Title)
Name to display in the icon.

internalBorder (class BorderWidth)
Width in pixels of the internal border.

lineSpacing (class LineSpacing)
Additional space (leading) between lines, in pixels.

menuBar (class MenuBar)
Give frames menu bars if ‘on’; don’t have menu bars if ‘off’.

toolBar (class ToolBar)
Number of lines to reserve for the tool bar. A zero value suppresses the tool
bar. If the value is non-zero and auto-resize-tool-bars is non-nil, the tool
bar’s size will be changed automatically so that all tool bar items are visible.

minibuffer (class Minibuffer)
If ‘none’, don’t make a minibuffer in this frame. It will use a separate minibuffer
frame instead.

paneFont (class Font)
Font name for menu pane titles, in non-toolkit versions of Emacs.

pointerColor (class Foreground)
Color of the mouse cursor.

reverseVideo (class ReverseVideo)
Switch foreground and background default colors if ‘on’, use colors as specified
if ‘off’.

screenGamma (class ScreenGamma)
Gamma correction for colors, equivalent to the frame parameter screen-gamma.

selectionFont (class Font)
Font name for pop-up menu items, in non-toolkit versions of Emacs. (For toolkit
versions, see Section B.14 [Lucid Resources], page 439, also see Section B.15
[LessTif Resources], page 440.)

synchronous (class Synchronous)
Run Emacs in synchronous mode if ‘on’. Synchronous mode is useful for de-
bugging X problems.

title (class Title)
Name to display in the title bar of the initial Emacs frame.

verticalScrollBars (class ScrollBars)
Give frames scroll bars if ‘on’; don’t have scroll bars if ‘off’.

Here are resources for controlling the appearance of particular faces (see Section 11.1
[Faces], page 79):

face.attributeFont
Font for face face.

438 GNU Emacs Manual

face.attributeForeground
Foreground color for face face.

face.attributeBackground
Background color for face face.

face.attributeUnderline
Underline flag for face face. Use ‘on’ or ‘true’ for yes.

face.attributeFamily
Font family for face face.

face.attributeWidth
Relative proportional width of the font to use for face face. It should be one of
ultra-condensed, extra-condensed, condensed, semi-condensed, normal,
semi-expanded, expanded, extra-expanded, or ultra-expanded.

face.attributeHeight
Height of the font to use for face face: either an integer specifying the height in
units of 1/10 pt, or a floating point number that specifies a scale factor to scale
the underlying face’s default font, or a function to be called with the default
height which will return a new height.

face.attributeWeight
A weight to use for the face face. It must be one of ultra-bold, extra-bold,
bold, semi-bold, normal, semi-light, light, extra-light, ultra-light.

face.attributeSlant
The slant to use for the font of face face. It must be one of italic, oblique,
normal, reverse-italic, or reverse-oblique.

face.attributeStrikeThrough
Whether the face face should be drawn with a line striking through the char-
acters.

face.attributeOverline
Whether the characters in the face face should be overlined.

face.attributeBox
Whether to draw a box around the characters in face face.

face.attributeInverse
Whether to display the characters in face face in inverse video.

face.attributeStipple
The name of a pixmap data file to use for the stipple pattern, or false to not
use stipple for the face face.

face.attributeBackgroundPixmap
The background pixmap for the face face. Should be a name of a pixmap file
or false.

face.attributeBold
Whether to draw the characters in the face face as bold.

face.attributeItalic
Whether to draw the characters in the face face as italic.

Appendix B: Command Line Arguments 439

B.14 Lucid Menu X Resources

If the Emacs installed at your site was built to use the X toolkit with the Lucid menu
widgets, then the menu bar is a separate widget and has its own resources. The resource
names contain ‘pane.menubar’ (following, as always, the name of the Emacs invocation, or
‘Emacs’, which stands for all Emacs invocations). Specify them like this:

Emacs.pane.menubar.resource: value

For example, to specify the font ‘8x16’ for the menu-bar items, write this:

Emacs.pane.menubar.font: 8x16

Resources for non-menubar toolkit pop-up menus have ‘menu*’, in like fashion. For example,
to specify the font ‘8x16’ for the pop-up menu items, write this:

Emacs.menu*.font: 8x16

For dialog boxes, use ‘dialog’ instead of ‘menu’:

Emacs.dialog*.font: 8x16

Experience shows that on some systems you may need to add ‘shell.’ before the
‘pane.menubar’ or ‘menu*’. On some other systems, you must not add ‘shell.’.

Here is a list of the specific resources for menu bars and pop-up menus:

font Font for menu item text.

foreground
Color of the foreground.

background
Color of the background.

buttonForeground
In the menu bar, the color of the foreground for a selected item.

horizontalSpacing
Horizontal spacing in pixels between items. Default is 3.

verticalSpacing
Vertical spacing in pixels between items. Default is 1.

arrowSpacing
Horizontal spacing between the arrow (which indicates a submenu) and the
associated text. Default is 10.

shadowThickness
Thickness of shadow line around the widget.

margin The margin of the menu bar, in characters. The default of 4 makes the menu
bar appear like the LessTif/Motif one.

440 GNU Emacs Manual

B.15 LessTif Menu X Resources

If the Emacs installed at your site was built to use the X toolkit with the LessTif or
Motif widgets, then the menu bar, the dialog boxes, the pop-up menus, and the file-selection
box are separate widgets and have their own resources.

The resource names for the menu bar contain ‘pane.menubar’ (following, as always, the
name of the Emacs invocation, or ‘Emacs’, which stands for all Emacs invocations). Specify
them like this:

Emacs.pane.menubar.subwidget.resource: value

Each individual string in the menu bar is a subwidget; the subwidget’s name is the
same as the menu item string. For example, the word ‘File’ in the menu bar is part of a
subwidget named ‘emacs.pane.menubar.File’. Most likely, you want to specify the same
resources for the whole menu bar. To do this, use ‘*’ instead of a specific subwidget name.
For example, to specify the font ‘8x16’ for the menu-bar items, write this:

Emacs.pane.menubar.*.fontList: 8x16

This also specifies the resource value for submenus.

Each item in a submenu in the menu bar also has its own name for X resources; for
example, the ‘File’ submenu has an item named ‘Save (current buffer)’. A resource
specification for a submenu item looks like this:

Emacs.pane.menubar.popup_*.menu.item.resource: value

For example, here’s how to specify the font for the ‘Save (current buffer)’ item:
Emacs.pane.menubar.popup_*.File.Save (current buffer).fontList: 8x16

For an item in a second-level submenu, such as ‘Complete Word’ under ‘Spell Checking’
under ‘Tools’, the resource fits this template:

Emacs.pane.menubar.popup_*.popup_*.menu.resource: value

For example,
Emacs.pane.menubar.popup_*.popup_*.Spell Checking.Complete Word: value

(This should be one long line.)

It’s impossible to specify a resource for all the menu-bar items without also specifying
it for the submenus as well. So if you want the submenu items to look different from the
menu bar itself, you must ask for that in two steps. First, specify the resource for all of
them; then, override the value for submenus alone. Here is an example:

Emacs.pane.menubar.*.fontList: 8x16
Emacs.pane.menubar.popup_*.fontList: 8x16

For LessTif pop-up menus, use ‘menu*’ instead of ‘pane.menubar’. For example, to specify
the font ‘8x16’ for the pop-up menu items, write this:

Emacs.menu*.fontList: 8x16

For LessTif dialog boxes, use ‘dialog’ instead of ‘menu’:
Emacs.dialog*.fontList: 8x16
Emacs.dialog*.foreground: hotpink

To specify resources for the LessTif file-selection box, use ‘fsb*’, like this:
Emacs.fsb*.fontList: 8x16

Appendix B: Command Line Arguments 441

Here is a list of the specific resources for LessTif menu bars and pop-up menus:

armColor The color to show in an armed button.

fontList The font to use.

marginBottom
marginHeight
marginLeft
marginRight
marginTop
marginWidth

Amount of space to leave around the item, within the border.

borderWidth
The width of the border around the menu item, on all sides.

shadowThickness
The width of the border shadow.

bottomShadowColor
The color for the border shadow, on the bottom and the right.

topShadowColor
The color for the border shadow, on the top and the left.

442 GNU Emacs Manual

Appendix C: Emacs 20 Antinews 443

Appendix C Emacs 20 Antinews

For those users who live backwards in time, here is information about downgrading to
Emacs version 20. We hope you will enjoy the greater simplicity that results from the
absence of many Emacs 21 features.

• The display engine has been greatly simplified by eliminating support for variable-size
characters and other non-text display features. This avoids the complexity of display
layout in Emacs 21. To wit:
− Variable-size characters are not supported in Emacs 20. You cannot use fonts

which contain oversized characters, and using italic fonts can result in illegible
display. However, text which uses variable-size fonts is unreadable anyway. With
all characters in a frame laid out on a regular grid, each character having the same
height and width, text is much easier to read.

− Emacs does not display images, or play sounds. It just displays text, as you would
expect from a text editor.

− Specification of the font for a face now uses an XLFD font name, for compatibility
with other X applications. This means that font attributes cannot be merged when
combining faces; however, experience shows that mergers are bad economics. Face
inheritance has also been removed, so no one can accumulate “too much face.”

− Several face appearance attributes, including 3D, strike-through, and overline, have
been eliminated.

− Emacs now provides its own “lean and mean” scroll bars instead of using those
from the X toolkit. Toggle buttons and radio buttons in menus now look just like
any other menu item, which simplifies them, and prevents them from standing out
and distracting your attention from the other menu items.

− There are no toolbars and no tooltips; in particular, gud mode cannot display
variable values in a tooltip when you click on that variable’s name. Instead, Emacs
20 provides a direct interface to the debugger, so that you can type appropriate
debugger commands, such as display foo and print bar. As these commands
use explicit words, their meaning is more self-evident.

− Colors are not available on text-only terminals. If you must have colors, but cannot
afford to run X, you can now use the MS-DOG version of Emacs inside a DOS
emulator.

− The mode line is not mouse-sensitive, since it is meant only to display information.
Use keyboard commands to switch between buffers, toggle read-only and modified
status, switch minor modes on and off, etc.

− The support for “wheeled” mice under X has been removed, because of their slow
scroll rate, and because you will find fewer and fewer of these mice as you go back
in time. Instead Emacs 20 provides the C-v and M-v keys for scrolling. (You can
also use the scroll bar, but be advised that it, too, may be absent in yet earlier
Emacs versions.)

− Busy-cursor display is gone, as it was found to be too hard to draw on displays
whose resolution is getting lower and lower. This means that you get the standard
kind of cursor blinking that your terminal provides.

444 GNU Emacs Manual

− Some aspects of Emacs appearance, such as the colors of the scroll bar and the
menus, can only be controlled via X resources. Since colors aren’t supported except
on X, it doesn’t make any sense to do this in any way but the X way. For those
users who aren’t privy to X arcana, we’ve provided good default colors that should
make everybody happy.

− Emacs 20 adds new lines to the buffer when you move down from the last line with
C-n or a down-arrow.

− The variable show-trailing-whitespace has no special meaning, so trailing
whitespace on a line is now always displayed correctly: as empty space. To see if
a line ends with spaces or tabs, type C-e on that line. Likewise, empty lines at
the end of the buffer are not marked in any way; use M-> to see where the end of
the buffer is.

− The spacing between text lines on the display now always follows the font design
and the rules of your window manager. This provides for predictable appearance
of the displayed text.

• Emacs 20 has simpler support for multi-lingual editing. While not as radical a simplifi-
cation as Emacs 19 will be, it goes a long way toward eliminating some of the annoying
features:
− Translations of the Emacs reference cards to other languages are no longer part of

the distribution, because in the past we expect computer users to speak English.
− To avoid extra confusion, many language environments have been eliminated. For

example, ‘Polish’ and ‘Celtic’ (Latin-8) environments are not supported. The
Latin-9 environment is gone, too, because you won’t need the Euro sign in the
past.

− Emacs 20 always asks you which coding system to use when saving a buffer, unless
it can use the same one that it used to read the buffer. It does not try to see if
the preferred coding system is suitable.

− Commands which provide detailed information about character sets and coding
systems, such as list-charset-chars, describe-character-set, and the C-u
C-x = key-sequence, no longer exist. The less said about non-ASCII characters,
the better.

− The terminal coding system cannot be set to something CCL-based, so keyboards
which produce KOI8 and DOS/Windows codepage codes cannot be supported di-
rectly. Instead, you should use one of the input methods provided in the Leim
package.

• As you move back through time, some systems will become unimportant or enter the
vaporware phase, so Emacs 20 does not support them:
− Emacs 20 cannot be built on GNU/Linux systems running on IA64 machines, and

you cannot build a 64-bit Emacs on Solaris or Irix even though there are still 64-bit
versions of those OSes.

− LynxOS is also not supported, and neither is the Macintosh, though they still
exist.

• The arrangement of menu bar items differs from most other gui programs. We think
that uniformity of look-and-feel is boring, and that Emacs’ unique features require its
unique menu-bar configuration.

Appendix C: Emacs 20 Antinews 445

• You cannot save the options that you set from the ‘Options’ menu-bar menu; instead,
you need to set all the options again each time you start a new session. However, if
you follow the recommended practice and keep a single Emacs session running until
you log out, you won’t have to set the options very often.

• Emacs 20 does not pop up a buffer with error messages when an error is signaled
during loading of the user’s init file. Instead, it simply announces the fact that an
error happened. To know where in the init file that was, insert (message "foo") lines
judiciously into the file and look for those messages in the ‘*Messages*’ buffer.

• Some commands no longer treat Transient Mark mode specially. For example, ispell
doesn’t spell-check the region when Transient Mark mode is in effect and the mark is
active; instead, it checks the current buffer. (Transient Mark mode is alien to the spirit
of Emacs, so we are planning to remove it altogether in an earlier version.)

• C-Down-Mouse-3 does not show what would be in the menu bar when the menu bar is
not displayed.

• For uniformity, the 〈delete〉 function key in Emacs 20 works exactly like the 〈DEL〉 key,
on both text-only terminals and window systems—it always deletes backward. This
eliminates the inconsistency of Emacs 21, where the key labeled 〈delete〉 deletes forward
when you are using a window system, and backward on a text-only terminals.

• The ability to place backup files in special subdirectories (controlled by backup-
directory-alist) has been eliminated. This makes finding your backup files much
easier: they are always in the same directory as the original files.

• Emacs no longer refuses to load Lisp files compiled by incompatible versions of Emacs,
which may contain invalid byte-code. Instead, Emacs now dumps core when it encoun-
ters such byte-code. However, this is a rare occurrence, and it won’t happen at all
when all Emacs versions merge together, in the distant past.

• The C-x 5 1 command has been eliminated. If you want to delete all the frames but
the current one, delete them one by one instead.

• CC Mode now enforces identical values for some customizable options, such as inden-
tation style, for better consistency. In particular, if you select an indentation style for
Java, the same style is used for C and C++ buffers as well.

• Isearch does not highlight other possible matches; it shows only the current match, to
avoid distracting your attention. Mouse-2 in the echo area during incremental search
now signals an error, instead of inserting the current selection into the search string.
But you can accomplish more or less the same job by typing M-y.

• The ability to specify a port number when editing remote files with ange-ftp was
removed. Instead, Emacs 20 provides undocumented features in the function ange-
ftp-normal-login (Use the source, Luke!) to specify the port.

• Emacs 20 does not check for changing time stamps of remote files, since the old FTP
programs you will encounter in the past could not provide the time stamp anyway.
Windows-style FTP clients which output the ‘^M’ character at the end of each line
get special handling from ange-ftp in Emacs 20, with unexpected results that should
make your life more interesting.

• Many complicated display features, including highlighting of mouse-sensitive text re-
gions and popping up help strings for menu items, don’t work in the MS-DOS version.

446 GNU Emacs Manual

Spelling doesn’t work on MS-DOS, and Eshell doesn’t exist, so there’s no workable
shell-mode, either. This fits the spirit of MS-DOS, which resembles a dumb character
terminal.

• The woman package has been removed, so Emacs users on non-Posix systems will need
a real man to read manual pages. (Users who are not macho can read the Info docu-
mentation instead.)

• recentf has been removed, because we figure that you can remember the names of the
files you edit frequently. With decreasing disk size, you should have fewer files anyway,
so you won’t notice the absence of this feature.

• The field property does not exist in Emacs 20, so various packages that run subsidiary
programs in Emacs buffers cannot in general distinguish which text was user input and
which was output from the subprocess. If you need to try to do this nonetheless, Emacs
20 provides a variable comint-prompt-regexp, which lets you try to distinguish input
by recognizing prompt strings.

• We have eliminated the special major modes for Delphi sources, PostScript files, context
diffs, and ‘TODO’ files. Use Fundamental Mode instead.

• Many additional packages that unnecessarily complicate your life in Emacs 21 are ab-
sent in Emacs 20. You cannot browse C++ classes with Ebrowse, access sql data bases,
access ldap and other directory servers, or mix shell commands and Lisp functions us-
ing Eshell.

• To keep up with decreasing computer memory capacity and disk space, many other
functions and files have been eliminated in Emacs 20.

Appendix D: Emacs and the Mac OS 447

Appendix D Emacs and the Mac OS

Emacs built on the Mac OS supports many of its major features: multiple frames, colors,
scroll bars, menu bars, use of the mouse, fontsets, international characters, input methods,
coding systems, and synchronous subprocesses (call-process). Much of this works in the
same way as on other platforms and is therefore documented in the rest of this manual.
This section describes the peculiarities of using Emacs under the Mac OS.

The following features of Emacs are not yet supported on the Mac: unexec (dump-emacs),
asynchronous subprocesses (start-process), and networking (open-network-stream). As
a result, packages such as Gnus, GUD, and Comint do not work.

Since external programs to handle commands such as print-buffer and diff are not
available on the Mac OS, they are not supported in the Mac OS version.

D.1 Keyboard Input on the Mac

On the Mac, Emacs can use either the 〈option〉 key or the 〈command〉 key as the 〈META〉
key. If the value of the variable mac-command-key-is-meta is non-nil (its default value),
Emacs uses the 〈command〉 key as the 〈META〉 key. Otherwise it uses the 〈option〉 key as the
〈META〉 key.

Most people should want to use the 〈command〉 key as the 〈META〉 key, so that dead-key
processing with the 〈option〉 key will still work. This is useful for entering non-ASCII Latin
characters directly from the Mac keyboard, for example.

Emacs recognizes the setting in the Keyboard control panel and supports international
and alternative keyboard layouts (e.g., Dvorak). Selecting one of the layouts from the key-
board layout pull-down menu will affect how the keys typed on the keyboard are interpreted.

The Mac OS intercepts and handles certain key combinations (e.g., 〈command〉-〈SPC〉 for
switching input languages). These will not be passed to Emacs.

The Mac keyboard ordinarily generates characters in the Mac Roman encoding. To use
it for entering ISO Latin-1 characters directly, set the value of the variable mac-keyboard-
text-encoding to kTextEncodingISOLatin1. Note that not all Mac Roman characters
that can be entered at the keyboard can be converted to ISO Latin-1 characters.

To enter ISO Latin-2 characters directly from the Mac keyboard, set the value of mac-
keyboard-text-encoding to kTextEncodingISOLatin2. Then let Emacs know that the
keyboard generates Latin-2 codes, by typing C-x 〈RET〉 k iso-latin-2 〈RET〉. To make this
setting permanent, put this in your ‘.emacs’ init file:

(set-keyboard-coding-system ’iso-latin-2)

D.2 International Character Set Support on the Mac

The Mac uses a non-standard encoding for the upper 128 single-byte characters. It also
deviates from the ISO 2022 standard by using character codes in the range 128-159. The
coding system mac-roman is used to represent this Mac encoding. It is used for editing files
stored in this native encoding, and for displaying file names in Dired mode.

Any native (non-symbol) Mac font can be used to correctly display characters in the
mac-roman coding system.

448 GNU Emacs Manual

The fontset fontset-mac is created automatically when Emacs is run on the Mac. It
displays characters in the mac-roman coding system using 12-point Monaco.

To insert characters directly in the mac-roman coding system, type C-x 〈RET〉 k
mac-roman 〈RET〉, customize the option keyboard-coding-system, or put this in your init
file:

(set-keyboard-coding-system ’mac-roman)

This is useful for editing documents in native Mac encoding.
You can use input methods provided either by LEIM (see Section 18.4 [Input Methods],

page 178) or the Mac OS to enter international characters.
To use the former, see the International Character Set Support section of the manual

(see Chapter 18 [International], page 175).
To use input methods provided by the Mac OS, set the keyboard coding system ac-

cordingly using the C-x 〈RET〉 k command (set-keyboard-coding-system). For example,
for Traditional Chinese, use ‘chinese-big5’ as keyboard coding system; for Japanese, use
‘sjis’, etc. Then select the desired input method in the keyboard layout pull-down menu.

The Mac clipboard and the Emacs kill ring (see Section 9.1 [Killing], page 67) are
connected as follows: the most recent kill is copied to the clipboard when Emacs is suspended
and the contents of the clipboard is inserted into the kill ring when Emacs resumes. The
result is that you can yank a piece of text and paste it into another Mac application, or cut
or copy one in another Mac application and yank it into a Emacs buffer.

The encoding of text selections must be specified using the commands C-x 〈RET〉 x (set-
selection-coding-system) or C-x 〈RET〉 X (set-next-selection-coding-system) (e.g.,
for Traditional Chinese, use ‘chinese-big5-mac’ and for Japanese, ‘sjis-mac’). See Sec-
tion 18.9 [Specify Coding], page 185, for more details.

D.3 Environment Variables and Command Line Arguments.

Environment variables and command line arguments for Emacs can be set by modifying
the ‘STR#’ resources 128 and 129, respectively. A common environment variable that one
may want to set is ‘HOME’.

The way to set an environment variable is by adding a string of the form
ENV_VAR=VALUE

to resource ‘STR#’ number 128 using ResEdit. To set up the program to use unibyte
characters exclusively, for example, add the string

EMACS_UNIBYTE=1

D.4 Volumes and Directories on the Mac

The directory structure in the Mac OS is seen by Emacs as
/volumename/filename

So when Emacs requests a file name, doing file name completion on ‘/’ will display all
volumes on the system. You can use ‘..’ to go up a directory level.

To access files and folders on the desktop, look in the folder ‘Desktop Folder’ in your
boot volume (this folder is usually invisible in the Mac Finder).

Appendix D: Emacs and the Mac OS 449

Emacs creates the Mac folder ‘:Preferences:Emacs:’ in the ‘System Folder’ and uses
it as the temporary directory. Emacs maps the directory name ‘/tmp/’ to that. Therefore
it is best to avoid naming a volume ‘tmp’. If everything works correctly, the program should
leave no files in it when it exits. You should be able to set the environment variable TMPDIR
to use another directory but this folder will still be created.

D.5 Specifying Fonts on the Mac

It is rare that you need to specify a font name in Emacs; usually you specify face
attributes instead. But when you do need to specify a font name in Emacs on the Mac, use
a standard X font name:

-maker-family-weight-slant-widthtype-style...
...-pixels-height-horiz-vert-spacing-width-charset

See Section B.7 [Font X], page 430. Wildcards are supported as they are on X.
Native Apple fonts in Mac Roman encoding has maker name apple and

charset mac-roman. For example 12-point Monaco can be specified by the name
‘-apple-monaco-*-12-*-mac-roman’.

Native Apple Traditional Chinese, Simplified Chinese, Japanese, and Korean fonts have
charsets ‘big5-0’, ‘gb2312.1980-0’, ‘jisx0208.1983-sjis’, and ‘ksc5601.1989-0’, re-
spectively.

Single-byte fonts converted from GNU fonts in BDF format, which are not in the Mac
Roman encoding, have foundry, family, and character sets encoded in the names of their
font suitcases. E.g., the font suitcase ‘ETL-Fixed-ISO8859-1’ contains fonts which can be
referred to by the name ‘-ETL-fixed-*-iso8859-1’.

D.6 Mac-Specific Lisp Functions

The function do-applescript takes a string argument, executes it as an AppleScript
command, and returns the result as a string.

The function mac-file-name-to-posix takes a Mac file name and returns the GNU or
Unix equivalent. The function posix-file-name-to-mac performs the opposite conversion.
They are useful for constructing AppleScript commands to be passed to do-applescript.

450 GNU Emacs Manual

Appendix E: Emacs and MS-DOS 451

Appendix E Emacs and MS-DOS

This section briefly describes the peculiarities of using Emacs under the MS-DOS “op-
erating system” (also known as “MS-DOG”). If you build Emacs for MS-DOS, the binary
will also run on Windows 3.X, Windows NT, Windows 9X/ME, Windows 2000, or OS/2 as
a DOS application; the information in this chapter applies for all of those systems, if you
use an Emacs that was built for MS-DOS.

Note that it is possible to build Emacs specifically for Windows NT/2K or Windows
9X/ME. If you do that, most of this chapter does not apply; instead, you get behavior
much closer to what is documented in the rest of the manual, including support for long file
names, multiple frames, scroll bars, mouse menus, and subprocesses. However, the section
on text files and binary files does still apply. There are also two sections at the end of this
chapter which apply specifically for the Windows version.

E.1 Keyboard and Mouse on MS-DOS

The PC keyboard maps use the left 〈ALT〉 key as the 〈META〉 key. You have two choices
for emulating the 〈SUPER〉 and 〈HYPER〉 keys: choose either the right 〈CTRL〉 key or the right
〈ALT〉 key by setting the variables dos-hyper-key and dos-super-key to 1 or 2 respectively.
If neither dos-super-key nor dos-hyper-key is 1, then by default the right 〈ALT〉 key is
also mapped to the 〈META〉 key. However, if the MS-DOS international keyboard support
program ‘KEYB.COM’ is installed, Emacs will not map the right 〈ALT〉 to 〈META〉, since it is
used for accessing characters like ~ and @ on non-US keyboard layouts; in this case, you
may only use the left 〈ALT〉 as 〈META〉 key.

The variable dos-keypad-mode is a flag variable that controls what key codes are re-
turned by keys in the numeric keypad. You can also define the keypad 〈ENTER〉 key to act
like C-j, by putting the following line into your ‘_emacs’ file:

;; Make the 〈ENTER〉 key from the numeric keypad act as C-j.
(define-key function-key-map [kp-enter] [?\C-j])

The key that is called 〈DEL〉 in Emacs (because that’s how it is designated on most
workstations) is known as 〈BS〉 (backspace) on a PC. That is why the PC-specific terminal
initialization remaps the 〈BS〉 key to act as 〈DEL〉; the 〈DEL〉 key is remapped to act as C-d
for the same reasons.

Emacs built for MS-DOS recognizes C-〈BREAK〉 as a quit character, just like C-g. This is
because Emacs cannot detect that you have typed C-g until it is ready for more input. As
a consequence, you cannot use C-g to stop a running command (see Section 33.1 [Quitting],
page 409). By contrast, C-〈BREAK〉 is detected as soon as you type it (as C-g is on other
systems), so it can be used to stop a running command and for emergency escape (see
Section 33.2.8 [Emergency Escape], page 413).

Emacs on MS-DOS supports a mouse (on the default terminal only). The mouse com-
mands work as documented, including those that use menus and the menu bar (see Sec-
tion 1.4 [Menu Bar], page 25). Scroll bars don’t work in MS-DOS Emacs. PC mice usually
have only two buttons; these act as Mouse-1 and Mouse-2, but if you press both of them
together, that has the effect of Mouse-3. If the mouse does have 3 buttons, Emacs detects
that at startup, and all the 3 buttons function normally, as on X.

452 GNU Emacs Manual

Help strings for menu-bar and pop-up menus are displayed in the echo area when the
mouse pointer moves across the menu items. Highlighting of mouse-sensitive text (see
Section 17.4 [Mouse References], page 166) is also supported.

Some versions of mouse drivers don’t report the number of mouse buttons correctly. For
example, mice with a wheel report that they have 3 buttons, but only 2 of them are passed
to Emacs; the clicks on the wheel, which serves as the middle button, are not passed. In
these cases, you can use the M-x msdos-set-mouse-buttons command to tell Emacs how
many mouse buttons to expect. You could make such a setting permanent by adding this
fragment to your ‘_emacs’ init file:

;; Treat the mouse like a 2-button mouse.
(msdos-set-mouse-buttons 2)

Emacs built for MS-DOS supports clipboard operations when it runs on Windows. Com-
mands that put text on the kill ring, or yank text from the ring, check the Windows clipboard
first, just as Emacs does on the X Window System (see Section 17.1 [Mouse Commands],
page 163). Only the primary selection and the cut buffer are supported by MS-DOS Emacs
on Windows; the secondary selection always appears as empty.

Due to the way clipboard access is implemented by Windows, the length of text you can
put into the clipboard is limited by the amount of free DOS memory that is available to
Emacs. Usually, up to 620KB of text can be put into the clipboard, but this limit depends
on the system configuration and is lower if you run Emacs as a subprocess of another
program. If the killed text does not fit, Emacs outputs a message saying so, and does not
put the text into the clipboard.

Null characters also cannot be put into the Windows clipboard. If the killed text includes
null characters, Emacs does not put such text into the clipboard, and displays in the echo
area a message to that effect.

The variable dos-display-scancodes, when non-nil, directs Emacs to display the
ASCII value and the keyboard scan code of each keystroke; this feature serves as a comple-
ment to the view-lossage command, for debugging.

E.2 Display on MS-DOS

Display on MS-DOS cannot use font variants, like bold or italic, but it does support
multiple faces, each of which can specify a foreground and a background color. Therefore,
you can get the full functionality of Emacs packages that use fonts (such as font-lock,
Enriched Text mode, and others) by defining the relevant faces to use different colors. Use
the list-colors-display command (see Section 17.12 [Frame Parameters], page 170) and
the list-faces-display command (see Section 11.1 [Faces], page 79) to see what colors
and faces are available and what they look like.

See Section E.6 [MS-DOS and MULE], page 458, later in this chapter, for information
on how Emacs displays glyphs and characters that aren’t supported by the native font built
into the DOS display.

When Emacs starts, it changes the cursor shape to a solid box. This is for compatibility
with other systems, where the box cursor is the default in Emacs. This default shape can
be changed to a bar by specifying the cursor-type parameter in the variable default-
frame-alist (see Section 17.7 [Creating Frames], page 167). The MS-DOS terminal doesn’t

Appendix E: Emacs and MS-DOS 453

support a vertical-bar cursor, so the bar cursor is horizontal, and the width parameter, if
specified by the frame parameters, actually determines its height. As an extension, the bar
cursor specification can include the starting scan line of the cursor as well as its width, like
this:

’(cursor-type bar width . start)

In addition, if the width parameter is negative, the cursor bar begins at the top of the
character cell.

The MS-DOS terminal can only display a single frame at a time. The Emacs frame
facilities work on MS-DOS much as they do on text-only terminals (see Chapter 17 [Frames],
page 163). When you run Emacs from a DOS window on MS-Windows, you can make the
visible frame smaller than the full screen, but Emacs still cannot display more than a single
frame at a time.

The mode4350 command switches the display to 43 or 50 lines, depending on your hard-
ware; the mode25 command switches to the default 80x25 screen size.

By default, Emacs only knows how to set screen sizes of 80 columns by 25, 28, 35, 40,
43 or 50 rows. However, if your video adapter has special video modes that will switch the
display to other sizes, you can have Emacs support those too. When you ask Emacs to
switch the frame to n rows by m columns dimensions, it checks if there is a variable called
screen-dimensions-nxm, and if so, uses its value (which must be an integer) as the video
mode to switch to. (Emacs switches to that video mode by calling the BIOS Set Video
Mode function with the value of screen-dimensions-nxm in the AL register.) For example,
suppose your adapter will switch to 66x80 dimensions when put into video mode 85. Then
you can make Emacs support this screen size by putting the following into your ‘_emacs’
file:

(setq screen-dimensions-66x80 85)

Since Emacs on MS-DOS can only set the frame size to specific supported dimensions, it
cannot honor every possible frame resizing request. When an unsupported size is requested,
Emacs chooses the next larger supported size beyond the specified size. For example, if you
ask for 36x80 frame, you will get 40x80 instead.

The variables screen-dimensions-nxm are used only when they exactly match the
specified size; the search for the next larger supported size ignores them. In the above
example, even if your VGA supports 38x80 dimensions and you define a variable screen-
dimensions-38x80 with a suitable value, you will still get 40x80 screen when you ask for
a 36x80 frame. If you want to get the 38x80 size in this case, you can do it by setting the
variable named screen-dimensions-36x80 with the same video mode value as screen-
dimensions-38x80.

Changing frame dimensions on MS-DOS has the effect of changing all the other frames
to the new dimensions.

E.3 File Names on MS-DOS

MS-DOS normally uses a backslash, ‘\’, to separate name units within a file name,
instead of the slash used on other systems. Emacs on MS-DOS permits use of either slash
or backslash, and also knows about drive letters in file names.

454 GNU Emacs Manual

On MS-DOS, file names are case-insensitive and limited to eight characters, plus op-
tionally a period and three more characters. Emacs knows enough about these limitations
to handle file names that were meant for other operating systems. For instance, leading
dots ‘.’ in file names are invalid in MS-DOS, so Emacs transparently converts them to
underscores ‘_’; thus your default init file (see Section 32.7 [Init File], page 403) is called
‘_emacs’ on MS-DOS. Excess characters before or after the period are generally ignored by
MS-DOS itself; thus, if you visit the file ‘LongFileName.EvenLongerExtension’, you will
silently get ‘longfile.eve’, but Emacs will still display the long file name on the mode
line. Other than that, it’s up to you to specify file names which are valid under MS-DOS;
the transparent conversion as described above only works on file names built into Emacs.

The above restrictions on the file names on MS-DOS make it almost impossible to
construct the name of a backup file (see Section 14.3.1.1 [Backup Names], page 115) without
losing some of the original file name characters. For example, the name of a backup file for
‘docs.txt’ is ‘docs.tx~’ even if single backup is used.

If you run Emacs as a DOS application under Windows 9X, Windows ME, or Windows
2000, you can turn on support for long file names. If you do that, Emacs doesn’t truncate
file names or convert them to lower case; instead, it uses the file names that you specify,
verbatim. To enable long file name support, set the environment variable LFN to ‘y’ before
starting Emacs. Unfortunately, Windows NT doesn’t allow DOS programs to access long
file names, so Emacs built for MS-DOS will only see their short 8+3 aliases.

MS-DOS has no notion of home directory, so Emacs on MS-DOS pretends that the
directory where it is installed is the value of HOME environment variable. That is, if your
Emacs binary, ‘emacs.exe’, is in the directory ‘c:/utils/emacs/bin’, then Emacs acts as
if HOME were set to ‘c:/utils/emacs’. In particular, that is where Emacs looks for the
init file ‘_emacs’. With this in mind, you can use ‘~’ in file names as an alias for the home
directory, as you would on GNU or Unix. You can also set HOME variable in the environment
before starting Emacs; its value will then override the above default behavior.

Emacs on MS-DOS handles the directory name ‘/dev’ specially, because of a feature in
the emulator libraries of DJGPP that pretends I/O devices have names in that directory.
We recommend that you avoid using an actual directory named ‘/dev’ on any disk.

E.4 Text Files and Binary Files

GNU Emacs uses newline characters to separate text lines. This is the convention used
on GNU and Unix.

MS-DOS and MS-Windows normally use carriage-return linefeed, a two-character se-
quence, to separate text lines. (Linefeed is the same character as newline.) Therefore, con-
venient editing of typical files with Emacs requires conversion of these end-of-line (EOL)
sequences. And that is what Emacs normally does: it converts carriage-return linefeed into
newline when reading files, and converts newline into carriage-return linefeed when writing
files. The same mechanism that handles conversion of international character codes does
this conversion also (see Section 18.7 [Coding Systems], page 181).

One consequence of this special format-conversion of most files is that character positions
as reported by Emacs (see Section 4.9 [Position Info], page 39) do not agree with the file
size information known to the operating system.

Appendix E: Emacs and MS-DOS 455

In addition, if Emacs recognizes from a file’s contents that it uses newline rather than
carriage-return linefeed as its line separator, it does not perform EOL conversion when
reading or writing that file. Thus, you can read and edit files from GNU and Unix systems on
MS-DOS with no special effort, and they will retain their Unix-style end-of-line convention
after you edit them.

The mode line indicates whether end-of-line translation was used for the current buffer. If
MS-DOS end-of-line translation is in use for the buffer, a backslash ‘\’ is displayed after the
coding system mnemonic near the beginning of the mode line (see Section 1.3 [Mode Line],
page 23). If no EOL translation was performed, the string ‘(Unix)’ is displayed instead
of the backslash, to alert you that the file’s EOL format is not the usual carriage-return
linefeed.

To visit a file and specify whether it uses DOS-style or Unix-style end-of-line, specify
a coding system (see Section 18.9 [Specify Coding], page 185). For example, C-x 〈RET〉 c
unix 〈RET〉 C-x C-f foobar.txt visits the file ‘foobar.txt’ without converting the EOLs;
if some line ends with a carriage-return linefeed pair, Emacs will display ‘^M’ at the end of
that line. Similarly, you can direct Emacs to save a buffer in a specified EOL format with
the C-x 〈RET〉 f command. For example, to save a buffer with Unix EOL format, type C-x
〈RET〉 f unix 〈RET〉 C-x C-s. If you visit a file with DOS EOL conversion, then save it with
Unix EOL format, that effectively converts the file to Unix EOL style, like dos2unix.

When you use NFS or Samba to access file systems that reside on computers using GNU
or Unix systems, Emacs should not perform end-of-line translation on any files in these file
systems–not even when you create a new file. To request this, designate these file systems as
untranslated file systems by calling the function add-untranslated-filesystem. It takes
one argument: the file system name, including a drive letter and optionally a directory. For
example,

(add-untranslated-filesystem "Z:")

designates drive Z as an untranslated file system, and
(add-untranslated-filesystem "Z:\\foo")

designates directory ‘\foo’ on drive Z as an untranslated file system.

Most often you would use add-untranslated-filesystem in your ‘_emacs’ file, or in
‘site-start.el’ so that all the users at your site get the benefit of it.

To countermand the effect of add-untranslated-filesystem, use the function remove-
untranslated-filesystem. This function takes one argument, which should be a string
just like the one that was used previously with add-untranslated-filesystem.

Designating a file system as untranslated does not affect character set conversion, only
end-of-line conversion. Essentially, it directs Emacs to create new files with the Unix-style
convention of using newline at the end of a line. See Section 18.7 [Coding Systems], page 181.

Some kinds of files should not be converted at all, because their contents are not really
text. Therefore, Emacs on MS-DOS distinguishes certain files as binary files. (This dis-
tinction is not part of MS-DOS; it is made by Emacs only.) Binary files include executable
programs, compressed archives, etc. Emacs uses the file name to decide whether to treat
a file as binary: the variable file-name-buffer-file-type-alist defines the file-name
patterns that indicate binary files. If a file name matches one of the patterns for binary
files (those whose associations are of the type (pattern . t), Emacs reads and writes that

456 GNU Emacs Manual

file using the no-conversion coding system (see Section 18.7 [Coding Systems], page 181)
which turns off all coding-system conversions, not only the EOL conversion. file-name-
buffer-file-type-alist also includes file-name patterns for files which are known to be
DOS-style text files with carriage-return linefeed EOL format, such as ‘CONFIG.SYS’; Emacs
always writes those files with DOS-style EOLs.

If a file which belongs to an untranslated file system matches one of the file-name patterns
in file-name-buffer-file-type-alist, the EOL conversion is determined by file-name-
buffer-file-type-alist.

E.5 Printing and MS-DOS

Printing commands, such as lpr-buffer (see Section 31.5 [Hardcopy], page 361) and
ps-print-buffer (see Section 31.6 [PostScript], page 362) can work in MS-DOS and MS-
Windows by sending the output to one of the printer ports, if a Posix-style lpr program
is unavailable. The same Emacs variables control printing on all systems (see Section 31.5
[Hardcopy], page 361), but in some cases they have different default values on MS-DOS and
MS-Windows.

If you want to use your local printer, printing on it in the usual DOS manner, then set
the Lisp variable lpr-command to "" (its default value) and printer-name to the name of
the printer port—for example, "PRN", the usual local printer port (that’s the default), or
"LPT2", or "COM1" for a serial printer. You can also set printer-name to a file name, in
which case “printed” output is actually appended to that file. If you set printer-name to
"NUL", printed output is silently discarded (sent to the system null device).

On MS-Windows, when the Windows network software is installed, you can also use a
printer shared by another machine by setting printer-name to the UNC share name for
that printer–for example, "//joes_pc/hp4si". (It doesn’t matter whether you use forward
slashes or backslashes here.) To find out the names of shared printers, run the command
‘net view’ at a DOS command prompt to obtain a list of servers, and ‘net view server-
name’ to see the names of printers (and directories) shared by that server. Alternatively,
click the ‘Network Neighborhood’ icon on your desktop, and look for machines which share
their printers via the network.

If the printer doesn’t appear in the output of ‘net view’, or if setting printer-name
to the UNC share name doesn’t produce a hardcopy on that printer, you can use the ‘net
use’ command to connect a local print port such as "LPT2" to the networked printer. For
example, typing net use LPT2: \\joes_pc\hp4si1 causes Windows to capture the LPT2
port and redirect the printed material to the printer connected to the machine joes_pc.
After this command, setting printer-name to "LPT2" should produce the hardcopy on the
networked printer.

With some varieties of Windows network software, you can instruct Windows to cap-
ture a specific printer port such as "LPT2", and redirect it to a networked printer via the
Control Panel->Printers applet instead of ‘net use’.

Some printers expect DOS codepage encoding of non-ASCII text, even though they are
connected to a Windows machine which uses a different encoding for the same locale. For

1 Note that the ‘net use’ command requires the UNC share name to be typed with the Windows-style
backslashes, while the value of printer-name can be set with either forward- or backslashes.

Appendix E: Emacs and MS-DOS 457

example, in the Latin-1 locale, DOS uses codepage 850 whereas Windows uses codepage
1252. See Section E.6 [MS-DOS and MULE], page 458. When you print to such printers
from Windows, you can use the C-x RET c (universal-coding-system-argument) com-
mand before M-x lpr-buffer; Emacs will then convert the text to the DOS codepage that
you specify. For example, C-x RET c cp850-dos RET M-x lpr-region RET will print the re-
gion while converting it to the codepage 850 encoding. You may need to create the cpnnn
coding system with M-x codepage-setup.

If you set printer-name to a file name, it’s best to use an absolute file name. Emacs
changes the working directory according to the default directory of the current buffer, so if
the file name in printer-name is relative, you will end up with several such files, each one
in the directory of the buffer from which the printing was done.

The commands print-buffer and print-region call the pr program, or use special
switches to the lpr program, to produce headers on each printed page. MS-DOS and MS-
Windows don’t normally have these programs, so by default, the variable lpr-headers-
switches is set so that the requests to print page headers are silently ignored. Thus, print-
buffer and print-region produce the same output as lpr-buffer and lpr-region, re-
spectively. If you do have a suitable pr program (for example, from GNU Textutils), set
lpr-headers-switches to nil; Emacs will then call pr to produce the page headers, and
print the resulting output as specified by printer-name.

Finally, if you do have an lpr work-alike, you can set the variable lpr-command to "lpr".
Then Emacs will use lpr for printing, as on other systems. (If the name of the program
isn’t lpr, set lpr-command to specify where to find it.) The variable lpr-switches has its
standard meaning when lpr-command is not "". If the variable printer-name has a string
value, it is used as the value for the -P option to lpr, as on Unix.

A parallel set of variables, ps-lpr-command, ps-lpr-switches, and ps-printer-name
(see Section 31.7 [PostScript Variables], page 363), defines how PostScript files should be
printed. These variables are used in the same way as the corresponding variables described
above for non-PostScript printing. Thus, the value of ps-printer-name is used as the name
of the device (or file) to which PostScript output is sent, just as printer-name is used for
non-PostScript printing. (There are two distinct sets of variables in case you have two
printers attached to two different ports, and only one of them is a PostScript printer.)

The default value of the variable ps-lpr-command is "", which causes PostScript output
to be sent to the printer port specified by ps-printer-name, but ps-lpr-command can also
be set to the name of a program which will accept PostScript files. Thus, if you have a non-
PostScript printer, you can set this variable to the name of a PostScript interpreter program
(such as Ghostscript). Any switches that need to be passed to the interpreter program are
specified using ps-lpr-switches. (If the value of ps-printer-name is a string, it will be
added to the list of switches as the value for the -P option. This is probably only useful if
you are using lpr, so when using an interpreter typically you would set ps-printer-name
to something other than a string so it is ignored.)

For example, to use Ghostscript for printing on an Epson printer connected to the ‘LPT2’
port, put this in your ‘_emacs’ file:

(setq ps-printer-name t) ; Ghostscript doesn’t understand -P
(setq ps-lpr-command "c:/gs/gs386")
(setq ps-lpr-switches ’("-q" "-dNOPAUSE"

458 GNU Emacs Manual

"-sDEVICE=epson"
"-r240x72"
"-sOutputFile=LPT2"
"-Ic:/gs"))

(This assumes that Ghostscript is installed in the ‘"c:/gs"’ directory.)
For backwards compatibility, the value of dos-printer (dos-ps-printer), if it has

a value, overrides the value of printer-name (ps-printer-name), on MS-DOS and MS-
Windows only.

E.6 International Support on MS-DOS

Emacs on MS-DOS supports the same international character sets as it does on GNU,
Unix and other platforms (see Chapter 18 [International], page 175), including coding sys-
tems for converting between the different character sets. However, due to incompatibilities
between MS-DOS/MS-Windows and other systems, there are several DOS-specific aspects
of this support that you should be aware of. This section describes these aspects.

M-x dos-codepage-setup
Set up Emacs display and coding systems as appropriate for the current DOS
codepage.

M-x codepage-setup
Create a coding system for a certain DOS codepage.

MS-DOS is designed to support one character set of 256 characters at any given time,
but gives you a variety of character sets to choose from. The alternative character sets are
known as DOS codepages. Each codepage includes all 128 ASCII characters, but the other
128 characters (codes 128 through 255) vary from one codepage to another. Each DOS
codepage is identified by a 3-digit number, such as 850, 862, etc.

In contrast to X, which lets you use several fonts at the same time, MS-DOS normally
doesn’t allow use of several codepages in a single session. MS-DOS was designed to load
a single codepage at system startup, and require you to reboot in order to change it2.
Much the same limitation applies when you run DOS executables on other systems such as
MS-Windows.

If you invoke Emacs on MS-DOS with the ‘--unibyte’ option (see Section B.2 [Initial
Options], page 424), Emacs does not perform any conversion of non-ASCII characters.
Instead, it reads and writes any non-ASCII characters verbatim, and sends their 8-bit codes
to the display verbatim. Thus, unibyte Emacs on MS-DOS supports the current codepage,
whatever it may be, but cannot even represent any other characters.

For multibyte operation on MS-DOS, Emacs needs to know which characters the chosen
DOS codepage can display. So it queries the system shortly after startup to get the chosen
codepage number, and stores the number in the variable dos-codepage. Some systems
return the default value 437 for the current codepage, even though the actual codepage

2 Normally, one particular codepage is burnt into the display memory, while other codepages can be
installed by modifying system configuration files, such as ‘CONFIG.SYS’, and rebooting. While third-
party software is known to exist that allows to change the codepage without rebooting, we describe here
how a stock MS-DOS system behaves.

Appendix E: Emacs and MS-DOS 459

is different. (This typically happens when you use the codepage built into the display
hardware.) You can specify a different codepage for Emacs to use by setting the variable
dos-codepage in your init file.

Multibyte Emacs supports only certain DOS codepages: those which can display Far-
Eastern scripts, like the Japanese codepage 932, and those that encode a single ISO 8859
character set.

The Far-Eastern codepages can directly display one of the MULE character sets for these
countries, so Emacs simply sets up to use the appropriate terminal coding system that is
supported by the codepage. The special features described in the rest of this section mostly
pertain to codepages that encode ISO 8859 character sets.

For the codepages which correspond to one of the ISO character sets, Emacs knows the
character set name based on the codepage number. Emacs automatically creates a coding
system to support reading and writing files that use the current codepage, and uses this
coding system by default. The name of this coding system is cpnnn, where nnn is the
codepage number.3

All the cpnnn coding systems use the letter ‘D’ (for “DOS”) as their mode-line mnemonic.
Since both the terminal coding system and the default coding system for file I/O are set
to the proper cpnnn coding system at startup, it is normal for the mode line on MS-DOS
to begin with ‘-DD\-’. See Section 1.3 [Mode Line], page 23. Far-Eastern DOS terminals
do not use the cpnnn coding systems, and thus their initial mode line looks like the Emacs
default.

Since the codepage number also indicates which script you are using, Emacs automati-
cally runs set-language-environment to select the language environment for that script
(see Section 18.3 [Language Environments], page 177).

If a buffer contains a character belonging to some other ISO 8859 character set, not the
one that the chosen DOS codepage supports, Emacs displays it using a sequence of ASCII
characters. For example, if the current codepage doesn’t have a glyph for the letter ‘ò’
(small ‘o’ with a grave accent), it is displayed as ‘{‘o}’, where the braces serve as a visual
indication that this is a single character. (This may look awkward for some non-Latin
characters, such as those from Greek or Hebrew alphabets, but it is still readable by a
person who knows the language.) Even though the character may occupy several columns
on the screen, it is really still just a single character, and all Emacs commands treat it as
one.

Not all characters in DOS codepages correspond to ISO 8859 characters—some are
used for other purposes, such as box-drawing characters and other graphics. Emacs maps
these characters to two special character sets called eight-bit-control and eight-bit-
graphic, and displays them as their IBM glyphs. However, you should be aware that other
systems might display these characters differently, so you should avoid them in text that
might be copied to a different operating system, or even to another DOS machine that uses
a different codepage.

3 The standard Emacs coding systems for ISO 8859 are not quite right for the purpose, because typically
the DOS codepage does not match the standard ISO character codes. For example, the letter ‘ç’ (‘c’
with cedilla) has code 231 in the standard Latin-1 character set, but the corresponding DOS codepage
850 uses code 135 for this glyph.

460 GNU Emacs Manual

Emacs supports many other characters sets aside from ISO 8859, but it cannot display
them on MS-DOS. So if one of these multibyte characters appears in a buffer, Emacs on
MS-DOS displays them as specified by the dos-unsupported-character-glyph variable;
by default, this glyph is an empty triangle. Use the C-u C-x = command to display the
actual code and character set of such characters. See Section 4.9 [Position Info], page 39.

By default, Emacs defines a coding system to support the current codepage. To define
a coding system for some other codepage (e.g., to visit a file written on a DOS machine in
another country), use the M-x codepage-setup command. It prompts for the 3-digit code
of the codepage, with completion, then creates the coding system for the specified codepage.
You can then use the new coding system to read and write files, but you must specify it
explicitly for the file command when you want to use it (see Section 18.9 [Specify Coding],
page 185).

These coding systems are also useful for visiting a file encoded using a DOS codepage,
using Emacs running on some other operating system.

MS-Windows provides its own codepages, which are different from the DOS codepages
for the same locale. For example, DOS codepage 850 supports the same character set as
Windows codepage 1252; DOS codepage 855 supports the same character set as Windows
codepage 1251, etc. The MS-Windows version of Emacs uses the current codepage for
display when invoked with the ‘-nw’ option.

E.7 Subprocesses on MS-DOS

Because MS-DOS is a single-process “operating system,” asynchronous subprocesses are
not available. In particular, Shell mode and its variants do not work. Most Emacs features
that use asynchronous subprocesses also don’t work on MS-DOS, including Shell mode and
GUD. When in doubt, try and see; commands that don’t work output an error message
saying that asynchronous processes aren’t supported.

Compilation under Emacs with M-x compile, searching files with M-x grep and dis-
playing differences between files with M-x diff do work, by running the inferior processes
synchronously. This means you cannot do any more editing until the inferior process fin-
ishes.

Spell checking also works, by means of special support for synchronous invocation of the
ispell program. This is slower than the asynchronous invocation on other platforms

Instead of the Shell mode, which doesn’t work on MS-DOS, you can use the M-x eshell
command. This invokes the Eshell package that implements a Posix-like shell entirely in
Emacs Lisp.

By contrast, Emacs compiled as native Windows application does support asynchronous
subprocesses. See Section E.8 [Windows Processes], page 461.

Printing commands, such as lpr-buffer (see Section 31.5 [Hardcopy], page 361) and
ps-print-buffer (see Section 31.6 [PostScript], page 362), work in MS-DOS by sending
the output to one of the printer ports. See Section E.5 [MS-DOS Printing], page 456.

When you run a subprocess synchronously on MS-DOS, make sure the program ter-
minates and does not try to read keyboard input. If the program does not terminate on
its own, you will be unable to terminate it, because MS-DOS provides no general way to
terminate a process. Pressing C-c or C-〈BREAK〉 might sometimes help in these cases.

Appendix E: Emacs and MS-DOS 461

Accessing files on other machines is not supported on MS-DOS. Other network-oriented
commands such as sending mail, Web browsing, remote login, etc., don’t work either, unless
network access is built into MS-DOS with some network redirector.

Dired on MS-DOS uses the ls-lisp package where other platforms use the system ls
command. Therefore, Dired on MS-DOS supports only some of the possible options you
can mention in the dired-listing-switches variable. The options that work are ‘-A’,
‘-a’, ‘-c’, ‘-i’, ‘-r’, ‘-S’, ‘-s’, ‘-t’, and ‘-u’.

E.8 Subprocesses on Windows 9X/ME and Windows
NT/2K

Emacs compiled as a native Windows application (as opposed to the DOS version)
includes full support for asynchronous subprocesses. In the Windows version, synchronous
and asynchronous subprocesses work fine on both Windows 9X and Windows NT/2K as long
as you run only 32-bit Windows applications. However, when you run a DOS application
in a subprocess, you may encounter problems or be unable to run the application at all;
and if you run two DOS applications at the same time in two subprocesses, you may have
to reboot your system.

Since the standard command interpreter (and most command line utilities) on Windows
95 are DOS applications, these problems are significant when using that system. But there’s
nothing we can do about them; only Microsoft can fix them.

If you run just one DOS application subprocess, the subprocess should work as expected
as long as it is “well-behaved” and does not perform direct screen access or other unusual
actions. If you have a CPU monitor application, your machine will appear to be 100% busy
even when the DOS application is idle, but this is only an artifact of the way CPU monitors
measure processor load.

You must terminate the DOS application before you start any other DOS application
in a different subprocess. Emacs is unable to interrupt or terminate a DOS subprocess.
The only way you can terminate such a subprocess is by giving it a command that tells its
program to exit.

If you attempt to run two DOS applications at the same time in separate subprocesses,
the second one that is started will be suspended until the first one finishes, even if either or
both of them are asynchronous.

If you can go to the first subprocess, and tell it to exit, the second subprocess should
continue normally. However, if the second subprocess is synchronous, Emacs itself will be
hung until the first subprocess finishes. If it will not finish without user input, then you
have no choice but to reboot if you are running on Windows 9X. If you are running on
Windows NT/2K, you can use a process viewer application to kill the appropriate instance
of ntvdm instead (this will terminate both DOS subprocesses).

If you have to reboot Windows 9X in this situation, do not use the Shutdown command
on the Start menu; that usually hangs the system. Instead, type CTL-ALT-〈DEL〉 and then
choose Shutdown. That usually works, although it may take a few minutes to do its job.

462 GNU Emacs Manual

E.9 Using the System Menu on Windows

Emacs compiled as a native Windows application normally turns off the Windows feature
that tapping the 〈ALT〉 key invokes the Windows menu. The reason is that the 〈ALT〉 also
serves as 〈META〉 in Emacs. When using Emacs, users often press the 〈META〉 key temporarily
and then change their minds; if this has the effect of bringing up the Windows menu, it
alters the meaning of subsequent commands. Many users find this frustrating.

You can reenable Windows’s default handling of tapping the 〈ALT〉 key by setting w32-
pass-alt-to-system to a non-nil value.

The GNU Manifesto 463

The GNU Manifesto

The GNU Manifesto which appears below was written by Richard Stallman at
the beginning of the GNU project, to ask for participation and support. For
the first few years, it was updated in minor ways to account for developments,
but now it seems best to leave it unchanged as most people have seen it.

Since that time, we have learned about certain common misunderstandings that
different wording could help avoid. Footnotes added in 1993 help clarify these
points.

For up-to-date information about the available GNU software, please see the
latest issue of the GNU’s Bulletin. The list is much too long to include here.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can use
it.1 Several other volunteers are helping me. Contributions of time, money, programs and
equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A
shell (command interpreter) is nearly completed. A new portable optimizing C compiler
has compiled itself and may be released this year. An initial kernel exists but many more
features are needed to emulate Unix. When the kernel and compiler are finished, it will be
possible to distribute a GNU system suitable for program development. We will use TEX
as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a
spreadsheet, and hundreds of other things, plus on-line documentation. We hope to supply,
eventually, everything useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make
all improvements that are convenient, based on our experience with other operating sys-
tems. In particular, we plan to have longer file names, file version numbers, a crashproof file
system, file name completion perhaps, terminal-independent display support, and perhaps
eventually a Lisp-based window system through which several Lisp programs and ordinary
Unix programs can share a screen. Both C and Lisp will be available as system program-
ming languages. We will try to support UUCP, MIT Chaosnet, and Internet protocols for
communication.

1 The wording here was careless. The intention was that nobody would have to pay for permission to use
the GNU system. But the words don’t make this clear, and people often interpret them as saying that
copies of GNU should always be distributed at little or no charge. That was never the intent; later on,
the manifesto mentions the possibility of companies providing the service of distribution for a profit.
Subsequently I have learned to distinguish carefully between “free” in the sense of freedom and “free” in
the sense of price. Free software is software that users have the freedom to distribute and change. Some
users may obtain copies at no charge, while others pay to obtain copies—and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has
the freedom to cooperate with others in using it.

464 GNU Emacs Manual

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, be-
cause they are the easiest machines to make it run on. The extra effort to make it run on
smaller machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when it is the
name of this project.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a software license agreement.
For years I worked within the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not remain in an institution
where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together
a sufficient body of free software so that I will be able to get along without any software
that is not free. I have resigned from the AI lab to deny MIT any legal excuse to prevent
me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem
to be good ones, and I think I can fill in what Unix lacks without spoiling them. And a
system compatible with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to
say, proprietary modifications will not be allowed. I want to make sure that all versions of
GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.
Many programmers are unhappy about the commercialization of system software. It

may enable them to make more money, but it requires them to feel in conflict with other
programmers in general rather than feel as comrades. The fundamental act of friendship
among programmers is the sharing of programs; marketing arrangements now typically used
essentially forbid programmers to treat others as friends. The purchaser of software must
choose between friendship and obeying the law. Naturally, many decide that friendship is
more important. But those who believe in law often do not feel at ease with either choice.
They become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable
to everyone and obey the law. In addition, GNU serves as an example to inspire and a

The GNU Manifesto 465

banner to rally others to join us in sharing. This can give us a feeling of harmony which
is impossible if we use software that is not free. For about half the programmers I talk to,
this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m asking
individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them
at an early date. The machines should be complete, ready to use systems, approved for use
in a residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU.
For most projects, such part-time distributed work would be very hard to coordinate; the
independently-written parts would not work together. But for the particular task of re-
placing Unix, this problem is absent. A complete Unix system contains hundreds of utility
programs, each of which is documented separately. Most interface specifications are fixed
by Unix compatibility. If each contributor can write a compatible replacement for a single
Unix utility, and make it work properly in place of the original on a Unix system, then
these utilities will work right when put together. Even allowing for Murphy to create a few
unexpected problems, assembling these components will be a feasible task. (The kernel will
require closer communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The
salary won’t be high by programmers’ standards, but I’m looking for people for whom
building community spirit is as important as making money. I view this as a way of enabling
dedicated people to devote their full energies to working on GNU by sparing them the need
to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just
like air.2

This means much more than just saving everyone the price of a Unix license. It means
that much wasteful duplication of system programming effort will be avoided. This effort
can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs
changes in the system will always be free to make them himself, or hire any available
programmer or company to make them for him. Users will no longer be at the mercy of one
programmer or company which owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all
students to study and improve the system code. Harvard’s computer lab used to have the
policy that no program could be installed on the system if its sources were not on public

2 This is another place I failed to distinguish carefully between the two different meanings of “free.” The
statement as it stands is not false—you can get copies of GNU software at no charge, from your friends
or over the net. But it does suggest the wrong idea.

466 GNU Emacs Manual

display, and upheld it by actually refusing to install certain programs. I was very much
inspired by this.

Finally, the overhead of considering who owns the system software and what one is or is
not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies,
always incur a tremendous cost to society through the cumbersome mechanisms necessary
to figure out how much (that is, which programs) a person must pay for. And only a
police state can force everyone to obey them. Consider a space station where air must be
manufactured at great cost: charging each breather per liter of air may be fair, but wearing
the metered gas mask all day and all night is intolerable even if everyone can afford to
pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It’s better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any
support.”
“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without service,
a company to provide just service to people who have obtained GNU free ought to be
profitable.3

We must distinguish between support in the form of real programming work and mere
handholding. The former is something one cannot rely on from a software vendor. If your
problem is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the
necessary sources and tools. Then you can hire any available person to fix your problem;
you are not at the mercy of any individual. With Unix, the price of sources puts this out of
consideration for most businesses. With GNU this will be easy. It is still possible for there
to be no available competent person, but this problem cannot be blamed on distribution
arrangements. GNU does not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing
things for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and repair
service. If it is true that users would rather spend money and get a product with service, they
will also be willing to buy the service having got the product free. The service companies
will compete in quality and price; users will not be tied to any particular one. Meanwhile,
those of us who don’t need the service should be able to use the program without paying
for the service.

“You cannot reach many people without advertising, and you must charge for
the program to support that.”
“It’s no use advertising a program people can get free.”

3 Several such companies now exist.

The GNU Manifesto 467

There are various forms of free or very cheap publicity that can be used to inform numbers
of computer users about something like GNU. But it may be true that one can reach more
microcomputer users with advertising. If this is really so, a business which advertises the
service of copying and mailing GNU for a fee ought to be successful enough to pay for its
advertising and more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies
don’t succeed, this will show that advertising was not really necessary to spread GNU. Why
is it that free market advocates don’t want to let the free market decide this?4

“My company needs a proprietary operating system to get a competitive edge.”
GNU will remove operating system software from the realm of competition. You will

not be able to get an edge in this area, but neither will your competitors be able to get an
edge over you. You and they will compete in other areas, while benefiting mutually in this
one. If your business is selling an operating system, you will not like GNU, but that’s tough
on you. If your business is something else, GNU can save you from being pushed into the
expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and
users, reducing the cost to each.5

“Don’t programmers deserve a reward for their creativity?”
If anything deserves a reward, it is social contribution. Creativity can be a social contri-

bution, but only in so far as society is free to use the results. If programmers deserve to be
rewarded for creating innovative programs, by the same token they deserve to be punished
if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”
There is nothing wrong with wanting pay for work, or seeking to maximize one’s income,

as long as one does not use means that are destructive. But the means customary in the
field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive
because the restrictions reduce the amount and the ways that the program can be used.
This reduces the amount of wealth that humanity derives from the program. When there
is a deliberate choice to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier
is that, if everyone did so, we would all become poorer from the mutual destructiveness.
This is Kantian ethics; or, the Golden Rule. Since I do not like the consequences that
result if everyone hoards information, I am required to consider it wrong for one to do so.
Specifically, the desire to be rewarded for one’s creativity does not justify depriving the
world in general of all or part of that creativity.

“Won’t programmers starve?”
I could answer that nobody is forced to be a programmer. Most of us cannot manage

to get any money for standing on the street and making faces. But we are not, as a result,

4 The Free Software Foundation raises most of its funds from a distribution service, although it is a charity
rather than a company. If no one chooses to obtain copies by ordering from the FSF, it will be unable
to do its work. But this does not mean that proprietary restrictions are justified to force every user to
pay. If a small fraction of all the users order copies from the FSF, that is sufficient to keep the FSF
afloat. So we ask users to choose to support us in this way. Have you done your part?

5 A group of computer companies recently pooled funds to support maintenance of the GNU C Compiler.

468 GNU Emacs Manual

condemned to spend our lives standing on the street making faces, and starving. We do
something else.

But that is the wrong answer because it accepts the questioner’s implicit assumption:
that without ownership of software, programmers cannot possibly be paid a cent. Suppos-
edly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to
get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common
basis because it brings in the most money. If it were prohibited, or rejected by the customer,
software business would move to other bases of organization which are now used less often.
There are always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that
is not an argument against the change. It is not considered an injustice that sales clerks
make the salaries that they now do. If programmers made the same, that would not be an
injustice either. (In practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other people’s lives;
and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights carefully (such as
lawyers) say that there is no intrinsic right to intellectual property. The kinds of sup-
posed intellectual property rights that the government recognizes were created by specific
acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the
details of their inventions. Its purpose was to help society rather than to help inventors. At
the time, the life span of 17 years for a patent was short compared with the rate of advance
of the state of the art. Since patents are an issue only among manufacturers, for whom
the cost and effort of a license agreement are small compared with setting up production,
the patents often do not do much harm. They do not obstruct most individuals who use
patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other
authors at length in works of non-fiction. This practice was useful, and is the only way many
authors’ works have survived even in part. The copyright system was created expressly for
the purpose of encouraging authorship. In the domain for which it was invented—books,
which could be copied economically only on a printing press—it did little harm, and did
not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought,
rightly or wrongly, that society as a whole would benefit by granting them. But in any
particular situation, we have to ask: are we really better off granting such license? What
kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago.
The fact that the easiest way to copy a program is from one neighbor to another, the
fact that a program has both source code and object code which are distinct, and the fact
that a program is used rather than read and enjoyed, combine to create a situation in
which a person who enforces a copyright is harming society as a whole both materially and

The GNU Manifesto 469

spiritually; in which a person should not do so regardless of whether the law enables him
to.

“Competition makes things get done better.”
The paradigm of competition is a race: by rewarding the winner, we encourage everyone

to run faster. When capitalism really works this way, it does a good job; but its defenders
are wrong in assuming it always works this way. If the runners forget why the reward is
offered and become intent on winning, no matter how, they may find other strategies—such
as, attacking other runners. If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad
to say, the only referee we’ve got does not seem to object to fights; he just regulates them
(“For every ten yards you run, you can fire one shot”). He really ought to break them up,
and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”
Actually, many people will program with absolutely no monetary incentive. Program-

ming has an irresistible fascination for some people, usually the people who are best at it.
There is no shortage of professional musicians who keep at it even though they have no
hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation.
Pay for programmers will not disappear, only become less. So the right question is, will
anyone program with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the Artificial
Intelligence Lab for far less money than they could have had anywhere else. They got many
kinds of non-monetary rewards: fame and appreciation, for example. And creativity is also
fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot
of money.

What the facts show is that people will program for reasons other than riches; but if
given a chance to make a lot of money as well, they will come to expect and demand it.
Low-paying organizations do poorly in competition with high-paying ones, but they do not
have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping
our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions
for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”
In the short run, this is true. However, there are plenty of ways that programmers

could make a living without selling the right to use a program. This way is customary now
because it brings programmers and businessmen the most money, not because it is the only
way to make a living. It is easy to find other ways if you want to find them. Here are a
number of examples.

A manufacturer introducing a new computer will pay for the porting of operating systems
onto the new hardware.

The sale of teaching, hand-holding and maintenance services could also employ program-
mers.

470 GNU Emacs Manual

People with new ideas could distribute programs as freeware, asking for donations from
satisfied users, or selling hand-holding services. I have met people who are already working
this way successfully.

Users with related needs can form users’ groups, and pay dues. A group would contract
with programming companies to write programs that the group’s members would like to
use.

All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay x percent of the price as a
software tax. The government gives this to an agency like the NSF to spend on
software development.
But if the computer buyer makes a donation to software development himself,
he can take a credit against the tax. He can donate to the project of his own
choosing—often, chosen because he hopes to use the results when it is done.
He can take a credit for any amount of donation up to the total tax he had to
pay.
The total tax rate could be decided by a vote of the payers of the tax, weighted
according to the amount they will be taxed on.
The consequences:
• The computer-using community supports software development.
• This community decides what level of support is needed.
• Users who care which projects their share is spent on can choose this for

themselves.

In the long run, making programs free is a step toward the post-scarcity world, where
nobody will have to work very hard just to make a living. People will be free to devote
themselves to activities that are fun, such as programming, after spending the necessary
ten hours a week on required tasks such as legislation, family counseling, robot repair and
asteroid prospecting. There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do
for its actual productivity, but only a little of this has translated itself into leisure for
workers because much nonproductive activity is required to accompany productive activity.
The main causes of this are bureaucracy and isometric struggles against competition. Free
software will greatly reduce these drains in the area of software production. We must do
this, in order for technical gains in productivity to translate into less work for us.

Glossary 471

Glossary

Abbrev An abbrev is a text string which expands into a different text string when
present in the buffer. For example, you might define a few letters as an abbrev
for a long phrase that you want to insert frequently. See Chapter 25 [Abbrevs],
page 283.

Aborting Aborting means getting out of a recursive edit (q.v.). The commands C-] and
M-x top-level are used for this. See Section 33.1 [Quitting], page 409.

Alt Alt is the name of a modifier bit which a keyboard input character may have. To
make a character Alt, type it while holding down the 〈ALT〉 key. Such characters
are given names that start with Alt- (usually written A- for short). (Note that
many terminals have a key labeled 〈ALT〉 which is really a 〈META〉 key.) See
Section 2.1 [User Input], page 27.

Argument See ‘numeric argument.’

ASCII character
An ASCII character is either an ASCII control character or an ASCII printing
character. See Section 2.1 [User Input], page 27.

ASCII control character
An ASCII control character is the Control version of an upper-case letter, or
the Control version of one of the characters ‘@[\]^_?’.

ASCII printing character
ASCII printing characters include letters, digits, space, and these punctuation
characters: ‘!@#$%^& *()_-+=|\~‘ {}[]:;"’ <>,.?/’.

Auto Fill Mode
Auto Fill mode is a minor mode in which text that you insert is automatically
broken into lines of a given maximum width. See Section 21.5 [Filling], page 203.

Auto Saving
Auto saving is the practice of saving the contents of an Emacs buffer in a
specially-named file, so that the information will not be lost if the buffer is lost
due to a system error or user error. See Section 14.5 [Auto Save], page 120.

Autoloading
Emacs automatically loads Lisp libraries when a Lisp program requests a func-
tion or a variable from those libraries. This is called ‘autoloading’. See Sec-
tion 23.7 [Lisp Libraries], page 262.

Backtrace A backtrace is a trace of a series of function calls showing how a program
arrived to a certain point. It is used mainly for finding and correcting bugs
(q.v.). Emacs can display a backtrace when it signals an error or when you
type C-g (see ‘quitting’). See Section 33.3.3 [Checklist], page 416.

Backup File
A backup file records the contents that a file had before the current editing
session. Emacs makes backup files automatically to help you track down or
cancel changes you later regret making. See Section 14.3.1 [Backup], page 114.

472 GNU Emacs Manual

Balance Parentheses
Emacs can balance parentheses (or other matching delimiters) either manually
or automatically. You do manual balancing with the commands to move over
parenthetical groupings (see Section 22.4.2 [Moving by Parens], page 234). Au-
tomatic balancing works by blinking or highlighting the delimiter that matches
the one you just inserted (see Section 22.4.3 [Matching Parens], page 234).

Balanced Expressions
A balanced expression is a syntactically recognizable expression, such as a sym-
bol, number, string constant, block, or parenthesized expression in C. See Sec-
tion 22.4.1 [Expressions], page 232.

Balloon Help
See ‘tooltips.’

Base Buffer
A base buffer is a buffer whose text is shared by an indirect buffer (q.v.).

Bind To bind a key sequence means to give it a binding (q.v.). See Section 32.4.5
[Rebinding], page 396.

Binding A key sequence gets its meaning in Emacs by having a binding, which is a
command (q.v.), a Lisp function that is run when the user types that sequence.
See Section 2.3 [Commands], page 29. Customization often involves rebinding
a character to a different command function. The bindings of all key sequences
are recorded in the keymaps (q.v.). See Section 32.4.1 [Keymaps], page 393.

Blank Lines
Blank lines are lines that contain only whitespace. Emacs has several commands
for operating on the blank lines in the buffer.

Bookmark Bookmarks are akin to registers (q.v.) in that they record positions in buffers to
which you can return later. Unlike registers, bookmarks persist between Emacs
sessions.

Buffer The buffer is the basic editing unit; one buffer corresponds to one text being
edited. You can have several buffers, but at any time you are editing only one,
the ‘current buffer,’ though several can be visible when you are using multiple
windows (q.v.). Most buffers are visiting (q.v.) some file. See Chapter 15
[Buffers], page 149.

Buffer Selection History
Emacs keeps a buffer selection history which records how recently each Emacs
buffer has been selected. This is used for choosing a buffer to select. See
Chapter 15 [Buffers], page 149.

Bug A bug is an incorrect or unreasonable behavior of a program, or inaccurate or
confusing documentation. Emacs developers treat bug reports, both in Emacs
code and its documentation, very seriously and ask you to report any bugs you
find. See Section 33.3 [Bugs], page 414.

Button Down Event
A button down event is the kind of input event generated right away when you
press down on a mouse button. See Section 32.4.10 [Mouse Buttons], page 400.

Glossary 473

By Default
See ‘default.’

C- C- in the name of a character is an abbreviation for Control. See Section 2.1
[User Input], page 27.

C-M- C-M- in the name of a character is an abbreviation for Control-Meta. See
Section 2.1 [User Input], page 27.

Case Conversion
Case conversion means changing text from upper case to lower case or vice
versa. See Section 21.6 [Case], page 207, for the commands for case conversion.

Character Characters form the contents of an Emacs buffer; see Section 2.4 [Text Char-
acters], page 30. Also, key sequences (q.v.) are usually made up of characters
(though they may include other input events as well). See Section 2.1 [User
Input], page 27.

Character Set
Emacs supports a number of character sets, each of which represents a particular
alphabet or script. See Chapter 18 [International], page 175.

Character Terminal
See ‘text-only terminal.’

Click Event
A click event is the kind of input event generated when you press a mouse
button and release it without moving the mouse. See Section 32.4.10 [Mouse
Buttons], page 400.

Clipboard A clipboard is a buffer provided by the window system for transferring text
between applications. On the X Window system, the clipboard is provided in
addition to the primary selection (q.v.); on MS-Windows, the clipboard is used
instead of the primary selection. See Section 17.3 [Clipboard], page 166.

Coding System
A coding system is an encoding for representing text characters in a file or in
a stream of information. Emacs has the ability to convert text to or from a
variety of coding systems when reading or writing it. See Section 18.7 [Coding
Systems], page 181.

Command A command is a Lisp function specially defined to be able to serve as a key
binding in Emacs. When you type a key sequence (q.v.), its binding (q.v.)
is looked up in the relevant keymaps (q.v.) to find the command to run. See
Section 2.3 [Commands], page 29.

Command History
See ‘minibuffer history.’

Command Name
A command name is the name of a Lisp symbol which is a command (see
Section 2.3 [Commands], page 29). You can invoke any command by its name
using M-x (see Chapter 6 [Running Commands by Name], page 51).

474 GNU Emacs Manual

Comment A comment is text in a program which is intended only for humans reading
the program, and which is marked specially so that it will be ignored when the
program is loaded or compiled. Emacs offers special commands for creating,
aligning and killing comments. See Section 22.5 [Comments], page 235.

Common Lisp
Common Lisp is a dialect of Lisp (q.v.) much larger and more powerful than
Emacs Lisp. Emacs provides a subset of Common Lisp in the CL package. See
section “Common Lisp” in Common Lisp Extensions.

Compilation
Compilation is the process of creating an executable program from source code.
Emacs has commands for compiling files of Emacs Lisp code (see section “Byte
Compilation” in the Emacs Lisp Reference Manual) and programs in C and
other languages (see Section 23.1 [Compilation], page 255).

Complete Key
A complete key is a key sequence which fully specifies one action to be performed
by Emacs. For example, X and C-f and C-x m are complete keys. Complete
keys derive their meanings from being bound (q.v.) to commands (q.v.). Thus,
X is conventionally bound to a command to insert ‘X’ in the buffer; C-x m is
conventionally bound to a command to begin composing a mail message. See
Section 2.2 [Keys], page 28.

Completion
Completion is what Emacs does when it automatically fills out an abbreviation
for a name into the entire name. Completion is done for minibuffer (q.v.)
arguments when the set of possible valid inputs is known; for example, on
command names, buffer names, and file names. Completion occurs when 〈TAB〉,
〈SPC〉 or 〈RET〉 is typed. See Section 5.3 [Completion], page 45.

Continuation Line
When a line of text is longer than the width of the window, it takes up more
than one screen line when displayed. We say that the text line is continued,
and all screen lines used for it after the first are called continuation lines. See
Chapter 4 [Basic Editing], page 33. A related Emacs feature is ‘filling’ (q.v.).

Control Character
A control character is a character that you type by holding down the 〈CTRL〉
key. Some control characters also have their own keys, so that you can type
them without using 〈CTRL〉. For example, 〈RET〉, 〈TAB〉, 〈ESC〉 and 〈DEL〉 are all
control characters. See Section 2.1 [User Input], page 27.

Copyleft A copyleft is a notice giving the public legal permission to redistribute a program
or other work of art. Copylefts are used by left-wing programmers to promote
freedom and cooperation, just as copyrights are used by right-wing programmers
to gain power over other people.

The particular form of copyleft used by the GNU project is called the GNU
General Public License. See [Copying], page 5.

Glossary 475

Current Buffer
The current buffer in Emacs is the Emacs buffer on which most editing com-
mands operate. You can select any Emacs buffer as the current one. See
Chapter 15 [Buffers], page 149.

Current Line
The current line is a line point is on (see Section 1.1 [Point], page 21).

Current Paragraph
The current paragraph is the paragraph that point is in. If point is between two
paragraphs, the current paragraph is the one that follows point. See Section 21.3
[Paragraphs], page 201.

Current Defun
The current defun is the defun (q.v.) that point is in. If point is between defuns,
the current defun is the one that follows point. See Section 22.2 [Defuns],
page 226.

Cursor The cursor is the rectangle on the screen which indicates the position called
point (q.v.) at which insertion and deletion takes place. The cursor is on or
under the character that follows point. Often people speak of ‘the cursor’ when,
strictly speaking, they mean ‘point.’ See Chapter 4 [Basic Editing], page 33.

Customization
Customization is making minor changes in the way Emacs works. It is often
done by setting variables (see Section 32.2 [Variables], page 379) or by rebinding
key sequences (see Section 32.4.1 [Keymaps], page 393).

Cut and Paste
See ‘killing’ and ‘yanking.’

Default Argument
The default for an argument is the value that will be assumed if you do not
specify one. When the minibuffer is used to read an argument, the default
argument is used if you just type 〈RET〉. See Chapter 5 [Minibuffer], page 43.

Default A default is the value that is used for a certain purpose if and when you do not
specify a value to use.

Default Directory
When you specify a file name that does not start with ‘/’ or ‘~’, it is interpreted
relative to the current buffer’s default directory. (On MS-Windows and MS-
DOS, file names which start with a drive letter ‘x:’ are treated as absolute, not
relative.) See Section 5.1 [Minibuffer File], page 43.

Defun A defun is a major definition at the top level in a program. The name ‘defun’
comes from Lisp, where most such definitions use the construct defun. See
Section 22.2 [Defuns], page 226.

〈DEL〉 〈DEL〉 is a character that runs the command to delete one character of text. See
Chapter 4 [Basic Editing], page 33.

Deletion Deletion means erasing text without copying it into the kill ring (q.v.). The
alternative is killing (q.v.). See Section 9.1 [Killing], page 67.

476 GNU Emacs Manual

Deletion of Files
Deleting a file means erasing it from the file system. See Section 14.10 [Miscel-
laneous File Operations], page 143.

Deletion of Messages
Deleting a message means flagging it to be eliminated from your mail file. Until
you expunge (q.v.) the Rmail file, you can still undelete the messages you have
deleted. See Section 28.4 [Rmail Deletion], page 305.

Deletion of Windows
Deleting a window means eliminating it from the screen. Other windows expand
to use up the space. The deleted window can never come back, but no actual
text is thereby lost. See Chapter 16 [Windows], page 157.

Directory File directories are named collections in the file system, within which you can
place individual files or subdirectories. See Section 14.8 [Directories], page 142.

Dired Dired is the Emacs facility that displays the contents of a file directory and
allows you to “edit the directory,” performing operations on the files in the
directory. See Chapter 29 [Dired], page 319.

Disabled Command
A disabled command is one that you may not run without special confirmation.
The usual reason for disabling a command is that it is confusing for beginning
users. See Section 32.4.11 [Disabling], page 402.

Down Event
Short for ‘button down event’ (q.v.).

Drag Event
A drag event is the kind of input event generated when you press a mouse
button, move the mouse, and then release the button. See Section 32.4.10
[Mouse Buttons], page 400.

Dribble File
A dribble file is a file into which Emacs writes all the characters that the user
types on the keyboard. Dribble files are used to make a record for debugging
Emacs bugs. Emacs does not make a dribble file unless you tell it to. See
Section 33.3 [Bugs], page 414.

Echo Area The echo area is the bottom line of the screen, used for echoing the arguments to
commands, for asking questions, and showing brief messages (including error
messages). The messages are stored in the buffer ‘*Messages*’ so you can
review them later. See Section 1.2 [Echo Area], page 22.

Echoing Echoing is acknowledging the receipt of commands by displaying them (in the
echo area). Emacs never echoes single-character key sequences; longer key
sequences echo only if you pause while typing them.

Electric We say that a character is electric if it is normally self-inserting (q.v.), but
the current major mode (q.v.) redefines it to do something else as well. For
example, some programming language major modes define particular delimiter
characters to reindent the line or insert one or more newlines in addition to
self-insertion.

Glossary 477

End Of Line
End of line is a character or a sequence of characters that indicate the end of a
text line. On GNU and Unix systems, this is a newline (q.v.), but other systems
have other conventions. See Section 18.7 [Coding Systems], page 181. Emacs
can recognize several end-of-line conventions in files and convert between them.

Environment Variable
An environment variable is one of a collection of variables stored by the operat-
ing system, each one having a name and a value. Emacs can access environment
variables set by its parent shell, and it can set variables in the environment it
passes to programs it invokes. See Section B.5 [Environment], page 426.

EOL See ‘end of line.’

Error An error occurs when an Emacs command cannot execute in the current cir-
cumstances. When an error occurs, execution of the command stops (unless the
command has been programmed to do otherwise) and Emacs reports the error
by displaying an error message (q.v.). Type-ahead is discarded. Then Emacs
is ready to read another editing command.

Error Message
An error message is a single line of output displayed by Emacs when the user
asks for something impossible to do (such as, killing text forward when point
is at the end of the buffer). They appear in the echo area, accompanied by a
beep.

〈ESC〉 〈ESC〉 is a character used as a prefix for typing Meta characters on keyboards
lacking a 〈META〉 key. Unlike the 〈META〉 key (which, like the 〈SHIFT〉 key, is held
down while another character is typed), you press the 〈ESC〉 key as you would
press a letter key, and it applies to the next character you type.

Expression
See ‘balanced expression.’

Expunging
Expunging an Rmail file or Dired buffer or a Gnus newsgroup buffer is an
operation that truly discards the messages or files you have previously flagged
for deletion.

Face A face is a style of displaying characters. It specifies attributes such as font fam-
ily and size, foreground and background colors, underline and strike-through,
background stipple, etc. Emacs provides features to associate specific faces
with portions of buffer text, in order to display that text as specified by the
face attributes.

File Locking
Emacs uses file locking to notice when two different users start to edit one file
at the same time. See Section 14.3.2 [Interlocking], page 117.

File Name A file name is a name that refers to a file. File names may be relative or
absolute; the meaning of a relative file name depends on the current directory,
but an absolute file name refers to the same file regardless of which directory

478 GNU Emacs Manual

is current. On GNU and Unix systems, an absolute file name starts with a
slash (the root directory) or with ‘~/’ or ‘~user/’ (a home directory). On MS-
Windows/MS-DOS, and absolute file name can also start with a drive letter
and a colon ‘d:’.

Some people use the term “pathname” for file names, but we do not; we use
the word “path” only in the term “search path” (q.v.).

File-Name Component
A file-name component names a file directly within a particular directory. On
GNU and Unix systems, a file name is a sequence of file-name components,
separated by slashes. For example, ‘foo/bar’ is a file name containing two
components, ‘foo’ and ‘bar’; it refers to the file named ‘bar’ in the directory
named ‘foo’ in the current directory. MS-DOS/MS-Windows file names can
also use backslashes to separate components, as in ‘foo\bar’.

Fill Prefix The fill prefix is a string that should be expected at the beginning of each line
when filling is done. It is not regarded as part of the text to be filled. See
Section 21.5 [Filling], page 203.

Filling Filling text means shifting text between consecutive lines so that all the lines
are approximately the same length. See Section 21.5 [Filling], page 203. Some
other editors call this feature ‘line wrapping.’

Font Lock Font Lock is a mode that highlights parts of buffer text according to its syntax.
See Section 11.2 [Font Lock], page 81.

Fontset A fontset is a named collection of fonts. A fontset specification lists character
sets and which font to use to display each of them. Fontsets make it easy to
change several fonts at once by specifying the name of a fontset, rather than
changing each font separately. See Section 18.10 [Fontsets], page 188.

Formatted Text
Formatted text is text that displays with formatting information while you
edit. Formatting information includes fonts, colors, and specified margins. See
Section 21.11 [Formatted Text], page 218.

Formfeed Character
See ‘page.’

Frame A frame is a rectangular cluster of Emacs windows. Emacs starts out with one
frame, but you can create more. You can subdivide each frame into Emacs
windows (q.v.). When you are using a windowing system, all the frames can be
visible at the same time. See Chapter 17 [Frames], page 163. Some other editors
use the term “window” for this, but in Emacs a window means something else.

Fringe On windowed displays, there’s a narrow portion of the frame (q.v.) between the
text area and the window’s border. Emacs displays the fringe using a special
face (q.v.) called fringe. See Section 11.1 [Faces], page 79.

FTP FTP is an acronym for File Transfer Protocol. Emacs uses an FTP client
program to provide access to remote files (q.v.).

Glossary 479

Function Key
A function key is a key on the keyboard that sends input but does not corre-
spond to any character. See Section 32.4.7 [Function Keys], page 398.

Global Global means “independent of the current environment; in effect throughout
Emacs.” It is the opposite of local (q.v.). Particular examples of the use of
‘global’ appear below.

Global Abbrev
A global definition of an abbrev (q.v.) is effective in all major modes that do
not have local (q.v.) definitions for the same abbrev. See Chapter 25 [Abbrevs],
page 283.

Global Keymap
The global keymap (q.v.) contains key bindings that are in effect except when
overridden by local key bindings in a major mode’s local keymap (q.v.). See
Section 32.4.1 [Keymaps], page 393.

Global Mark Ring
The global mark ring records the series of buffers you have recently set a mark
(q.v.) in. In many cases you can use this to backtrack through buffers you
have been editing in, or in which you have found tags (see ‘tags table’). See
Section 8.6 [Global Mark Ring], page 65.

Global Substitution
Global substitution means replacing each occurrence of one string by another
string throughout a large amount of text. See Section 12.7 [Replace], page 100.

Global Variable
The global value of a variable (q.v.) takes effect in all buffers that do not
have their own local (q.v.) values for the variable. See Section 32.2 [Variables],
page 379.

Graphic Character
Graphic characters are those assigned pictorial images rather than just names.
All the non-Meta (q.v.) characters except for the Control (q.v.) characters are
graphic characters. These include letters, digits, punctuation, and spaces; they
do not include 〈RET〉 or 〈ESC〉. In Emacs, typing a graphic character inserts that
character (in ordinary editing modes). See Chapter 4 [Basic Editing], page 33.

Highlighting
Highlighting text means displaying it with a different foreground and/or back-
ground color to make it stand out from the rest of the text in the buffer.

Hardcopy Hardcopy means printed output. Emacs has commands for making printed
listings of text in Emacs buffers. See Section 31.5 [Hardcopy], page 361.

〈HELP〉 〈HELP〉 is the Emacs name for C-h or 〈F1〉. You can type 〈HELP〉 at any time to
ask what options you have, or to ask what any command does. See Chapter 7
[Help], page 53.

Help Echo Help echo is a short message displayed in the echo area when the mouse pointer
is located on portions of display that require some explanations. Emacs dis-
plays help echo for menu items, parts of the mode line, tool-bar buttons, etc.

480 GNU Emacs Manual

On graphics displays, the messages can be displayed as tooltips (q.v.). See
Section 17.18 [Tooltips], page 173.

Hook A hook is a list of functions to be called on specific occasions, such as saving
a buffer in a file, major mode activation, etc. By customizing the various
hooks, you can modify Emacs’s behavior without changing any of its code. See
Section 32.2.3 [Hooks], page 386.

Hyper Hyper is the name of a modifier bit which a keyboard input character may
have. To make a character Hyper, type it while holding down the 〈HYPER〉 key.
Such characters are given names that start with Hyper- (usually written H- for
short). See Section 2.1 [User Input], page 27.

Inbox An inbox is a file in which mail is delivered by the operating system. Rmail
transfers mail from inboxes to Rmail files (q.v.) in which the mail is then
stored permanently or until explicitly deleted. See Section 28.5 [Rmail Inbox],
page 306.

Incremental Search
Emacs provides an incremental search facility, whereby Emacs searches for the
string as you type it. See Section 12.1 [Incremental Search], page 91.

Indentation
Indentation means blank space at the beginning of a line. Most programming
languages have conventions for using indentation to illuminate the structure
of the program, and Emacs has special commands to adjust indentation. See
Chapter 20 [Indentation], page 195.

Indirect Buffer
An indirect buffer is a buffer that shares the text of another buffer, called its
base buffer (q.v.). See Section 15.6 [Indirect Buffers], page 154.

Info Info is the hypertext format used by the GNU project for writing documenta-
tion.

Input Event
An input event represents, within Emacs, one action taken by the user on
the terminal. Input events include typing characters, typing function keys,
pressing or releasing mouse buttons, and switching between Emacs frames. See
Section 2.1 [User Input], page 27.

Input Method
An input method is a system for entering non-ASCII text characters by typ-
ing sequences of ASCII characters (q.v.). See Section 18.4 [Input Methods],
page 178.

Insertion Insertion means copying text into the buffer, either from the keyboard or from
some other place in Emacs.

Interlocking
Interlocking is a feature for warning when you start to alter a file that someone
else is already editing. See Section 14.3.2 [Simultaneous Editing], page 117.

Isearch See ‘incremental search.’

Glossary 481

Justification
Justification means adding extra spaces within lines of text to make them extend
exactly to a specified width. See Section 21.5 [Filling], page 203.

Keyboard Macro
Keyboard macros are a way of defining new Emacs commands from sequences of
existing ones, with no need to write a Lisp program. See Section 32.3 [Keyboard
Macros], page 390.

Keyboard Shortcut
A keyboard shortcut is a key sequence (q.v.) which invokes a command. What
other programs call “assign a keyboard shortcut” Emacs calls “bind a key se-
quence”. See ‘binding.’

Key Sequence
A key sequence (key, for short) is a sequence of input events (q.v.) that are
meaningful as a single unit. If the key sequence is enough to specify one action,
it is a complete key (q.v.); if it is not enough, it is a prefix key (q.v.). See
Section 2.2 [Keys], page 28.

Keymap The keymap is the data structure that records the bindings (q.v.) of key se-
quences to the commands that they run. For example, the global keymap binds
the character C-n to the command function next-line. See Section 32.4.1
[Keymaps], page 393.

Keyboard Translation Table
The keyboard translation table is an array that translates the character codes
that come from the terminal into the character codes that make up key se-
quences. See Section 32.5 [Keyboard Translations], page 402.

Kill Ring The kill ring is where all text you have killed recently is saved. You can reinsert
any of the killed text still in the ring; this is called yanking (q.v.). See Section 9.2
[Yanking], page 70.

Killing Killing means erasing text and saving it on the kill ring so it can be yanked
(q.v.) later. Some other systems call this “cutting.” Most Emacs commands
that erase text perform killing, as opposed to deletion (q.v.). See Section 9.1
[Killing], page 67.

Killing a Job
Killing a job (such as, an invocation of Emacs) means making it cease to exist.
Any data within it, if not saved in a file, is lost. See Section 3.1 [Exiting],
page 31.

Language Environment
Your choice of language environment specifies defaults for the input method
(q.v.) and coding system (q.v.). See Section 18.3 [Language Environments],
page 177. These defaults are relevant if you edit non-ASCII text (see Chapter 18
[International], page 175).

Line Wrapping
See ‘filling.’

482 GNU Emacs Manual

Lisp Lisp is a programming language. Most of Emacs is written in a dialect of
Lisp, called Emacs Lisp, that is extended with special features which make it
especially suitable for text editing tasks.

List A list is, approximately, a text string beginning with an open parenthesis and
ending with the matching close parenthesis. In C mode and other non-Lisp
modes, groupings surrounded by other kinds of matched delimiters appropriate
to the language, such as braces, are also considered lists. Emacs has special
commands for many operations on lists. See Section 22.4.2 [Moving by Parens],
page 234.

Local Local means “in effect only in a particular context”; the relevant kind of context
is a particular function execution, a particular buffer, or a particular major
mode. It is the opposite of ‘global’ (q.v.). Specific uses of ‘local’ in Emacs
terminology appear below.

Local Abbrev
A local abbrev definition is effective only if a particular major mode is selected.
In that major mode, it overrides any global definition for the same abbrev. See
Chapter 25 [Abbrevs], page 283.

Local Keymap
A local keymap is used in a particular major mode; the key bindings (q.v.) in
the current local keymap override global bindings of the same key sequences.
See Section 32.4.1 [Keymaps], page 393.

Local Variable
A local value of a variable (q.v.) applies to only one buffer. See Section 32.2.4
[Locals], page 387.

M- M- in the name of a character is an abbreviation for 〈META〉, one of the modifier
keys that can accompany any character. See Section 2.1 [User Input], page 27.

M-C- M-C- in the name of a character is an abbreviation for Control-Meta; it means
the same thing as C-M-. If your terminal lacks a real 〈META〉 key, you type
a Control-Meta character by typing 〈ESC〉 and then typing the corresponding
Control character. See Section 2.1 [User Input], page 27.

M-x M-x is the key sequence which is used to call an Emacs command by name. This
is how you run commands that are not bound to key sequences. See Chapter 6
[Running Commands by Name], page 51.

Mail Mail means messages sent from one user to another through the computer
system, to be read at the recipient’s convenience. Emacs has commands for
composing and sending mail, and for reading and editing the mail you have
received. See Chapter 27 [Sending Mail], page 293. See Chapter 28 [Rmail],
page 303, for how to read mail.

Mail Composition Method
A mail composition method is a program runnable within Emacs for editing
and sending a mail message. Emacs lets you select from several alternative
mail composition methods. See Section 27.6 [Mail Methods], page 300.

Glossary 483

Major Mode
The Emacs major modes are a mutually exclusive set of options, each of which
configures Emacs for editing a certain sort of text. Ideally, each programming
language has its own major mode. See Chapter 19 [Major Modes], page 193.

Mark The mark points to a position in the text. It specifies one end of the region
(q.v.), point being the other end. Many commands operate on all the text
from point to the mark. Each buffer has its own mark. See Chapter 8 [Mark],
page 61.

Mark Ring
The mark ring is used to hold several recent previous locations of the mark, just
in case you want to move back to them. Each buffer has its own mark ring; in
addition, there is a single global mark ring (q.v.). See Section 8.5 [Mark Ring],
page 64.

Menu Bar The menu bar is the line at the top of an Emacs frame. It contains words you
can click on with the mouse to bring up menus, or you can use a keyboard
interface to navigate it. See Section 17.15 [Menu Bars], page 172.

Message See ‘mail.’

Meta Meta is the name of a modifier bit which a command character may have. It is
present in a character if the character is typed with the 〈META〉 key held down.
Such characters are given names that start with Meta- (usually written M- for
short). For example, M-< is typed by holding down 〈META〉 and at the same
time typing < (which itself is done, on most terminals, by holding down 〈SHIFT〉
and typing ,). See Section 2.1 [User Input], page 27.

Meta Character
A Meta character is one whose character code includes the Meta bit.

Minibuffer The minibuffer is the window that appears when necessary inside the echo area
(q.v.), used for reading arguments to commands. See Chapter 5 [Minibuffer],
page 43.

Minibuffer History
The minibuffer history records the text you have specified in the past for mini-
buffer arguments, so you can conveniently use the same text again. See Sec-
tion 5.4 [Minibuffer History], page 47.

Minor Mode
A minor mode is an optional feature of Emacs which can be switched on or off
independently of all other features. Each minor mode has a command to turn
it on or off. See Section 32.1 [Minor Modes], page 377.

Minor Mode Keymap
A minor mode keymap is a keymap that belongs to a minor mode and is active
when that mode is enabled. Minor mode keymaps take precedence over the
buffer’s local keymap, just as the local keymap takes precedence over the global
keymap. See Section 32.4.1 [Keymaps], page 393.

484 GNU Emacs Manual

Mode Line
The mode line is the line at the bottom of each window (q.v.), giving status
information on the buffer displayed in that window. See Section 1.3 [Mode
Line], page 23.

Modified Buffer
A buffer (q.v.) is modified if its text has been changed since the last time the
buffer was saved (or since when it was created, if it has never been saved). See
Section 14.3 [Saving], page 113.

Moving Text
Moving text means erasing it from one place and inserting it in another. The
usual way to move text by killing (q.v.) and then yanking (q.v.). See Section 9.1
[Killing], page 67.

MULE MULE refers to the Emacs features for editing multilingual non-ASCII text
using multibyte characters (q.v.). See Chapter 18 [International], page 175.

Multibyte Character
A multibyte character is a character that takes up several bytes in a buffer.
Emacs uses multibyte characters to represent non-ASCII text, since the number
of non-ASCII characters is much more than 256. See Section 18.1 [International
Chars], page 175.

Named Mark
A named mark is a register (q.v.) in its role of recording a location in text so
that you can move point to that location. See Chapter 10 [Registers], page 75.

Narrowing Narrowing means creating a restriction (q.v.) that limits editing in the current
buffer to only a part of the text in the buffer. Text outside that part is inac-
cessible to the user until the boundaries are widened again, but it is still there,
and saving the file saves it all. See Section 31.9 [Narrowing], page 366.

Newline Control-J characters in the buffer terminate lines of text and are therefore also
called newlines. See Section 2.4 [Text Characters], page 30.

nil nil is a value usually interpreted as a logical “false.” Its opposite is t, inter-
preted as “true.”

Numeric Argument
A numeric argument is a number, specified before a command, to change the
effect of the command. Often the numeric argument serves as a repeat count.
See Section 4.10 [Arguments], page 41.

Overwrite Mode
Overwrite mode is a minor mode. When it is enabled, ordinary text characters
replace the existing text after point rather than pushing it to the right. See
Section 32.1 [Minor Modes], page 377.

Page A page is a unit of text, delimited by formfeed characters (ASCII control-L, code
014) coming at the beginning of a line. Some Emacs commands are provided
for moving over and operating on pages. See Section 21.4 [Pages], page 202.

Glossary 485

Paragraph Paragraphs are the medium-size unit of human-language text. There are spe-
cial Emacs commands for moving over and operating on paragraphs. See Sec-
tion 21.3 [Paragraphs], page 201.

Parsing We say that certain Emacs commands parse words or expressions in the text
being edited. Really, all they know how to do is find the other end of a word
or expression. See Section 32.6 [Syntax], page 403.

Point Point is the place in the buffer at which insertion and deletion occur. Point is
considered to be between two characters, not at one character. The terminal’s
cursor (q.v.) indicates the location of point. See Chapter 4 [Basic Editing],
page 33.

Prefix Argument
See ‘numeric argument.’

Prefix Key
A prefix key is a key sequence (q.v.) whose sole function is to introduce a set
of longer key sequences. C-x is an example of prefix key; any two-character se-
quence starting with C-x is therefore a legitimate key sequence. See Section 2.2
[Keys], page 28.

Primary Rmail File
Your primary Rmail file is the file named ‘RMAIL’ in your home directory. That’s
where Rmail stores your incoming mail, unless you specify a different file name.
See Chapter 28 [Rmail], page 303.

Primary Selection
The primary selection is one particular X selection (q.v.); it is the selection that
most X applications use for transferring text to and from other applications.
The Emacs kill commands set the primary selection and the yank command
uses the primary selection when appropriate. See Section 9.1 [Killing], page 67.

Prompt A prompt is text used to ask the user for input. Displaying a prompt is called
prompting. Emacs prompts always appear in the echo area (q.v.). One kind
of prompting happens when the minibuffer is used to read an argument (see
Chapter 5 [Minibuffer], page 43); the echoing which happens when you pause in
the middle of typing a multi-character key sequence is also a kind of prompting
(see Section 1.2 [Echo Area], page 22).

Query-Replace
Query-replace is an interactive string replacement feature provided by Emacs.
See Section 12.7.4 [Query Replace], page 102.

Quitting Quitting means canceling a partially typed command or a running command,
using C-g (or C-〈BREAK〉 on MS-DOS). See Section 33.1 [Quitting], page 409.

Quoting Quoting means depriving a character of its usual special significance. The most
common kind of quoting in Emacs is with C-q. What constitutes special signif-
icance depends on the context and on convention. For example, an “ordinary”
character as an Emacs command inserts itself; so in this context, a special
character is any character that does not normally insert itself (such as 〈DEL〉,

486 GNU Emacs Manual

for example), and quoting it makes it insert itself as if it were not special. Not
all contexts allow quoting. See Chapter 4 [Basic Editing], page 33.

Quoting File Names
Quoting a file name turns off the special significance of constructs such as ‘$’,
‘~’ and ‘:’. See Section 14.14 [Quoted File Names], page 146.

Read-Only Buffer
A read-only buffer is one whose text you are not allowed to change. Normally
Emacs makes buffers read-only when they contain text which has a special
significance to Emacs; for example, Dired buffers. Visiting a file that is write-
protected also makes a read-only buffer. See Chapter 15 [Buffers], page 149.

Rectangle A rectangle consists of the text in a given range of columns on a given range
of lines. Normally you specify a rectangle by putting point at one corner and
putting the mark at the diagonally opposite corner. See Section 9.4 [Rectangles],
page 73.

Recursive Editing Level
A recursive editing level is a state in which part of the execution of a command
involves asking the user to edit some text. This text may or may not be the
same as the text to which the command was applied. The mode line indicates
recursive editing levels with square brackets (‘[’ and ‘]’). See Section 31.13
[Recursive Edit], page 369.

Redisplay Redisplay is the process of correcting the image on the screen to correspond to
changes that have been made in the text being edited. See Chapter 1 [Screen],
page 21.

Regexp See ‘regular expression.’

Region The region is the text between point (q.v.) and the mark (q.v.). Many com-
mands operate on the text of the region. See Chapter 8 [Mark], page 61.

Registers Registers are named slots in which text or buffer positions or rectangles can
be saved for later use. See Chapter 10 [Registers], page 75. A related Emacs
feature is ‘bookmarks’ (q.v.).

Regular Expression
A regular expression is a pattern that can match various text strings; for ex-
ample, ‘a[0-9]+’ matches ‘a’ followed by one or more digits. See Section 12.5
[Regexps], page 95.

Remote File
A remote file is a file that is stored on a system other than your own. Emacs can
access files on other computers provided that they are connected to the same
network as your machine, and (obviously) that you have a supported method
to gain access to those files. See Section 14.13 [Remote Files], page 145.

Repeat Count
See ‘numeric argument.’

Replacement
See ‘global substitution.’

Glossary 487

Restriction
A buffer’s restriction is the amount of text, at the beginning or the end of the
buffer, that is temporarily inaccessible. Giving a buffer a nonzero amount of
restriction is called narrowing (q.v.); removing a restriction is called widening
(q.v.). See Section 31.9 [Narrowing], page 366.

〈RET〉 〈RET〉 is a character that in Emacs runs the command to insert a newline into
the text. It is also used to terminate most arguments read in the minibuffer
(q.v.). See Section 2.1 [User Input], page 27.

Reverting Reverting means returning to the original state. Emacs lets you revert a buffer
by re-reading its file from disk. See Section 14.4 [Reverting], page 119.

Rmail File An Rmail file is a file containing text in a special format used by Rmail for
storing mail. See Chapter 28 [Rmail], page 303.

Saving Saving a buffer means copying its text into the file that was visited (q.v.) in
that buffer. This is the way text in files actually gets changed by your Emacs
editing. See Section 14.3 [Saving], page 113.

Scroll Bar A scroll bar is a tall thin hollow box that appears at the side of a window. You
can use mouse commands in the scroll bar to scroll the window. The scroll bar
feature is supported only under windowing systems. See Section 17.13 [Scroll
Bars], page 171.

Scrolling Scrolling means shifting the text in the Emacs window so as to see a different
part of the buffer. See Chapter 11 [Display], page 79.

Searching Searching means moving point to the next occurrence of a specified string or the
next match for a specified regular expression. See Chapter 12 [Search], page 91.

Search Path
A search path is a list of directory names, to be used for searching for files for
certain purposes. For example, the variable load-path holds a search path for
finding Lisp library files. See Section 23.7 [Lisp Libraries], page 262.

Secondary Selection
The secondary selection is one particular X selection; some X applications can
use it for transferring text to and from other applications. Emacs has spe-
cial mouse commands for transferring text using the secondary selection. See
Section 17.2 [Secondary Selection], page 165.

Selecting Selecting a buffer means making it the current (q.v.) buffer. See Chapter 15
[Buffers], page 149.

Selection Windowing systems allow an application program to specify selections whose
values are text. A program can also read the selections that other programs
have set up. This is the principal way of transferring text between window
applications. Emacs has commands to work with the primary (q.v.) selection
and the secondary (q.v.) selection, and also with the clipboard (q.v.).

Self-Documentation
Self-documentation is the feature of Emacs which can tell you what any com-
mand does, or give you a list of all commands related to a topic you specify.

488 GNU Emacs Manual

You ask for self-documentation with the help character, C-h. See Chapter 7
[Help], page 53.

Self-Inserting Character
A character is self-inserting if typing that character inserts that character in
the buffer. Ordinary printing and whitespace characters are self-inserting in
Emacs, except in certain special major modes.

Sentences Emacs has commands for moving by or killing by sentences. See Section 21.2
[Sentences], page 200.

Sexp A sexp (short for “s-expression”) is the basic syntactic unit of Lisp in its textual
form: either a list, or Lisp atom. Sexps are also the balanced expressions (q.v.)
of the Lisp language; this is why the commands for editing balanced expressions
have ‘sexp’ in their name. See Section 22.4.1 [Expressions], page 232.

Simultaneous Editing
Simultaneous editing means two users modifying the same file at once. Simul-
taneous editing, if not detected, can cause one user to lose his or her work.
Emacs detects all cases of simultaneous editing, and warns one of the users to
investigate. See Section 14.3.2 [Simultaneous Editing], page 117.

Speedbar Speedbar is a special tall frame that provides fast access to Emacs buffers,
functions within those buffers, Info nodes, and other interesting parts of text
within Emacs. See Section 17.9 [Speedbar], page 169.

Spell Checking
Spell checking means checking correctness of the written form of each one of
the words in a text. Emacs uses the Ispell spelling-checker program to check
the spelling of parts of a buffer via a convenient user interface. See Section 13.4
[Spelling], page 106.

String A string is a kind of Lisp data object which contains a sequence of characters.
Many Emacs variables are intended to have strings as values. The Lisp syntax
for a string consists of the characters in the string with a ‘"’ before and another
‘"’ after. A ‘"’ that is part of the string must be written as ‘\"’ and a ‘\’ that is
part of the string must be written as ‘\\’. All other characters, including new-
line, can be included just by writing them inside the string; however, backslash
sequences as in C, such as ‘\n’ for newline or ‘\241’ using an octal character
code, are allowed as well.

String Substitution
See ‘global substitution’.

Syntax Highlighting
See ‘font lock.’

Syntax Table
The syntax table tells Emacs which characters are part of a word, which char-
acters balance each other like parentheses, etc. See Section 32.6 [Syntax],
page 403.

Super Super is the name of a modifier bit which a keyboard input character may
have. To make a character Super, type it while holding down the 〈SUPER〉 key.

Glossary 489

Such characters are given names that start with Super- (usually written s- for
short). See Section 2.1 [User Input], page 27.

Suspending
Suspending Emacs means stopping it temporarily and returning control to its
parent process, which is usually a shell. Unlike killing a job (q.v.), you can
later resume the suspended Emacs job without losing your buffers, unsaved
edits, undo history, etc. See Section 3.1 [Exiting], page 31.

Tags Table
A tags table is a file that serves as an index to the function definitions in one
or more other files. See Section 24.2 [Tags], page 268.

Termscript File
A termscript file contains a record of all characters sent by Emacs to the ter-
minal. It is used for tracking down bugs in Emacs redisplay. Emacs does not
make a termscript file unless you tell it to. See Section 33.3 [Bugs], page 414.

Text ‘Text’ has two meanings (see Chapter 21 [Text], page 199):
• Data consisting of a sequence of characters, as opposed to binary numbers,

executable programs, and the like. The basic contents of an Emacs buffer
(aside from the text properties, q.v.) are always text in this sense.

• Data consisting of written human language, as opposed to programs, or
following the stylistic conventions of human language.

Text-only Terminal
A text-only terminal is a display that is limited to displaying text in character
units. Such a terminal cannot control individual pixels it displays. Emacs
supports a subset of display features on text-only terminals.

Text Properties
Text properties are annotations recorded for particular characters in the buffer.
Images in the buffer are recorded as text properties; they also specify formatting
information. See Section 21.11.3 [Editing Format Info], page 219.

Tool Bar The tool bar is a line (sometimes multiple lines) of icons at the top of an Emacs
frame. Clicking on one of these icons executes a command. You can think of
this as a graphical relative of the menu bar (q.v.). See Section 17.16 [Tool Bars],
page 173.

Tooltips Tooltips are small windows displaying a help echo (q.v.) text that explains
parts of the display, lists useful options available via mouse clicks, etc. See
Section 17.18 [Tooltips], page 173.

Top Level Top level is the normal state of Emacs, in which you are editing the text
of the file you have visited. You are at top level whenever you are not in a
recursive editing level (q.v.) or the minibuffer (q.v.), and not in the middle of a
command. You can get back to top level by aborting (q.v.) and quitting (q.v.).
See Section 33.1 [Quitting], page 409.

Transposition
Transposing two units of text means putting each one into the place formerly
occupied by the other. There are Emacs commands to transpose two adja-

490 GNU Emacs Manual

cent characters, words, balanced expressions (q.v.) or lines (see Section 13.2
[Transpose], page 105).

Truncation
Truncating text lines in the display means leaving out any text on a line that
does not fit within the right margin of the window displaying it. See also
‘continuation line.’ See Chapter 4 [Basic Editing], page 33.

TTY See ‘text-only terminal.’

Undoing Undoing means making your previous editing go in reverse, bringing back the
text that existed earlier in the editing session. See Section 4.4 [Undo], page 36.

User Option
A user option is a variable (q.v.) that exists so that you can customize Emacs
by setting it to a new value. See Section 32.2 [Variables], page 379.

Variable A variable is an object in Lisp that can store an arbitrary value. Emacs uses
some variables for internal purposes, and has others (known as ‘user options’
(q.v.)) just so that you can set their values to control the behavior of Emacs.
The variables used in Emacs that you are likely to be interested in are listed
in the Variables Index in this manual (see [Variable Index], page 513). See
Section 32.2 [Variables], page 379, for information on variables.

Version Control
Version control systems keep track of multiple versions of a source file. They
provide a more powerful alternative to keeping backup files (q.v.). See Sec-
tion 14.7 [Version Control], page 122.

Visiting Visiting a file means loading its contents into a buffer (q.v.) where they can be
edited. See Section 14.2 [Visiting], page 110.

Whitespace
Whitespace is any run of consecutive formatting characters (space, tab, newline,
and backspace).

Widening Widening is removing any restriction (q.v.) on the current buffer; it is the
opposite of narrowing (q.v.). See Section 31.9 [Narrowing], page 366.

Window Emacs divides a frame (q.v.) into one or more windows, each of which can
display the contents of one buffer (q.v.) at any time. See Chapter 1 [Screen],
page 21, for basic information on how Emacs uses the screen. See Chapter 16
[Windows], page 157, for commands to control the use of windows. Some other
editors use the term “window” for what we call a ‘frame’ (q.v.) in Emacs.

Word Abbrev
See ‘abbrev.’

Word Search
Word search is searching for a sequence of words, considering the punctuation
between them as insignificant. See Section 12.3 [Word Search], page 94.

WYSIWYG
WYSIWYG stands for “What you see is what you get.” Emacs generally pro-
vides WYSIWYG editing for files of characters; in Enriched mode (see Sec-

Glossary 491

tion 21.11 [Formatted Text], page 218), it provides WYSIWYG editing for files
that include text formatting information.

Yanking Yanking means reinserting text previously killed. It can be used to undo a
mistaken kill, or for copying or moving text. Some other systems call this
“pasting.” See Section 9.2 [Yanking], page 70.

492 GNU Emacs Manual

Key (Character) Index 493

Key (Character) Index

!
! (Dired) . 325

#
(Dired) . 320

$
$ (Dired) . 328

%
% C (Dired) . 326

% d (Dired) . 321

% g (Dired) . 323

% H (Dired) . 326

% l (Dired) . 326

% m (Dired) . 323

% R (Dired) . 326

% S (Dired) . 326

% u (Dired) . 326

&
& (Dired) . 320

*
* ! (Dired) . 322

* % (Dired) . 323

* * (Dired) . 322

* / (Dired) . 322

* ? (Dired) . 322

* @ (Dired) . 322

* c (Dired) . 323

* C-n (Dired) . 322

* C-p (Dired) . 322

* DEL (Dired) . 322

* m (Dired) . 322

* s (Dired) . 322

* t (Dired) . 322

* u (Dired) . 322

.

. (Calendar mode) . 332

. (Dired) . 321

. (Rmail) . 304

=
= (Dired) . 327

~

~ (Dired) . 320

"

" (TEX mode) . 214

+

+ (Dired) . 325

>

> (Dired) . 328

> (Rmail) . 305

^

^ (Dired) . 321

<

< (Dired) . 328

< (Rmail) . 305

A
a (Calendar mode) . 335

a (Dired) . 321

A (Dired) . 325

a (Rmail) . 309

B
B (Dired) . 325

b (Rmail) . 303

BACKSPACE . 68

BS . 68

BS (MS-DOS) . 451

494 GNU Emacs Manual

C
C (Dired) . 324
c (Rmail) . 312
C-@ . 62
C-] . 410
C-_ . 36
C-_ (Dired) . 323
C-\ . 180
C-a . 34
C-a (Calendar mode) . 332
C-b . 34
C-b (Calendar mode) . 331
C-BREAK (MS-DOS) . 451
C-c ’ (Picture mode) . 290
C-c . (Picture mode) . 290
C-c / (Picture mode) . 290
C-c ; (Fortran mode) . 251
C-c @ (Outline minor mode) 209
C-c @ C-h . 240
C-c @ C-l . 240
C-c @ C-M-h . 240
C-c @ C-M-s . 240
C-c @ C-r . 240
C-c @ C-s . 240
C-c ‘ (Picture mode) . 290
C-c { (TEX mode) . 214
C-c } (TEX mode) . 214
C-c > (GUD) . 260
C-c > (Picture mode) . 290
C-c ^ (Picture mode) . 290
C-c \ (Picture mode) . 290
C-c < (GUD) . 260
C-c < (Picture mode) . 290
C-c C-\ (C mode) . 245
C-c C-\ (Shell mode) . 354
C-c C-a (C mode) . 243
C-c C-a (Mail mode) . 296
C-c C-a (Outline mode) . 211
C-c C-a (Shell mode) . 354
C-c C-b (Outline mode) . 210
C-c C-b (Picture mode) . 290
C-c C-b (Shell mode) . 354
C-c C-b (TEX mode) . 216
C-c C-c (Edit Abbrevs) . 286
C-c C-c (Edit Tab Stops). 196
C-c C-c (Mail mode) . 297
C-c C-c (Outline mode) . 211
C-c C-c (Shell mode) . 354
C-c C-d (C mode) . 245
C-c C-d (Fortran mode) . 247
C-c C-d (GUD) . 260
C-c C-d (Outline mode) . 211
C-c C-d (Picture mode) . 290
C-c C-e (C mode) . 245
C-c C-e (LaTEX mode) . 215

C-c C-e (Outline mode) . 211
C-c C-e (Shell mode) . 354
C-c C-f (GUD) . 261
C-c C-f (Outline mode) . 210
C-c C-f (Picture mode) . 290
C-c C-f (Shell mode) . 354
C-c C-f (TEX mode) . 217
C-c C-f C-b (Mail mode) . 298
C-c C-f C-c (Mail mode) . 298
C-c C-f C-f (Mail mode) . 298
C-c C-f C-s (Mail mode) . 298
C-c C-f C-t (Mail mode) . 298
C-c C-i (GUD) . 260
C-c C-i (Mail mode) . 300
C-c C-i (Outline mode) . 211
C-c C-j (Term mode) . 359
C-c C-k (Outline mode) . 211
C-c C-k (Picture mode) . 291
C-c C-k (Term mode) . 359
C-c C-k (TEX mode) . 216
C-c C-l (Calendar mode) . 334
C-c C-l (GUD) . 260
C-c C-l (Outline mode) . 211
C-c C-l (Shell mode) . 354
C-c C-l (TEX mode) . 216
C-c C-n (C mode) . 242
C-c C-n (Fortran mode) . 247
C-c C-n (GUD) . 260
C-c C-n (Outline mode) . 210
C-c C-n (Shell mode) . 356
C-c C-o (LaTEX mode) . 215
C-c C-o (Outline mode) . 212
C-c C-o (Shell mode) . 354
C-c C-p (C mode) . 242
C-c C-p (Fortran mode) . 247
C-c C-p (Outline mode) . 210
C-c C-p (Shell mode) . 356
C-c C-p (TEX mode) . 216
C-c C-q (C mode) . 231
C-c C-q (Mail mode) . 299
C-c C-q (Outline mode) . 211
C-c C-q (Term mode) . 359
C-c C-q (TEX mode) . 216
C-c C-r (Fortran mode) . 252
C-c C-r (GUD) . 260
C-c C-r (Mail mode) . 299
C-c C-r (Shell mode) . 354
C-c C-r (TEX mode) . 216
C-c C-s (C mode) . 245
C-c C-s (GUD) . 260
C-c C-s (Mail mode) . 297
C-c C-s (Outline mode) . 211
C-c C-s (Shell mode) . 354
C-c C-t (C mode) . 245
C-c C-t (GUD) . 260
C-c C-t (Mail mode) . 299

Key (Character) Index 495

C-c C-t (Outline mode) . 211
C-c C-u (C mode) . 242
C-c C-u (Outline mode) . 210
C-c C-u (Shell mode) . 354
C-c C-v (TEX mode) . 216
C-c C-w (Fortran mode) . 252
C-c C-w (Mail mode) . 299
C-c C-w (Picture mode) . 291
C-c C-w (Shell mode) . 354
C-c C-x . 213
C-c C-x (Picture mode) . 291
C-c C-y (Mail mode) . 299
C-c C-y (Picture mode) . 291
C-c C-z . 212
C-c C-z (Shell mode) . 354
C-c 〈colon〉 (C mode) . 243
C-c RET (Shell mode) . 356
C-c TAB (Picture mode) . 291
C-c TAB (TEX mode) . 217
C-d . 68
C-d (Rmail) . 305
C-d (Shell mode) . 353
C-Down-Mouse-1 . 156
C-e . 34
C-e (Calendar mode) . 332
C-f . 34
C-f (Calendar mode) . 331
C-g . 409
C-g (MS-DOS) . 451
C-h . 53
C-h a . 56
C-h b . 59
C-h c . 55
C-h C . 182
C-h C-\ . 180
C-h C-c . 60
C-h C-d . 60
C-h C-f . 59
C-h C-h . 53
C-h C-i . 238
C-h C-k . 59
C-h C-p . 60
C-h C-w . 60
C-h f . 55
C-h F . 60
C-h h . 175
C-h i . 59
C-h I . 180
C-h k . 55
C-h l . 59
C-h L . 178
C-h m . 59
C-h n . 60
C-h p . 57
C-h P . 60
C-h s . 403

C-h t . 33
C-h w . 56
C-j . 228
C-j (and major modes) . 193
C-j (MS-DOS) . 451
C-j (TEX mode) . 214
C-k . 69
C-k (Gnus) . 350
C-l . 85
C-M-% . 102
C-M-. 274
C-M-/ . 287
C-M-@ . 233
C-M-\ . 196
C-M-a . 227
C-M-b . 233
C-M-c . 369
C-M-d . 234
C-M-d (Dired) . 328
C-M-DEL . 233
C-M-e . 227
C-M-f . 233
C-M-h . 227
C-M-h (C mode) . 227
C-M-j . 236
C-M-j (Fortran mode) . 247
C-M-k . 233
C-M-l . 85
C-M-l (Rmail) . 313
C-M-l (Shell mode) . 354
C-M-n . 234
C-M-n (Dired) . 328
C-M-n (Rmail) . 309
C-M-o . 195
C-M-p . 234
C-M-p (Dired) . 328
C-M-p (Rmail) . 309
C-M-q . 229
C-M-q (C mode) . 231
C-M-q (Fortran mode) . 247
C-M-r . 95
C-M-r (Rmail) . 313
C-M-s . 95
C-M-s (Rmail) . 313
C-M-t . 233
C-M-t (Rmail) . 313
C-M-u . 234
C-M-u (Dired) . 328
C-M-v . 159
C-M-w . 71
C-M-x (Emacs-Lisp mode) 264
C-M-x (Lisp mode) . 265
C-Mouse-1 . 166
C-Mouse-2 . 166
C-mouse-2 (mode line) . 167
C-Mouse-2 (scroll bar) 158, 167

496 GNU Emacs Manual

C-Mouse-3 . 167
C-Mouse-3 (when menu bar is disabled) 172
C-n . 34
C-n (Calendar mode) . 331
C-n (Dired) . 319
C-n (Gnus Group mode) . 351
C-n (Gnus Summary mode) 351
C-o . 38
C-o (Dired) . 321
C-o (Rmail) . 308
C-p . 34
C-p (Calendar mode) . 331
C-p (Dired) . 319
C-p (Gnus Group mode) . 351
C-p (Gnus Summary mode) 351
C-q . 33
C-r . 93
C-s . 91
C-S-Mouse-3 (FFAP) . 373
C-SPC . 61
C-t . 105
C-〈TAB〉. 146
C-u . 41
C-u C-@ . 64
C-u C-c C-w (Fortran mode) 252
C-u C-SPC . 64
C-u C-x u . 37
C-u M-; . 235
C-u TAB . 229
C-v . 85
C-v (Calendar mode) . 333
C-w . 69
C-x # . 360
C-x $. 87
C-x (. 391
C-x) . 391
C-x - . 161
C-x . 205
C-x ; . 237
C-x = . 40
C-x [. 202
C-x [(Calendar mode) . 331
C-x] . 202
C-x] (Calendar mode) . 331
C-x ‘ . 257
C-x } . 161
C-x + . 161
C-x > . 86
C-x > (Calendar mode) . 333
C-x ^ . 161
C-x < . 86
C-x < (Calendar mode) . 333
C-x 0 . 161
C-x 1 . 161
C-x 2 . 158
C-x 3 . 158

C-x 4 . 159
C-x 4 . 274
C-x 4 0 . 161
C-x 4 a . 267
C-x 4 b . 149
C-x 4 b (Iswitchb mode) . 155
C-x 4 c . 154
C-x 4 C-o (Iswitchb mode) 155
C-x 4 d . 319
C-x 4 f . 112
C-x 4 f (FFAP) . 373
C-x 4 m . 293
C-x 5 . 167
C-x 5 . 274
C-x 5 0 . 168
C-x 5 1 . 168
C-x 5 2 . 167
C-x 5 b . 150
C-x 5 b (Iswitchb mode) . 155
C-x 5 d . 319
C-x 5 f . 112
C-x 5 f (FFAP) . 373
C-x 5 m . 293
C-x 5 o . 168
C-x 5 r . 168
C-x 6 1 . 367
C-x 6 2 . 367
C-x 6 b . 367
C-x 6 d . 367
C-x 6 RET . 367
C-x 6 s . 367
C-x 8 . 191
C-x a g . 284
C-x a i g. 284
C-x a i l. 284
C-x a l . 284
C-x b . 149
C-x b (Iswitchb mode) . 155
C-x C-a (GUD) . 259
C-x C-b . 150
C-x C-c . 32
C-x C-d . 142
C-x C-e . 264
C-x C-f . 111
C-x C-f (FFAP) . 373
C-x C-k . 391
C-x C-l . 208
C-x C-n . 35
C-x C-o . 38
C-x C-p . 202
C-x C-q . 151
C-x C-q (Version Control) 124
C-x C-r . 112
C-x C-s . 113
C-x C-〈SPC〉 . 65
C-x C-t . 106

Key (Character) Index 497

C-x C-u . 208
C-x C-v . 112
C-x C-w . 114
C-x C-x . 62
C-x C-z . 265
C-x d . 319
C-x d (FFAP) . 373
C-x DEL . 200
C-x e . 391
C-x ESC ESC . 49
C-x f . 204
C-x h . 64
C-x i . 143
C-x k . 152
C-x l . 202
C-x m . 293
C-x n d . 366
C-x n n . 366
C-x n p . 366
C-x n w . 366
C-x o . 159
C-x q . 392
C-x r + . 77
C-x r b . 78
C-x r d . 74
C-x r f . 76
C-x r i . 76
C-x r j . 75
C-x r k . 74
C-x r l . 78
C-x r m . 78
C-x r n . 77
C-x r o . 74
C-x r r . 76
C-x r s . 76
C-x r SPC . 75
C-x r t . 74
C-x r w . 76
C-x r y . 74
C-x RET . 176
C-x RET c . 186
C-x RET C-\ . 180
C-x RET f . 186
C-x RET k . 187
C-x RET p . 187
C-x RET t . 186
C-x RET x . 187
C-x RET X . 187
C-x s . 113
C-x SPC . 259
C-x TAB . 196
C-x TAB (Enriched mode) . 221
C-x u . 36
C-x v = . 127
C-x v ~ . 127
C-x v a . 137

C-x v b . 135

C-x v c . 128

C-x v d . 129

C-x v g . 127

C-x v h . 138

C-x v i . 128

C-x v l . 128

C-x v m . 132

C-x v r . 136

C-x v s . 136

C-x v u . 128

C-x v v . 124

C-x w b . 83

C-x w h . 83

C-x w i . 83

C-x w l . 83

C-x w r . 83

C-x z . 42

C-y . 70

C-z . 32

C-z (X windows) . 168

D

d (Calendar mode) . 342

d (Dired) . 320

D (Dired) . 324

d (Rmail) . 305

DEL . 68

DEL (and major modes) . 193

DEL (Dired) . 320

DEL (Gnus) . 350

DEL (MS-DOS) . 451

DEL (programming modes) 225

DEL (Rmail) . 304

DELETE . 68

DELETE (and mouse selection) 163

DOWN . 34

E

e (Dired) . 321

e (Rmail) . 316

ESC a . 242

ESC e . 242

ESC ESC ESC . 410

498 GNU Emacs Manual

F
f (Dired) . 321

f (Rmail) . 311

F1 . 53

F10 . 25

F2 1 . 367

F2 2 . 367

F2 b . 367

F2 d . 367

F2 RET . 367

F2 s . 367

G
g (Dired) . 329

G (Dired) . 324

g (Rmail) . 307

g char (Calendar mode) . 339

g d (Calendar mode) . 332

g m (Calendar mode) . 340

H
h (Calendar mode) . 335

H (Dired) . 324

h (Rmail) . 313

Help . 53

I
i (Dired) . 327

i (Rmail) . 307

i a (Calendar mode) . 345

i b (Calendar mode) . 346

i c (Calendar mode) . 346

i d (Calendar mode) . 345

i m (Calendar mode) . 345

i w (Calendar mode) . 345

i y (Calendar mode) . 345

INSERT . 378

J
j (Rmail) . 305

K
k (Dired) . 329

k (Rmail) . 309

L
l (Dired) . 329
L (Dired) . 325
l (Gnus Group mode) . 350
L (Gnus Group mode) . 350
l (Rmail) . 313
LEFT . 34

M
m (Calendar mode) . 342
M (Calendar mode) . 337
m (Dired) . 322
M (Dired) . 324
m (Rmail) . 312
M-! . 351
M-$. 107
M-$ (Dired) . 328
M-% . 102
M-’ . 285
M-* . 274
M-, . 275
M-- . 41
M-- M-c . 106
M-- M-l . 106
M-- M-u . 106
M-. 274
M-/ . 287
M-; . 235
M-= . 40
M-= (Calendar mode) . 333
M-= (Dired) . 327
M-? (Nroff mode) . 218
M-? (Shell mode) . 353
M-@ . 200
M-‘ . 25
M-{ . 201
M-{ (Calendar mode) . 331
M-| . 352
M-} . 201
M-} (Calendar mode) . 331
M-~ . 114
M-> . 34
M-> (Calendar mode) . 332
M-^ . 195
M-^ (Fortran mode) . 247
M-\ . 68
M-< . 34
M-< (Calendar mode) . 332
M-1 . 41
M-a . 200
M-a (Calendar mode) . 332
M-b . 199
M-c . 207
M-〈colon〉 . 264

Key (Character) Index 499

M-d . 200
M-DEL . 200
M-Drag-Mouse-1 . 165
M-e . 200
M-e (Calendar mode) . 332
M-f . 199
M-g b (Enriched mode) . 220
M-g d (Enriched mode) . 220
M-g i (Enriched mode) . 220
M-g l (Enriched mode) . 220
M-g o (Enriched mode) . 220
M-g u (Enriched mode) . 220
M-h . 201
M-i . 196
M-j c (Enriched mode) . 223
M-j f (Enriched mode) . 223
M-j l (Enriched mode) . 223
M-j r (Enriched mode) . 223
M-j u (Enriched mode) . 223
M-k . 200
M-l . 207
M-m . 195
M-m (Rmail) . 311
M-Mouse-1 . 165
M-Mouse-2 . 165
M-Mouse-3 . 165
M-n (minibuffer history) . 48
M-n (Nroff mode) . 218
M-n (Rmail) . 304
M-n (Shell mode) . 356
M-p (minibuffer history) . 48
M-p (Nroff mode) . 218
M-p (Rmail) . 304
M-p (Shell mode) . 356
M-q . 204
M-q (C mode) . 245
M-q (Fortran mode) . 247
M-r . 34
M-r (minibuffer history) . 48
M-r (Shell mode) . 356
M-S (Enriched mode) . 223
M-s (Gnus Summary mode) 351
M-s (minibuffer history) . 48
M-s (Rmail) . 304
M-s (Shell mode) . 356
M-s (Text mode) . 204
M-SPC . 68
M-t . 106
M-TAB . 241
M-TAB (customization buffer). 382
M-TAB (Mail mode). 298
M-TAB (Picture mode) . 290
M-TAB (Text mode) . 208
M-u . 207
M-v . 85
M-v (Calendar mode) . 333

M-w . 70

M-x . 51

M-y . 71

M-z . 69

Mouse-1 . 163

Mouse-1 (mode line) . 167

Mouse-2 . 163

Mouse-2 (mode line) . 167

Mouse-2 (selection) . 166

Mouse-3 . 163

Mouse-3 (mode line) . 167

N
n (Gnus) . 350

n (Rmail) . 304

NEXT . 85

O
o (Calendar mode) . 332

o (Dired) . 321

O (Dired) . 324

o (Rmail) . 308

P
p (Calendar mode) . 338

P (Dired) . 324

p (Gnus) . 350

p (Rmail) . 304

p d (Calendar mode) . 334

PAGEDOWN . 85

PAGEUP . 85

PRIOR . 85

Q
q (Calendar mode) . 334

Q (Dired) . 325

q (Gnus Group mode) . 350

q (Rmail summary) . 314

Q (Rmail summary) . 314

q (Rmail) . 303

R
R (Dired) . 324

r (Rmail) . 311

RET . 33

RET (Dired) . 321

RET (Occur mode) . 103

RET (Shell mode) . 353

RIGHT . 34

500 GNU Emacs Manual

S
s (Calendar mode) . 342
S (Calendar mode) . 336
s (Dired) . 329
S (Dired) . 324
s (Gnus Summary mode) . 351
s (Rmail) . 303
S-Mouse-1 . 171
S-Mouse-2 . 240
S-Mouse-3 (FFAP). 373
S-TAB (customization buffer). 383
S-〈TAB〉 (Help mode) . 59
SPC . 46
SPC (Calendar mode) . 334
SPC (Dired) . 319
SPC (Gnus) . 350
SPC (Rmail) . 304

T
t (Calendar mode) . 334
t (Rmail) . 315
TAB . 195
TAB (and major modes) . 193
TAB (completion) . 45
TAB (customization buffer) 383
TAB (GUD) . 260
〈TAB〉 (Help mode) . 59
TAB (programming modes) 228
TAB (Shell mode) . 353

TAB (Text mode) . 208

U
u (Calendar mode) . 335
u (Dired deletion) . 320
u (Dired) . 322
u (Gnus Group mode) . 350
u (Rmail) . 305
UP . 34

V
v (Dired) . 321

W
w (Rmail) . 308

X
x (Calendar mode) . 335
x (Dired) . 320
X (Dired) . 325
x (Rmail) . 305

Z
Z (Dired) . 325

Command and Function Index 501

Command and Function Index

2
2C-associate-buffer . 367
2C-dissociate . 367
2C-merge . 367
2C-newline . 367
2C-split . 367
2C-two-columns . 367

5
5x5 . 374

A
abbrev-mode . 283
abbrev-prefix-mark . 285
abort-recursive-edit . 410
add-change-log-entry-other-window 267
add-global-abbrev . 284
add-mode-abbrev . 284
add-name-to-file . 144
add-untranslated-filesystem 455
american-calendar . 344
append-next-kill . 71
append-to-buffer . 72
append-to-file . 72
append-to-register . 76
apply-macro-to-region-lines 392
appt-add . 347
appt-delete . 347
appt-make-list . 346
apropos . 57
apropos-command . 56
apropos-documentation . 57
apropos-value . 57
apropos-variable . 57
ask-user-about-lock . 117
auto-compression-mode . 144
auto-fill-mode . 203
auto-image-file-mode . 147
auto-lower-mode . 170
auto-raise-mode . 170
auto-revert-mode . 120
auto-save-mode . 121

B
back-to-indentation . 195
backward-char . 34
backward-kill-sentence 200
backward-kill-sexp . 233
backward-kill-word . 200

backward-list . 234
backward-page . 202
backward-paragraph . 201
backward-sentence . 200
backward-sexp . 233
backward-text-line . 218
backward-up-list . 234
backward-word . 199
balance-windows . 161
beginning-of-buffer . 34
beginning-of-defun . 227
beginning-of-line . 34
binary-overwrite-mode . 378
blackbox . 374
blink-cursor-mode . 90
bookmark-delete . 78
bookmark-insert . 78
bookmark-insert-location 78
bookmark-jump . 77, 78
bookmark-load . 78
bookmark-save . 77
bookmark-set . 77, 78
bookmark-write . 78
browse-url . 372
browse-url-at-mouse . 372
browse-url-at-point . 372
bs-show . 156
buffer-menu . 153

C
c-backslash-region . 245
c-backward-conditional 242
c-backward-into-nomenclature 243
c-beginning-of-statement 242
c-electric-backspace . 225
c-end-of-statement . 242
c-fill-paragraph . 245
c-forward-conditional . 242
c-forward-into-nomenclature 243
c-indent-command . 228, 231
c-indent-defun . 231
c-indent-exp . 231
c-macro-expand . 245
c-mark-function . 227
c-scope-operator . 243
c-set-style . 232
c-show-syntactic-information 245
c-toggle-auto-hungry-state 245
c-toggle-auto-state . 243
c-toggle-hungry-state . 245
c-up-conditional . 242

502 GNU Emacs Manual

calendar . 331
calendar-backward-day . 331
calendar-backward-month 331
calendar-backward-week 331
calendar-beginning-of-month 332
calendar-beginning-of-week 332
calendar-beginning-of-year 332
calendar-count-days-region 333
calendar-cursor-holidays 335
calendar-end-of-month . 332
calendar-end-of-week . 332
calendar-end-of-year . 332
calendar-forward-day . 331
calendar-forward-month 331
calendar-forward-week . 331
calendar-forward-year . 331
calendar-goto-astro-day-number 339
calendar-goto-chinese-date 339
calendar-goto-coptic-date 339
calendar-goto-date . 332
calendar-goto-ethiopic-date 339
calendar-goto-french-date 339
calendar-goto-hebrew-date 339
calendar-goto-islamic-date 339
calendar-goto-iso-date 339
calendar-goto-julian-date 339
calendar-goto-mayan-long-count-date 340
calendar-goto-persian-date 339
calendar-goto-today . 332
calendar-next-calendar-round-date 341
calendar-next-haab-date 341
calendar-next-tzolkin-date 341
calendar-other-month . 332
calendar-phases-of-moon 337
calendar-previous-haab-date 341
calendar-previous-tzolkin-date 341
calendar-print-astro-day-number 339
calendar-print-chinese-date 339
calendar-print-coptic-date 339
calendar-print-day-of-year 334
calendar-print-ethiopic-date 339
calendar-print-french-date 339
calendar-print-hebrew-date 339
calendar-print-islamic-date 339
calendar-print-iso-date 338
calendar-print-julian-date 339
calendar-print-mayan-date 339
calendar-print-persian-date 339
calendar-sunrise-sunset 336
calendar-unmark . 335
call-last-kbd-macro . 391
capitalize-word . 207
cd . 109
center-line . 204
change-log-merge . 268
change-log-mode . 268

change-log-redate . 268
check-parens . 232
choose-completion . 46
clean-buffer-list . 152
clear-rectangle . 74
clone-indirect-buffer . 154
clone-indirect-buffer-other-window 154
codepage-setup . 460
column-number-mode . 88
comint-bol-or-process-mark 354
comint-continue-subjob 355
comint-copy-old-input . 356
comint-delchar-or-maybe-eof 353
comint-delete-output . 354
comint-dynamic-complete 353
comint-dynamic-list-filename... 353
comint-dynamic-list-input-ring 354
comint-get-next-from-history 356
comint-interrupt-subjob 354
comint-kill-input . 354
comint-magic-space . 357
comint-next-input . 356
comint-next-matching-input 356
comint-next-prompt . 356
comint-previous-input . 356
comint-previous-matching-input 356
comint-previous-prompt 356
comint-quit-subjob . 354
comint-run . 355
comint-send-input . 353
comint-show-maximum-output 354
comint-show-output . 354
comint-stop-subjob . 354
comint-strip-ctrl-m . 355
comint-truncate-buffer 355
comint-write-output . 354
comment-dwim . 235
comment-indent-new-line 236
comment-kill . 235
comment-region . 236
comment-set-column . 237
compare-windows . 143
compile . 255
compile (MS-DOS) . 460
compile-goto-error . 256
complete-symbol . 241
compose-mail . 293
compose-mail-other-frame 293
compose-mail-other-window 293
copy-file . 144
copy-rectangle-to-register 76
copy-to-buffer . 72
copy-to-register . 76
count-lines-page . 202
count-lines-region . 40
count-text-lines . 218

Command and Function Index 503

cpp-highlight-buffer . 245
create-fontset-from-fontset-spec 190
crisp-mode . 370
customize . 380
customize-apropos . 385
customize-browse . 381
customize-changed-options 385
customize-customized . 386
customize-face . 385
customize-group . 385
customize-option . 385
customize-saved . 386
cwarn-mode . 245

D
dabbrev-completion . 287
dabbrev-expand . 287
dbx . 258
debug_print . 419
decipher . 374
default-value . 388
define-abbrevs . 286
define-key . 395
define-mail-abbrev . 296
define-mail-alias . 296
delete-backward-char . 67
delete-blank-lines . 38
delete-char . 67
delete-file . 143
delete-frame . 168
delete-horizontal-space 68
delete-indentation . 195
delete-matching-lines . 103
delete-non-matching-lines 103
delete-other-frames . 168
delete-other-windows . 161
delete-rectangle . 74
delete-selection-mode . 67
delete-trailing-whitespace 84
delete-whitespace-rectangle 74
delete-window . 161
describe-bindings . 59
describe-categories . 99
describe-coding-system 182
describe-copying . 60
describe-distribution . 60
describe-function . 55
describe-input-method . 180
describe-key . 55
describe-key-briefly . 55
describe-language-environment 178
describe-mode . 59
describe-no-warranty . 60
describe-project . 60
describe-syntax . 403

desktop-save . 368
diary . 342
diary-anniversary . 345
diary-block . 345
diary-cyclic . 346
diary-float . 346
diary-mail-entries . 343
diff . 142
diff-backup . 143
diff-mode . 143
digit-argument . 41
dired . 319
dired-backup-diff . 327
dired-change-marks . 323
dired-clean-directory . 321
dired-create-directory 325
dired-diff . 327
dired-display-file . 321
dired-do-byte-compile . 325
dired-do-chgrp . 324
dired-do-chmod . 324
dired-do-chown . 324
dired-do-compress . 325
dired-do-copy . 324
dired-do-copy-regexp . 326
dired-do-delete . 324
dired-do-flagged-delete 320
dired-do-hardlink . 324
dired-do-hardlink-regexp 326
dired-do-kill-lines . 329
dired-do-load . 325
dired-do-print . 324
dired-do-query-replace-regexp 325
dired-do-redisplay . 329
dired-do-rename . 324
dired-do-rename-regexp 326
dired-do-search . 325
dired-do-shell-command 325
dired-do-symlink . 324
dired-do-symlink-regexp 326
dired-do-toggle . 322
dired-downcase . 326
dired-find-alternate-file 321
dired-find-file . 321
dired-find-file-other-window 321
dired-flag-auto-save-files 320
dired-flag-backup-files 320
dired-flag-file-deletion 320
dired-flag-files-regexp 321
dired-flag-garbage-files 320
dired-hide-all . 328
dired-hide-subdir . 328
dired-mark . 322
dired-mark-directories 322
dired-mark-executables 322
dired-mark-files-containing-regexp 323

504 GNU Emacs Manual

dired-mark-files-regexp 323
dired-mark-subdir-files 322
dired-mark-symlinks . 322
dired-maybe-insert-subdir 327
dired-mouse-find-file-other-window 321
dired-next-dirline . 328
dired-next-marked-file 322
dired-next-subdir . 328
dired-other-frame . 319
dired-other-window . 319
dired-prev-dirline . 328
dired-prev-marked-file 322
dired-prev-subdir . 328
dired-sort-toggle-or-edit 329
dired-tree-down . 328
dired-tree-up . 328
dired-undo . 323
dired-unmark . 322
dired-unmark-all-files 322
dired-unmark-all-marks 322
dired-unmark-backward . 322
dired-up-directory . 321
dired-upcase . 326
dired-view-file . 321
dirs . 357
dirtrack-mode . 357
disable-command . 402
display-time . 88
dissociated-press . 374
do-applescript . 449
do-auto-save . 121
doctor . 414
down-list . 234
downcase-region . 208
downcase-word . 207
dunnet . 375

E
edit-abbrevs . 286
edit-kbd-macro . 391
edit-picture . 289
edit-tab-stops . 196
edit-tab-stops-note-changes 196
edt-emulation-off . 370
edt-emulation-on . 370
eldoc-mode . 240
electric-nroff-mode . 218
emacs-lisp-mode . 263
emacs-version . 415
emerge-auto-advance-mode 278
emerge-buffers . 276
emerge-buffers-with-ancestor 276
emerge-files . 276
emerge-files-with-ancestor 276
emerge-skip-prefers-mode 278

enable-command . 402
enable-flow-control . 412
enable-flow-control-on 412
enable-local-eval . 390
enable-local-variables 389
end-kbd-macro . 391
end-of-buffer . 34
end-of-defun . 227
end-of-line . 34
enlarge-window . 161
enlarge-window-horizontally 161
enriched-mode . 218
eshell . 351
european-calendar . 344
eval-current-buffer . 264
eval-defun . 264
eval-expression . 264
eval-last-sexp . 264
eval-region . 264
exchange-point-and-mark 62
execute-extended-command 51
exit-calendar . 334
exit-recursive-edit . 369
expand-abbrev . 284
expand-mail-aliases . 296
expand-region-abbrevs . 285

F
f90-mode . 247
facemenu-remove-all . 220
facemenu-remove-face-props 220
facemenu-set-background 221
facemenu-set-bold . 220
facemenu-set-bold-italic 220
facemenu-set-default . 220
facemenu-set-face . 220
facemenu-set-foreground 221
facemenu-set-italic . 220
facemenu-set-underline 220
ff-find-related-file . 246
ffap . 372
ffap-dired-at-point . 372
ffap-menu . 372
ffap-mode . 373
ffap-next . 372
file-cache-add-directory 146
file-cache-minibuffer-complete 146
fill-individual-paragraphs 206
fill-nonuniform-paragraphs 206
fill-paragraph . 204
fill-region . 204
fill-region-as-paragraph 204
find-alternate-file . 112
find-dired . 330
find-file . 111

Command and Function Index 505

find-file-at-point . 372
find-file-literally . 112
find-file-other-frame . 112
find-file-other-window 112
find-file-read-only . 112
find-file-read-only-other-frame 168
find-function . 373
find-function-on-key . 373
find-grep-dired . 330
find-name-dired . 330
find-tag . 274
find-tag-other-frame . 274
find-tag-other-window . 274
find-tag-regexp . 274
find-variable . 373
finder-by-keyword . 57
flush-lines . 103
flyspell-mode . 107
foldout-exit-fold . 213
foldout-zoom-subtree . 212
follow-mode . 87
font-lock-add-keywords . 82
font-lock-mode . 81
font-lock-remove-keywords 83
format-find-file . 224
fortran-auto-fill-mode 251
fortran-column-ruler . 252
fortran-comment-region 251
fortran-indent-subprogram 247
fortran-join-line . 247
fortran-mode . 247
fortran-next-statement 247
fortran-previous-statement 247
fortran-split-line . 247
fortran-strip-sequence-nos 252
fortran-window-create . 252
fortran-window-create-momentarily 252
fortune-to-signature . 300
forward-char . 34
forward-list . 234
forward-page . 202
forward-paragraph . 201
forward-sentence . 200
forward-sexp . 233
forward-text-line . 218
forward-word . 199
frame-configuration-to-register 76

G
gdb . 258
getenv . 426
glasses-mode . 241
global-auto-revert-mode 120
global-cwarn-mode . 245
global-font-lock-mode . 81

global-set-key . 396
global-unset-key . 396
gnus . 349
gnus-group-exit . 350
gnus-group-kill-group . 350
gnus-group-list-all-groups 350
gnus-group-list-groups 350
gnus-group-next-group . 351
gnus-group-next-unread-group 350
gnus-group-prev-group . 351
gnus-group-prev-unread-group 350
gnus-group-read-group . 350
gnus-group-unsubscribe-current-group 350
gnus-summary-isearch-article 351
gnus-summary-next-subject 351
gnus-summary-next-unread-article 350
gnus-summary-prev-page 350
gnus-summary-prev-subject 351
gnus-summary-prev-unread-article 350
gnus-summary-search-article-forward 351
gomoku . 374
goto-address . 372
goto-char . 34
goto-line . 34
grep . 256
grep (MS-DOS) . 460
grep-find . 256
gud-cont . 260
gud-def . 261
gud-down . 260
gud-finish . 261
gud-gdb-complete-command 260
gud-next . 260
gud-refresh . 260
gud-remove . 260
gud-step . 260
gud-stepi . 260
gud-tbreak . 260
gud-up . 260

H
handwrite . 363
hanoi . 374
help-command . 53
help-for-help . 53
help-next-ref . 59
help-previous-ref . 59
help-with-tutorial . 33
hi-lock-find-patterns . 83
hi-lock-mode . 83
hi-lock-write-interactive-patterns 83
hide-body . 211
hide-entry . 211
hide-ifdef-mode . 246
hide-leaves . 211

506 GNU Emacs Manual

hide-other . 212
hide-sublevels . 211
hide-subtree . 211
highlight-changes-mode . 83
highlight-lines-matching-regexp 83
highlight-regexp . 83
hl-line-mode . 90
holidays . 335
how-many . 103
hs-hide-all . 240
hs-hide-block . 240
hs-hide-level . 240
hs-minor-mode . 240
hs-show-all . 240
hs-show-block . 240
hs-show-region . 240

I
icomplete-mode . 47
iconify-or-deiconify-frame 168
ielm . 265
imenu . 227
imenu-add-menubar-index 227
increase-left-margin . 221
increment-register . 77
indent-code-rigidly . 229
indent-for-tab-command 228
indent-line-function . 228
indent-region . 196
indent-relative . 196
indent-rigidly . 196
indent-sexp . 229
info . 59
Info-goto-emacs-command-node 59
Info-goto-emacs-key-command-node 59
info-lookup-file . 238
info-lookup-symbol . 238
insert-abbrevs . 286
insert-anniversary-diary-entry 345
insert-block-diary-entry 346
insert-cyclic-diary-entry 346
insert-diary-entry . 345
insert-file . 143
insert-kbd-macro . 392
insert-monthly-diary-entry 345
insert-register . 76
insert-weekly-diary-entry 345
insert-yearly-diary-entry 345
inverse-add-global-abbrev 284
inverse-add-mode-abbrev 284
isearch-backward . 93
isearch-backward-regexp 95
isearch-forward . 91
isearch-forward-regexp . 95
isearch-toggle-input-method 92

isearch-toggle-specified-input-method 92
iso-accents-mode . 191
iso-gtex2iso . 217
iso-iso2gtex . 217
iso-iso2tex . 217
iso-tex2iso . 217
ispell . 107
ispell-buffer . 107
ispell-complete-word . 108
ispell-kill-ispell . 108
ispell-message . 299
ispell-region . 107
ispell-word . 107
iswitchb-mode . 155

J
jdb . 258
jump-to-register . 75
just-one-space . 68

K
kbd-macro-query . 392
keep-lines . 103
keyboard-escape-quit . 410
keyboard-quit . 409
keyboard-translate . 402
kill-all-abbrevs . 284
kill-buffer . 152
kill-buffer-and-window 161
kill-compilation . 256
kill-line . 69
kill-local-variable . 387
kill-rectangle . 74
kill-region . 69
kill-ring-save . 70
kill-sentence . 200
kill-sexp . 233
kill-some-buffers . 152
kill-word . 200

L
latex-mode . 213
life . 375
line-number-mode . 87
lisp-complete-symbol . 241
lisp-eval-defun . 265
lisp-interaction-mode . 264
lisp-mode . 265
list-abbrevs . 285
list-bookmarks . 77
list-buffers . 150
list-calendar-holidays 335
list-coding-systems . 182

Command and Function Index 507

list-colors-display . 432
list-command-history . 49
list-directory . 142
list-faces-display . 79
list-holidays . 335
list-input-methods . 181
list-matching-lines . 103
list-tags . 276
list-text-properties-at 220
list-yahrzeit-dates . 340
lm . 375
load . 262
load-file . 262
load-library . 262
local-set-key . 396
local-unset-key . 396
locate . 330
locate-with-filter . 330
lpr-buffer . 362
lpr-region . 362

M
mac-file-name-to-posix 449
mail-attach-file . 300
mail-bcc . 298
mail-cc . 298
mail-complete . 298
mail-fcc . 298
mail-fill-yanked-message 299
mail-interactive-insert-alias 296
mail-send . 297
mail-send-and-exit . 297
mail-signature . 299
mail-subject . 298
mail-text . 299
mail-to . 298
mail-yank-original . 299
mail-yank-region . 299
make-frame-command . 167
make-frame-on-display . 169
make-indirect-buffer . 154
make-local-variable . 387
make-symbolic-link . 144
make-variable-buffer-local 387
Man-fontify-manpage . 238
manual-entry . 238
mark-calendar-holidays 335
mark-defun . 227
mark-diary-entries . 342
mark-page . 202
mark-paragraph . 201
mark-sexp . 233
mark-whole-buffer . 64
mark-word . 200
menu-bar-enable-clipboard 166

minibuffer-complete . 45
minibuffer-complete-word 46
mode, auto-image-file . 147
mode25 . 453
mode4350 . 453
modify-face . 384
morse-region . 375
mouse-avoidance-mode . 174
mouse-buffer-menu . 156
mouse-choose-completion 46
mouse-save-then-click . 163
mouse-secondary-save-then-kill 165
mouse-set-point . 163
mouse-set-region . 163
mouse-set-secondary . 165
mouse-start-secondary . 165
mouse-wheel-mode . 172
mouse-yank-at-click . 163
mouse-yank-secondary . 165
move-to-window-line . 34
mpuz . 374
msb-mode . 156
msdos-set-mouse-buttons 452

N
name-last-kbd-macro . 392
narrow-to-defun . 366
narrow-to-page . 366
narrow-to-region . 366
negative-argument . 41
newline . 34
newline-and-indent . 228
next-completion . 46
next-error . 257
next-history-element . 48
next-line . 34
next-matching-history-element 48
normal-erase-is-backspace-mode 68, 411
normal-mode . 194
not-modified . 114
nroff-mode . 217
number-to-register . 77

O
occur . 103
open-dribble-file . 417
open-line . 38
open-rectangle . 74
open-termscript . 417
other-frame . 168
other-window . 159
outline-backward-same-level 210
outline-forward-same-level 210
outline-minor-mode . 208

508 GNU Emacs Manual

outline-mode . 208
outline-next-visible-heading 210
outline-previous-visible-heading 210
outline-up-heading . 210
overwrite-mode . 378

P
paragraph-indent-minor-mode 208
paragraph-indent-text-mode 208
partial-completion-mode 47
pc-bindings-mode . 370
pc-selection-mode . 370
pdb . 259
perldb . 258
phases-of-moon . 337
picture-backward-clear-column 289
picture-backward-column 289
picture-clear-column . 289
picture-clear-line . 289
picture-clear-rectangle 291
picture-clear-rectangle-to-register 291
picture-forward-column 289
picture-motion . 290
picture-motion-reverse 290
picture-move-down . 289
picture-move-up . 289
picture-movement-down . 290
picture-movement-left . 290
picture-movement-ne . 290
picture-movement-nw . 290
picture-movement-right 290
picture-movement-se . 290
picture-movement-sw . 290
picture-movement-up . 290
picture-newline . 289
picture-open-line . 290
picture-set-tab-stops . 291
picture-tab . 291
picture-tab-search . 290
picture-yank-rectangle 291
picture-yank-rectangle-from-register 291
plain-tex-mode . 213
point-to-register . 75
pong . 375
pop-global-mark . 65
pop-tag-mark . 274
posix-file-name-to-mac 449
prefer-coding-system . 183
prepend-to-buffer . 72
prepend-to-register . 76
previous-completion . 46
previous-history-element 48
previous-line . 34
previous-matching-history-element 48
print-buffer . 362

print-buffer (MS-DOS) . 457
print-region . 362
print-region (MS-DOS) . 457
ps-print-buffer . 363
ps-print-buffer (MS-DOS) 457
ps-print-buffer-with-faces 363
ps-print-region . 363
ps-print-region-with-faces 363
ps-spool-buffer . 363
ps-spool-buffer (MS-DOS) 457
ps-spool-buffer-with-faces 363
ps-spool-region . 363
ps-spool-region-with-faces 363
pwd . 109

Q
quail-set-keyboard-layout 181
query-replace . 102
query-replace-regexp . 102
quietly-read-abbrev-file 286
quoted-insert . 33

R
re-search-backward . 95
re-search-forward . 95
read-abbrev-file . 286
recenter . 85
recentf-edit-list . 147
recentf-mode . 147
recentf-save-list . 147
recompile . 256
recover-file . 121
recover-session . 121
redraw-calendar . 334
remove-untranslated-filesystem 455
rename-buffer . 151
rename-file . 144
repeat . 42
repeat-complex-command . 49
replace-regexp . 101
replace-string . 101
report-emacs-bug . 416
reposition-window . 85
revert-buffer . 119
revert-buffer (Dired) . 329
rmail . 303
rmail-add-label . 309
rmail-beginning-of-message 304
rmail-bury . 303
rmail-continue . 312
rmail-delete-backward . 305
rmail-delete-forward . 305
rmail-edit-current-message 316

Command and Function Index 509

rmail-expunge . 305
rmail-expunge-and-save 303
rmail-first-message . 305
rmail-forward . 311
rmail-get-new-mail . 307
rmail-input . 307
rmail-kill-label . 309
rmail-last-message . 305
rmail-mail . 312
rmail-mode . 303
rmail-next-labeled-message 309
rmail-next-message . 304
rmail-next-undeleted-message 304
rmail-output . 308
rmail-output-body-to-file 308
rmail-output-to-rmail-file 308
rmail-previous-labeled-message 309
rmail-previous-message 304
rmail-previous-undeleted-message 304
rmail-quit . 303
rmail-redecode-body . 316
rmail-reply . 311
rmail-resend . 311
rmail-retry-failure . 311
rmail-search . 304
rmail-show-message . 305
rmail-summary . 313
rmail-summary-by-labels 313
rmail-summary-by-recipients 313
rmail-summary-by-regexp 313
rmail-summary-by-topic 313
rmail-summary-quit . 314
rmail-summary-wipe . 314
rmail-toggle-header . 315
rmail-undelete-previous-message 305
rot13-other-window . 317
run-lisp . 265

S
save-buffer . 113
save-buffers-kill-emacs 32
save-some-buffers . 113
scroll-all-mode . 370
scroll-bar-mode . 172
scroll-calendar-left . 333
scroll-calendar-left-three-months 333
scroll-calendar-right . 333
scroll-calendar-right-three-months 333
scroll-down . 85
scroll-left . 86
scroll-other-window . 159
scroll-right . 86
scroll-up . 85
sdb . 258
search-backward . 94

search-forward . 94
select-frame-by-name . 174
self-insert . 34
send-invisible . 355
server-edit . 360
set-background-color . 170
set-border-color . 170
set-buffer-file-coding-system 186
set-buffer-process-coding-system 187
set-cursor-color . 170
set-face-background . 79
set-face-foreground . 79
set-fill-column . 204
set-fill-prefix . 205
set-foreground-color . 170
set-frame-font . 171
set-frame-name . 174
set-goal-column . 35
set-input-method . 180
set-justification-center 223
set-justification-full 223
set-justification-left 223
set-justification-none 223
set-justification-right 223
set-keyboard-coding-system 187
set-language-environment 177
set-locale-environment 177
set-mark-command . 61
set-mouse-color . 170
set-next-selection-coding-system 187
set-rmail-inbox-list . 307
set-selection-coding-system 187
set-selective-display . 87
set-terminal-coding-system 186
set-variable . 380
set-visited-file-name . 114
setenv . 426
setq-default . 388
shell . 352
shell-backward-command 354
shell-command . 351
shell-command-on-region 352
shell-forward-command . 354
shell-pushd-dextract . 358
shell-pushd-dunique . 358
shell-pushd-tohome . 358
show-all . 211
show-all-diary-entries 342
show-branches . 211
show-children . 211
show-entry . 211
show-paren-mode . 234
show-subtree . 211
shrink-window-if-larger-than-buffer 161
slitex-mode . 213
smerge-mode . 143

510 GNU Emacs Manual

snake . 375
solitaire . 375
sort-columns . 365
sort-fields . 364
sort-lines . 364
sort-numeric-fields . 364
sort-pages . 364
sort-paragraphs . 364
split-line . 195
split-window-horizontally 158
split-window-vertically 158
spook . 300
standard-display-8bit . 190
start-kbd-macro . 391
string-insert-rectangle 74
string-rectangle . 74
studlify-region . 375
substitute-in-file-name 110
substitute-key-definition 406
sunrise-sunset . 336
suspend-emacs . 32
switch-to-buffer . 149
switch-to-buffer-other-frame 150
switch-to-buffer-other-window 149
switch-to-completions . 46

T
tab-to-tab-stop . 196
tabify . 197
tags-apropos . 276
tags-loop-continue . 275
tags-query-replace . 275
tags-search . 275
term . 358
term-char-mode . 359
term-line-mode . 359
term-pager-toggle . 359
tetris . 375
tex-bibtex-file . 217
tex-buffer . 216
tex-close-latex-block . 215
tex-file . 217
tex-insert-braces . 214
tex-insert-quote . 214
tex-kill-job . 216
tex-latex-block . 215
tex-mode . 213
tex-print . 216
tex-recenter-output-buffer 216
tex-region . 216
tex-show-print-queue . 216
tex-terminate-paragraph 214
tex-validate-region . 214
tex-view . 216
text-mode . 208

time-stamp . 119
timeclock-in . 348
timeclock-modeline-display 348
timeclock-out . 348
timeclock-reread-log . 348
timeclock-when-to-leave 348
timeclock-workday-remaining 348
tmm-menubar . 25
toggle-debug-on-error . 418
toggle-enable-multibyte-characters 176
toggle-input-method . 180
toggle-save-place . 369
toggle-scroll-bar . 172
toggle-truncate-lines . 39
tooltip-mode . 173
top-level . 410
tpu-edt-on . 371
transient-mark-mode . 62
transpose-chars . 105
transpose-lines . 106
transpose-sexps . 233
transpose-words . 106
tty-suppress-bold-inverse-default-colors

. 90
turn-on-font-lock . 81

U
undigestify-rmail-message 317
undo . 36
unexpand-abbrev . 285
unforward-rmail-message 311
unhighlight-regexp . 83
universal-argument . 41
universal-coding-system-argument 186
unmorse-region . 375
unrmail . 317
untabify . 197
up-list . 214
upcase-region . 208
upcase-word . 207

V
vc-annotate . 127
vc-cancel-version . 128
vc-create-snapshot . 136
vc-diff . 127
vc-directory . 129
vc-dired-mark-locked . 130
vc-dired-toggle-terse-mode 130
vc-insert-headers . 138
vc-merge . 132
vc-next-action . 124
vc-print-log . 128
vc-register . 128

Command and Function Index 511

vc-rename-file . 138
vc-retrieve-snapshot . 136
vc-revert-buffer . 128
vc-switch-backend . 135
vc-toggle-read-only . 124
vc-update-change-log . 137
vc-version-other-window 127
vi-mode . 371
view-buffer . 151
view-diary-entries . 342
view-emacs-FAQ . 60
view-emacs-news . 60
view-emacs-problems . 60
view-file . 143
view-hello-file . 175
view-lossage . 59
view-register . 75
vip-mode . 371
viper-mode . 371
visit-tags-table . 273

W
what-cursor-position . 40
what-line . 40
what-page . 40
where-is . 56
which-function-mode . 228
widen . 366
widget-backward . 383

widget-complete . 382
widget-forward . 383
windmove-default-keybindings 162
windmove-right . 162
window-configuration-to-register 76
winner-mode . 161
woman . 238
woman-find-file . 239
word-search-backward . 95
word-search-forward . 95
wordstar-mode . 371
write-abbrev-file . 286
write-file . 114
write-region . 143

X
xdb . 258

Y
yank . 70
yank-pop . 71
yank-rectangle . 74
yow . 374

Z
zap-to-char . 69
zone . 375

512 GNU Emacs Manual

Variable Index 513

Variable Index

A
abbrev-all-caps . 284

abbrev-file-name . 286

abbrev-mode . 283

adaptive-fill-first-line-regexp 207

adaptive-fill-function 207

adaptive-fill-mode . 207

adaptive-fill-regexp . 207

add-log-keep-changes-together 268

ange-ftp-default-user . 145

ange-ftp-gateway-host . 146

ange-ftp-generate-anonymous-password 145

ange-ftp-make-backup-files 145

ange-ftp-smart-gateway 146

appt-display-diary . 347

appt-issue-message . 347

apropos-do-all . 57

auto-coding-alist . 184

auto-coding-regexp-alist 184

auto-compression-mode . 144

auto-mode-alist . 193

auto-revert-interval . 120

auto-save-default . 121

auto-save-interval . 121

auto-save-list-file-prefix 122

auto-save-timeout . 121

auto-save-visited-file-name 120

automatic-hscrolling . 86

B
backup-by-copying . 117

backup-by-copying-when-linked 117

backup-by-copying-when-mismatch 117

backup-by-copying-when-privileged-mismatch

. 117

backup-directory-alist 115

backup-enable-predicate 115

baud-rate . 89

bdf-directory-list . 364

blink-matching-delay . 234

blink-matching-paren . 234

blink-matching-paren-distance 234

bookmark-save-flag . 78

bookmark-search-size . 78

browse-url-browser-function 372

buffer-file-coding-system 184

buffer-read-only . 151

C
c-comment-only-line-offset 246
c-comment-start-regexp 246
c-default-style . 232
c-hanging-comment-ender-p 246
c-hanging-comment-starter-p 246
c-hungry-delete-key . 245
c-mode-hook . 225
c-mode-map . 395
calendar-daylight-savings-ends 347
calendar-daylight-savings-ends-time 348
calendar-daylight-savings-starts 347
calendar-daylight-time-offset 348
calendar-daylight-time-zone-name 336
calendar-latitude . 336
calendar-location-name 336
calendar-longitude . 336
calendar-standard-time-zone-name 336
calendar-time-zone . 336
calendar-week-start-day 332
case-fold-search . 100
case-replace . 101
change-log-version-info-enabled 268
change-log-version-number-regexp-list . . . 268
change-major-mode-with-file-name 194
coding . 184
colon-double-space . 205
comint-completion-addsuffix 358
comint-completion-autolist 358
comint-completion-fignore 353
comint-completion-recexact 358
comint-input-autoexpand 357
comint-input-ignoredups 358
comint-prompt-regexp . 357
comint-scroll-show-maximum-output 358
comint-scroll-to-bottom-on-input 358
comint-scroll-to-bottom-on-output 358
comint-use-prompt-regexp-instead-of-fields

. 357
command-history . 49
command-line-args . 424
comment-column . 237
comment-end . 237
comment-indent-function 237
comment-line-start . 250
comment-line-start-skip 250
comment-multi-line . 237
comment-padding . 237
comment-start . 237
comment-start-skip . 237
compare-ignore-case . 143
compilation-error-regexp-alist 257

514 GNU Emacs Manual

compilation-scroll-output 256
compile-command . 255
completion-auto-help . 47
completion-ignored-extensions 47
confirm-kill-emacs . 32
crisp-override-meta-x . 370
ctl-arrow . 89
ctl-x-4-map . 395
ctl-x-map . 394
current-input-method . 180
current-language-environment 177
cursor-in-non-selected-windows 90
custom-buffer-done-function 384

D
dabbrev-abbrev-char-regexp 288
dabbrev-abbrev-skip-leading-regexp 288
dabbrev-case-fold-search 288
dabbrev-case-replace . 288
dabbrev-check-all-buffers 287
dabbrev-ignored-buffer-regexps 287
dabbrev-limit . 287
dbx-mode-hook . 261
default-buffer-file-coding-system 186
default-directory . 109
default-enable-multibyte-characters 176
default-indicate-empty-lines 84
default-input-method . 180
default-justification . 223
default-major-mode . 194
delete-auto-save-files 120
delete-old-versions . 116
desktop-enable . 368
desktop-files-not-to-save 369
diary-file . 343
diary-hook . 346
diary-mail-days . 343
diff-switches . 142
dired-chown-program . 324
dired-copy-preserve-time 324
dired-dwim-target . 324
dired-garbage-files-regexp 320
dired-kept-versions . 321
dired-listing-switches 319
dired-listing-switches (MS-DOS) 461
dired-recursive-copies 324
dired-recursive-deletes 320
display-buffer-reuse-frames 150
display-time-24hr-format 88
display-time-mail-face . 88
display-time-use-mail-icon 88
dos-codepage . 458
dos-display-scancodes . 452
dos-hyper-key . 451
dos-keypad-mode . 451

dos-printer . 458
dos-ps-printer . 458
dos-super-key . 451
dos-unsupported-character-glyph 459
double-click-fuzz . 401
double-click-time . 401

E
echo-keystrokes . 89
emacs-lisp-mode-hook . 225
emerge-combine-versions-template 280
emerge-startup-hook . 281
enable-multibyte-characters 176
enable-recursive-minibuffers 44
enriched-fill-after-visiting 219
enriched-translations . 219
eol-mnemonic-dos . 24
eol-mnemonic-mac . 24
eol-mnemonic-undecided . 24
eol-mnemonic-unix . 24
esc-map . 395
european-calendar-style 344
eval-expression-debug-on-error 264
eval-expression-print-length 264
eval-expression-print-level 264
even-window-heights . 149
exit-language-environment-hook 178
explicit-shell-file-name 353

F
ff-related-file-alist . 246
file-coding-system-alist 183
file-name-buffer-file-type-alist 455
file-name-coding-system 187
file-name-handler-alist 146
fill-column . 204
fill-prefix . 206
find-file-existing-other-name 122
find-file-hooks . 112
find-file-not-found-hooks 112
find-file-run-dired . 111
find-file-suppress-same-file-warnings . . . 122
find-file-visit-truename 122
find-file-wildcards . 112
find-ls-option . 330
find-tag-marker-ring-length 274
foldout-mouse-modifiers 213
font-lock-beginning-of-syntax-function . . . 82
font-lock-maximum-decoration 82
font-lock-maximum-size . 82
fortran-analyze-depth . 248
fortran-break-before-delimiters 251
fortran-check-all-num... 249
fortran-column-ruler-fixed 252

Variable Index 515

fortran-column-ruler-tabs 252
fortran-comment-indent-char 250
fortran-comment-indent-style 250
fortran-comment-line-extra-indent 250
fortran-comment-region 251
fortran-continuation-indent 249
fortran-continuation-string 248
fortran-do-indent . 249
fortran-electric-line-number 248
fortran-if-indent . 249
fortran-line-number-indent 248
fortran-minimum-statement-indent... 249
fortran-structure-indent 249
fortran-tab-mode-default 248

G
gdb-mode-hook . 261
global-font-lock-mode . 81
grep-regexp-alist . 257
gud-xdb-directories . 258

H
help-map . 394
hi-lock-exclude-modes . 83
highlight-nonselected-windows 63
highlight-wrong-size-font 188
history-length . 48
hourglass-delay . 90
hs-hide-comments-when-hiding-all 240
hs-isearch-open . 240
hs-special-modes-alist 240

I
image-file-name-extensions 147
image-file-name-regexps 147
imenu-auto-rescan . 227
imenu-sort-function . 227
indent-tabs-mode . 197
indent-tabs-mode (Fortran mode) 248
indicate-empty-lines . 84
inferior-lisp-program . 265
inhibit-eol-conversion 184
inhibit-iso-escape-detection 184
initial-major-mode . 31
input-method-highlight-flag 180
input-method-verbose-flag 180
insert-default-directory 109
interpreter-mode-alist 194
inverse-video . 89
isearch-lazy-highlight . 93
isearch-lazy-highlight-face 93
isearch-mode-map . 93

ispell-complete-word-dict 108

ispell-dictionary . 108

J

jdb-mode-hook . 261

K

kept-new-versions . 116

kept-old-versions . 116

keyboard-coding-system 187

kill-buffer-hook . 152

kill-read-only-ok . 67

kill-ring . 72

kill-ring-max . 72

kill-whole-line . 69

L

latex-block-names . 215

latex-mode-hook . 217

latex-run-command . 216

latin1-display . 190

line-number-display-limit 87

line-number-display-limit-width 87

lisp-body-indent . 230

lisp-indent-offset . 230

lisp-interaction-mode-hook 225

lisp-mode-hook . 225

lisp-mode-map . 395

list-directory-brief-switches 142

list-directory-verbose-switches 142

load-dangerous-libraries 263

load-path . 263

locale-charset-language-names 177

locale-coding-system . 187

locale-language-names . 177

locale-preferred-coding-systems 178

locate-command . 330

lpr-add-switches . 362

lpr-command (MS-DOS) . 457

lpr-commands . 362

lpr-headers-switches . 362

lpr-headers-switches (MS-DOS) 457

lpr-switches . 362

lpr-switches (MS-DOS) . 457

516 GNU Emacs Manual

M
mac-command-key-is-meta 447

mac-keyboard-text-encoding 447

mail-abbrevs . 296

mail-aliases . 296

mail-archive-file-name 294

mail-default-headers . 295

mail-default-reply-to . 295

mail-from-style . 295

mail-mode-hook . 300

mail-personal-alias-file 296

mail-self-blind . 294

mail-setup-hook . 300

mail-signature . 299

mail-user-agent . 300

mail-yank-prefix . 299

make-backup-file-name-function 115

make-backup-files . 114

Man-fontify-manpage-flag 238

Man-switches . 238

mark-even-if-inactive . 63

mark-ring . 65

mark-ring-max . 65

max-mini-window-height . 44

message-log-max . 22

midnight-hook . 152

midnight-mode . 152

minibuffer-local-completion-map 396

minibuffer-local-map . 396

minibuffer-local-must-match-map 396

minibuffer-local-ns-map 396

mode-line-inverse-video 89

mode-specific-map . 395

mouse-avoidance-mode . 173

mouse-scroll-min-lines 163

mouse-wheel-follow-mouse 172

mouse-wheel-scroll-amount 172

mouse-yank-at-point . 164

N
next-line-add-newlines . 35

next-screen-context-lines 85

no-redraw-on-reenter . 89

normal-erase-is-backspace 411

nroff-mode-hook . 218

O
outline-level . 210

outline-minor-mode-prefix 208

outline-mode-hook . 209

outline-regexp . 210

P
page-delimiter . 203
paragraph-separate . 202
paragraph-start . 202
partial-completion-mode 47
PC-disable-includes . 47
PC-include-file-path . 47
pdb-mode-hook . 261
perldb-mode-hook . 261
picture-mode-hook . 289
picture-tab-chars . 290
plain-tex-mode-hook . 217
print-region-function (MS-DOS) 457
printer-name . 362
printer-name (MS-DOS) . 456
ps-font-family . 363
ps-font-info-database . 363
ps-font-size . 363
ps-landscape-mode . 363
ps-lpr-command . 363
ps-lpr-command (MS-DOS) 457
ps-lpr-switches . 363
ps-lpr-switches (MS-DOS) 457
ps-multibyte-buffer . 364
ps-number-of-columns . 363
ps-page-dimensions-database 363
ps-paper-type . 363
ps-print-color-p . 363
ps-print-header . 363
ps-printer-name . 363
ps-printer-name (MS-DOS) 457
ps-use-face-background 363

R
read-quoted-char-radix . 34
recentf-mode . 147
require-final-newline . 114
resize-mini-windows . 44
revert-without-query . 119
rmail-decode-mime-charset 185
rmail-delete-after-output 308
rmail-delete-message-hook 305
rmail-dont-reply-to-names 311
rmail-edit-mode-hook . 316
rmail-file-coding-system 185
rmail-file-name . 303
rmail-highlighted-headers 315
rmail-ignored-headers . 315
rmail-mail-new-frame . 312
rmail-mode-hook . 303
rmail-movemail-flags . 318
rmail-output-file-alist 308
rmail-pop-password . 318
rmail-pop-password-required 318

Variable Index 517

rmail-preserve-inbox . 317
rmail-primary-inbox-list 306
rmail-redisplay-summary 314
rmail-retry-ignored-headers 311
rmail-secondary-file-directory 307
rmail-secondary-file-regexp 307
rmail-summary-line-count-flag 313
rmail-summary-window-size 313

S
same-window-buffer-names 160
same-window-regexps . 160
save-abbrevs . 286
save-place . 369
scheme-mode-hook . 225
scroll-all-mode . 162
scroll-bar-mode . 172
scroll-bar-width . 172
scroll-conservatively . 85
scroll-down-aggressively 85
scroll-margin . 86
scroll-preserve-screen-position 85
scroll-up-aggressively . 85
sdb-mode-hook . 261
search-slow-speed . 94
search-slow-window-lines 94
selective-display-ellipses 87
sendmail-coding-system 185
sentence-end . 201
sentence-end-double-space 205
sentence-end-without-period 205
server-kill-new-buffers 360
server-temp-file-regexp 360
server-window . 360
set-language-environment-hook 178
shell-cd-regexp . 357
shell-command-default-error-buffer 352
shell-command-regexp . 354
shell-completion-execonly 358
shell-completion-fignore 353
shell-file-name . 352
shell-input-ring-file-name 356
shell-popd-regexp . 357
shell-prompt-pattern . 357
shell-pushd-regexp . 357
show-trailing-whitespace 84
slitex-mode-hook . 217
slitex-run-command . 216
small-temporary-file-directory 115
sort-fold-case . 366
sort-numeric-base . 364
special-display-buffer-names 169
special-display-frame-alist 170
special-display-regexps 170
split-window-keep-point 158

standard-fontset-spec . 188

standard-indent . 222

suggest-key-bindings . 51

T

tab-stop-list . 196

tab-width . 89

tags-apropos-additional-actions 276

tags-apropos-verbose . 276

tags-case-fold-search . 275

tags-file-name . 273

tags-table-list . 273

tags-tag-face . 276

temporary-file-directory 115

term-file-prefix . 407

term-setup-hook . 407

tex-bibtex-command . 217

tex-default-mode . 213

tex-directory . 216

tex-dvi-print-command . 216

tex-dvi-view-command . 216

tex-main-file . 217

tex-mode-hook . 217

tex-run-command . 216

tex-shell-hook . 217

tex-show-queue-command 216

tex-start-options-string 217

text-mode-hook . 208

timeclock-ask-before-exiting 348

timeclock-file . 348

timeclock-modeline-display 348

track-eol . 35

truncate-lines . 39

truncate-partial-width-windows 158

U

undo-limit . 37

undo-strong-limit . 37

unibyte-display-via-language-environment

. 190

uniquify-buffer-name-style 155

use-dialog-box . 173

user-mail-address . 405

518 GNU Emacs Manual

V
vc-command-messages . 140

vc-comment-alist . 139

vc-consult-headers . 140

vc-cvs-stay-local . 141

vc-default-init-version 128

vc-diff-switches . 127

vc-directory-exclusion-list 130

vc-dired-recurse . 129

vc-dired-terse-display 129

vc-follow-symlinks . 140

vc-handled-backends . 139

vc-header-alist . 139

vc-initial-comment . 128

vc-keep-workfiles . 140

vc-log-mode-hook . 126

vc-make-backup-files 114, 140

vc-mistrust-permissions 141

vc-path . 140

vc-rcs-diff-switches . 127

vc-static-header-alist 139
vc-suppress-confirm . 140
version-control . 115
visible-bell . 89

W
w32-pass-alt-to-system 462
which-func-modes . 228
window-min-height . 161
window-min-width . 161
woman-dired-keys . 239
woman-manpath . 239
woman-path . 239

X
x-cut-buffer-max . 165
x-select-enable-clipboard 166
x-stretch-cursor . 90
xdb-mode-hook . 261

Concept Index 519

Concept Index

(
(in leftmost column . 226

*
‘*Messages*’ buffer . 22

-
–/—/.-./.../. 375

.
‘.mailrc’ file . 296
‘.timelog’ file . 348
‘.Xdefaults’ file, and MS-Windows 435

/
// in file name . 44

?
‘?’ in display . 175

‘
“PC” key bindings . 370

8
8-bit character codes . 34
8-bit display . 190
8-bit input . 191

A
A and B buffers (Emerge) 277
Abbrev mode . 283
abbrevs . 283
abnormal hook . 386
aborting recursive edit . 410
accented characters . 190
accessible portion . 366
accumulating scattered text 72
action options (command line) 423
active fields (customization buffer) 381
adaptive filling . 206
againformation . 374
aggressive scrolling . 85
alarm clock . 347

ange-ftp . 145
anonymous FTP . 145
appending kills in the ring . 70
appointment notification . 346
apropos . 56
arc . 145
Archive mode . 145
arguments (command line) 423
arguments to commands . 41
arrow keys . 34
ASCII . 27
Asm mode . 253
assembler mode . 253
astronomical day numbers 338
attribute (Rmail) . 309
attributes of mode line, changing 88
Auto Compression mode . 144
Auto Fill mode . 203
Auto Save mode . 120
Auto-Lower mode . 170
Auto-Raise mode . 170
Auto-Revert mode . 120
autoload . 263
autoload Lisp libraries . 406
automatic version backups 133
available colors . 432
avoiding mouse in the way of your typing 173
Awk mode . 225

B
b2m . 317
Babyl format to Inbox format 317
back end (version control) 123
background color, command-line argument 432
background mode, on xterm 428
〈BACKSPACE〉 vs 〈DEL〉 . 410
backtrace for bug reports . 419
backup file . 114
backup file names on MS-DOS 454
backup, and user-id . 117
backups for remote files . 145
balanced expression . 232
balloon help . 60, 173
base buffer . 154
batch mode . 425
binary files, on MS-DOS/MS-Windows 455
binding . 29
blank lines . 38
blank lines in programs . 236
body lines (Outline mode) 209
bold font . 384

520 GNU Emacs Manual

bookmarks . 77
border color, command-line argument 432
border width, command-line argument 434
borders (X Window System) 433
boredom . 374
box-drawing characters (MS-DOS) 459
brace in column zero and fontification 82
braces, moving across . 234
branch (version control) . 130
Brief emulation . 370
Browse-URL . 372
buffer definitions index . 227
buffer list, customizable . 156
buffer menu . 152, 156
buffer size, maximum . 149
buffers . 149
buggestion . 374
bugs . 414
building programs . 255
button down events . 400
bypassing init and site-start file 425
byte code . 263
byte-compiling several files (in Dired) 325

C
C editing . 225, 267
C mode . 242
C- . 27
C++ class browser, tags . 268
C++ mode . 242
cache of file names . 146
calendar . 331
calendar and LaTEX . 334
calendar, first day of week 332
call Lisp functions, command-line argument . . . 424
capitalizing words . 207
case conversion . 207
case-sensitivity and tags search 275
categories of characters . 99
Celtic . 175
centering . 204
change buffers . 149
change log . 267
Change Log mode . 268
changes, undoing . 36
changing file group (in Dired) 324
changing file owner (in Dired) 324
changing file permissions (in Dired) 324
character set (keyboard) . 27
character set of character at point 41
characters (in text) . 30, 88
characters which belong to a specific language . . 99
checking out files . 123
checking spelling . 106
Chinese . 175

Chinese calendar . 338
choosing a major mode . 193
ciphers . 374
citing mail . 298
class browser, C++ . 268
click events . 400
clipboard . 166
clipboard support (Mac OS) 447
codepage, MS-DOS . 458
coding systems . 181
collision . 117
color emulation on black-and-white printers . . . 363
color of window . 432
colors . 170
Column Number mode . 88
columns (and rectangles) . 73
columns (indentation) . 195
columns, splitting . 367
Comint mode . 355
comint-highlight-input face 352
comint-highlight-prompt face 352
command . 29
command history . 49
command line arguments . 423
comments . 235
comments on customized options 383
compare files (in Dired) . 327
comparing 3 files (diff3) . 143
comparing files . 142
compilation buffer, keeping current position at the

end . 256
compilation errors . 255
Compilation mode . 256
compilation under MS-DOS 460
complete key . 28
completion . 45
completion (Lisp symbols) 241
completion (symbol names) 241
compose character . 191
compressing files (in Dired) 325
compression . 144
conflicts . 132
connecting to remote host 359
continuation line . 39
Control . 27
control characters . 27
Control-Meta . 233
converting change log date style. 268
converting Rmail file to mailbox format 317
converting text to upper or lower case 207
Coptic calendar . 338
copy of every outgoing message 294
copying files . 144
copying files (in Dired) . 324
copying text . 70
CORBA IDL mode . 242

Concept Index 521

correcting spelling . 106
CPerl mode . 225
crashes. 120
creating files . 111
creating frames . 167
CRiSP mode . 370
cryptanalysis . 374
current buffer . 149
current function name in mode line 228
cursor. 21
cursor color, command-line argument 432
cursor in non-selected windows 90
cursor location . 40
cursor location, on MS-DOS 454
cursor motion . 34
cursor shape on MS-DOS . 452
cursor, blinking . 90
cursor, locating visually . 90
customization . 377
customization buffer . 380
customization groups . 380
customized options, saving 383
customizing faces . 384
customizing Lisp indentation 230
cut and paste . 475
cut buffer . 165
cutting and X . 165
cutting text . 67
cvs . 129
CVS . 123
CVS Dired Mode . 129
cvs watch feature . 141
CVSREAD environment variable (CVS) 141
CWarn mode . 245
Cyrillic . 175
Czech . 175

D
day of year . 334
daylight savings time . 347
DBX . 258
dead character . 191
debuggers . 258
debugging Emacs, tricks and techniques 419
debugging X problems . 437
decoding mail messages (Rmail) 315
decoding non-ASCII keyboard input on X 187
default argument . 43
default-frame-alist . 168
‘default.el’ file, not loading 425
‘default.el’, the default init file 404
defining keyboard macros 390
definitions, finding in Lisp sources 373
defuns . 226
〈DEL〉 vs 〈BACKSPACE〉 . 410

Delete Selection mode . 67

deleting auto-save files . 320

deleting blank lines . 38

deleting characters and lines 36

deleting files (in Dired) . 319

deleting some backup files 320

deletion . 67

deletion (of files) . 143

deletion (Rmail) . 305

Delphi mode . 225

desktop . 368

Devanagari . 175

developediment . 374

device for Emacs terminal I/O 424

dialog boxes . 173

diary . 341

diary file . 343

Diff mode . 143

diffs . 143

digest message . 317

directional window selection 162

directories in buffer names 155

directory header lines . 328

directory listing . 142

directory listing on MS-DOS 461

directory tracking . 357

Dired . 319

Dired sorting . 329

disable window system . 424

disabled command . 402

disabling remote files . 146

DISPLAY environment variable 430

display for Emacs frame . 424

display name (X Window System) 430

display of line number . 87

doctor . 414

DOS codepages . 458

DOS-style end-of-line display 184

DOS-to-Unix conversion of files 455

double clicks . 400

double slash in file name . 44

down events . 400

downcase file names . 326

drag events . 400

drastic changes . 119

dribble file . 417

DSSSL mode . 225

Dutch . 175

522 GNU Emacs Manual

E
Ebrowse . 268
echo area . 22
Edebug . 418
editable fields (customization buffer) 381
editing binary files . 368
editing in Picture mode . 289
editing level, recursive . 369
EDITOR environment variable 360
EDT . 370
Eldoc mode . 240
Eliza. 414
Emacs as a server . 360
EMACS environment variable 353
Emacs icon, a gnu . 434
Emacs initialization file . 403
Emacs-Lisp mode . 263
emacs.bash . 361
emacsclient . 360
Emerge . 276
empty lines . 84
emulating other editors . 370
emulation of Brief . 370
encoding of characters . 175
end-of-line conversion . 182
end-of-line conversion on MS-DOS/MS-Windows

. 454
end-of-line conversion, mode-line indication 24
Enriched mode . 218
entering Emacs . 31
environment variables . 426
environment variables (Mac OS) 448
environment variables for subshells 353
environment variables in file names 110
environment variables, and non-ASCII characters

. 176
erasing characters and lines 36
error log . 255
error message in the echo area 22
errors in init file . 425
〈ESC〉 replacing 〈META〉 key 27
escape sequences in files . 184
ESHELL environment variable 353
etags program . 270
Ethiopic . 175
Ethiopic calendar . 338
Euro sign . 177
European character sets . 190
evaluate expression, command-line argument . . 424
exiting . 31
exiting recursive edit . 369
expanding subdirectories in Dired 327
expansion (of abbrevs) . 283
expansion of C macros . 245
expansion of environment variables 110

expression . 232
expunging (Dired) . 320
expunging (Rmail) . 305

F
face colors, setting . 79
faces . 79
faces for highlighting search matches 93
faces under MS-DOS . 452
failed merges . 143
FFAP minor mode . 373
file archives . 144
file comparison (in Dired) 327
file database (locate) . 330
file dates . 117
file directory . 142
file local variables . 388
file management . 319
file name caching . 146
file names . 109
file names (Mac OS) . 448
file names under MS-DOS 453
file names under Windows 95/NT 454
file names with non-ASCII characters 187
file ownership, and backup 117
file selection dialog . 111
file shadows . 118
file truenames . 122
file version in change log entries 268
files . 109
files, visiting and saving . 110
fill prefix . 205
filling text . 203
find . 146
find and Dired . 330
finding file at point . 372
finding files containing regexp matches (in Dired)

. 323
finding strings within text . 91
firewall, and accessing remote files 146
fixing incorrectly decoded mail messages 316
flagging files (in Dired) . 319
flagging many files for deletion (in Dired) 320
flow control . 412
Flyspell mode . 107
folding editing . 212
Follow mode. 87
font (default) . 168
font (principal) . 171
font for menus . 437
Font Lock mode . 81
font name (X Window System) 430
font names (Mac OS) . 449
font of character at point . 41
fonts and faces . 384

Concept Index 523

fonts for PostScript printing 364
fonts for various scripts . 177
fonts, emulating under MS-DOS 452
fontsets . 188
foreground color, command-line argument 432
formatted text . 218
formfeed . 202
Fortran continuation lines 248
Fortran mode . 246
Fortran77 and Fortran90 . 247
fortune cookies . 300
forwarding a message . 311
frame size under MS-DOS 453
frame title, command-line argument 434
frames . 163
frames on MS-DOS . 453
French Revolutionary calendar 338
fringe . 80
FTP . 145
function definition . 29
function key . 393
function, move to beginning or end 227

G
gamma correction . 437
gateway, and remote file access with ange-ftp

. 146
GDB . 258
geometry of Emacs window 433
German . 175
getting help with keys . 38
Glasses mode . 241
Global Auto-Revert mode 120
global keymap . 393
global mark ring . 65
global substitution . 100
Gnome. 166
Gnus . 349
Go Moku . 374
Goto-address . 372
graphic characters . 33
Greek . 175
Gregorian calendar . 337
growing minibuffer . 44
GUD library . 258
gzip . 144

H
handwriting . 363
hard links (creation) . 144
hard links (in Dired) . 324
hard newline . 219
hardcopy . 361

head version . 131
header (TEX mode) . 216
header line (Dired) . 328
headers (of mail message) 294
heading lines (Outline mode) 209
Hebrew . 175
Hebrew calendar . 338
height of minibuffer . 44
help . 53
hex editing . 368
Hexl mode . 368
Hide-ifdef mode . 246
hiding in Dired (Dired) . 328
highlight current line . 90
highlighting by matching . 83
highlighting lines of text . 83
highlighting matching parentheses 234
highlighting region . 62
Hindi . 175
history of commands . 49
history of minibuffer input . 47
history reference . 357
holidays . 335
home directory shorthand 110
HOME directory under MS-DOS 454
hook . 386
horizontal scrolling . 86
hourglass pointer display . 90
Hyper (under MS-DOS) . 451
hyperlinking . 371

I
IBM graphics characters (MS-DOS) 459
Icomplete mode . 47
Icon mode . 225
icons (X Window System) 434
icons, tool bar . 173
identifiers, making long ones readable 241
IDL mode . 242
ignored file names, in completion 47
ignoriginal . 374
images, visiting . 147
in-situ subdirectory (Dired). 327
inbox file . 306
incorrect fontification . 82
incremental search . 91
incremental search, input method interference

. 179
indentation . 195
indentation for comments 235
indentation for programs . 228
index of buffer definitions 227
indirect buffer . 154
indirect buffers and outlines 212
inferior process . 255

524 GNU Emacs Manual

inferior processes under MS-DOS 460

Info . 59

Info index completion . 241

init file . 403

init file, and non-ASCII characters 176

init file, default name under MS-DOS 453

init file, not loading . 425

initial options (command line) 423

initial version number to register 128

initial-frame-alist . 168

input event . 28

input method, during incremental search 92

input methods . 178

input with the keyboard . 27

insert file contents, command-line argument. . . 424

inserted subdirectory (Dired) 327

inserting blank lines . 38

insertion . 33

interactive highlighting . 83

international characters in ‘.emacs’ 404

international files from DOS/Windows systems
. 181

international scripts . 175

international support (MS-DOS) 458

interval operator (in regexps) 271

Intlfonts for PostScript printing 364

Intlfonts package, installation 177

invisible lines . 208

IPA. 175

Islamic calendar . 338

ISO Accents mode . 191

ISO commercial calendar . 338

ISO Latin character sets. 190

iso-acc library . 191

iso-ascii library. 190

iso-transl library . 191

ispell program . 108

Iswitchb mode . 155

italic font . 384

J
Japanese . 175

jar . 145

Java class archives . 145

Java mode . 242

JDB . 258

Julian calendar . 338

Julian day numbers . 338

justification . 204

K
Kerberos POP authentication 318
key . 28
key bindings . 393
key rebinding, permanent 403
key rebinding, this session 396
key sequence . 28
keyboard coding (Mac OS) 447
keyboard input . 27
keyboard macro . 390
keyboard shortcuts . 481
keyboard translations . 402
keymap . 393
kill ring . 70
killing buffers . 152
killing characters and lines 36
killing Emacs . 31
killing expressions . 233
killing rectangular areas of text 73
killing text . 67
Korean . 175

L
label (Rmail) . 309
landmark game . 375
language environment, automatic selection on

MS-DOS . 459
language environments . 177
Lao . 175
LaTEX mode . 213
LaTEX references . 217
Latin . 175
Latin-1 TEX encoding . 217
Latin-1, Latin-2 and Latin-3 input mode 191
lazy search highlighting . 93
leading . 437
leaving Emacs . 31
Leim package . 180
LessTif Widget X Resources 440
libraries . 262
Life . 375
line number commands . 40
line number display . 87
line spacing . 437
line wrapping . 39
line-drawing characters (MS-DOS) 459
lines, highlighting . 83
Lisp definitions, finding in sources 373
Lisp editing . 225, 267
Lisp files byte-compiled by XEmacs 263
Lisp files, and multibyte operation 176
Lisp functions specific to Mac OS 449
Lisp string syntax . 404
Lisp symbol completion . 241

Concept Index 525

list commands . 234
listing current buffers . 150
listing system fonts . 431
load init file of another user 425
loading Lisp code . 262
loading Lisp libraries automatically 406
loading Lisp libraries, command-line argument

. 424
loading several files (in Dired) 325
local back end (version control) 134
local keymap . 395
local variables . 387
local variables in files . 388
local version control . 134
locale, date format . 119
locales . 177
location of point . 40
locking (CVS) . 141
locking and version control 123
locking files . 117
locking, non-strict (RCS) . 140
logging keystrokes . 417
long file names in DOS box under Windows 95/NT

. 454
looking for a subject in documentation 53
lpr usage under MS-DOS . 457
Lucid Widget X Resources 439
lzh . 145

M
M- . 27
M4 mode . 225
Mac OS . 447
Mac Roman coding system 447
Macintosh . 447
Macintosh end-of-line conversion 182
Macintosh key bindings . 370
macro expansion in C . 245
mail . 293
mail (on mode line) . 88
mail aliases. 296
MAIL environment variable 306
Mail mode . 297
mail-composition methods 300
MAILHOST environment variable 318
mailrc file . 296
major modes . 193
make . 255
Makefile mode . 225
making pictures out of text characters 289
manipulating paragraphs . 201
manipulating sentences . 200
manipulating text. 199
manual page . 238
manual pages, on MS-DOS/MS-Windows 238

manual version backups . 134
manuals, on-line . 59
Marathi . 175
mark . 61
mark ring . 64
marking executable files (in Dired) 322
marking many files (in Dired) 322
marking sections of text . 64
marking subdirectories (in Dired) 322
marking symlinks (in Dired) 322
Markov chain . 374
master file . 123
matching parentheses . 234
matching parenthesis and braces, moving to . . 234
maximum buffer size exceeded, error message

. 111
Mayan calendar . 338
Mayan calendar round . 341
Mayan haab calendar . 341
Mayan long count. 340
Mayan tzolkin calendar . 341
memory full . 412
menu bar . 25
Menu Bar mode . 172
Menu X Resources (LessTif widgets) 440
Menu X Resources (Lucid widgets) 439
merge buffer (Emerge) . 277
merges, failed . 143
merging changes . 132
merging files . 276
message . 293
Message mode for sending mail 300
message number . 303
messages saved from echo area 22
Meta . 27
Meta (Mac OS) . 447
Meta (under MS-DOS) . 451
Meta commands and words 199
Metafont mode . 225
MH mail interface . 300
Midnight mode . 152
minibuffer . 43
minibuffer history . 47
minibuffer keymaps . 396
minor mode keymap . 395
minor modes . 377
mistakes, correcting . 105
mode hook . 225
mode line . 23
mode line (MS-DOS) . 459
mode line, 3D appearance . 88
mode line, mouse . 167
mode, Abbrev . 283
mode, archive . 145
mode, Auto Compression . 144
mode, Auto Fill . 203

526 GNU Emacs Manual

mode, Auto Save . 120
mode, Auto-Revert . 120
mode, C . 242
mode, Column Number . 88
mode, Comint . 355
mode, Compilation . 256
mode, CORBA IDL . 242
mode, CRiSP . 370
mode, Delete Selection . 67
mode, Emacs-Lisp . 263
mode, Enriched . 218
mode, Follow . 87
mode, Font Lock . 81
mode, Fortran . 246
mode, Global Auto-Revert 120
mode, Hexl . 368
mode, Iswitchb . 155
mode, Java . 242
mode, LaTEX. 213
mode, Mail . 297
mode, major . 193
mode, Menu Bar . 172
mode, minor . 377
mode, Mouse Wheel . 172
mode, MSB . 156
mode, Objective C . 242
mode, Outline . 208
mode, Overwrite . 378
mode, Paragraph-Indent Text 208
mode, PC selection . 370
mode, Pike . 242
mode, Scroll Bar . 171
mode, Scroll-all . 162
mode, Shell . 353
mode, SliTEX . 213
mode, tar . 144
mode, Term . 359
mode, TEX . 213
mode, Text . 208
mode, Tool Bar . 173
mode, Transient Mark . 62
mode, View . 143
mode, Winner . 161
modes for programming languages 225
modes, Refill . 204
modification dates . 119
modified (buffer) . 111
Modula2 mode . 225
moon, phases of . 337
Morse code . 375
Motif key bindings . 370
mouse . 394
mouse avoidance . 173
mouse button events . 400
mouse buttons (what they do) 163
mouse on mode line . 167

mouse pointer color, command-line argument . . 432

mouse support under MS-DOS 451

mouse wheel . 172

Mouse Wheel minor mode 172

mouse, set number of buttons 452

move to beginning or end of function 227

movemail . 318

movemail program . 317

movement . 34

moving inside the calendar 331

moving point . 34

moving text . 70

moving the cursor . 34

MS Windows . 163

MS-DOG . 451

MS-DOS end-of-line conversion 182

MS-DOS peculiarities . 451

MS-Windows codepages . 460

MSB mode . 156

MULE . 175

multibyte characters . 175

multibyte operation, and Lisp files 176

multiple ‘*info*’ and ‘*Help*’ buffers 154

multiple displays . 169

multiple views of outline . 212

multiple windows in Emacs 157

multiple-file search and replace 275

mustatement . 374

N
named configurations (RCS) 136

narrowing . 366

narrowing, and line number display 87

navigation . 371

‘net use’, and printing on MS-Windows 456

networked printers (MS-Windows) 456

newline . 33

newlines, hard and soft . 219

NFS and quitting . 409

nil . 484

non-ASCII characters in ‘.emacs’ 404

non-ASCII keys, binding . 400

non-greedy regexp matching 96

non-integral number of lines in a window 88

non-strict locking (RCS) . 140

non-window terminals . 174

nonincremental search . 94

normal hook . 386

nroff . 217

NSA . 300

numeric arguments . 41

Concept Index 527

O
Objective C mode . 242
Octave mode . 225
on-line manuals . 59
open-parenthesis in leftmost column 226
OpenWindows . 166
operating on files in Dired 323
operations on a marked region 63
option, user . 379
options (command line) . 423
other editors . 370
out of memory . 412
Outline mode . 208
outline with multiple views 212
outragedy . 374
Overwrite mode . 378

P
page-at-a-time . 359
pages . 202
Paragraph-Indent Text mode 208
paragraphs . 201
parentheses, displaying matches 234
parentheses, moving across 234
parenthesis in column zero and fontification 82
parenthetical groupings . 234
Partial Completion mode . 47
parts of the screen . 21
pasting . 70
pasting and X . 165
patches . 143
patches, sending . 420
PC key bindings . 370
PC selection . 370
PC Selection minor mode 370
PCL-CVS . 129
PDB . 258
per-buffer variables . 387
Perl mode . 225
Perldb . 258
Persian calendar . 338
phases of the moon . 337
Picture mode and rectangles 291
pictures . 289
Pike mode . 242
point . 21
point location . 40
point location, on MS-DOS 454
Polish. 175
Pong game . 375
POP inboxes . 318
position and size of Emacs frame 433
PostScript mode . 225
prefix arguments . 41

prefix key . 28
preprocessor highlighting . 245
presidentagon . 374
pretty-printer . 228
primary Rmail file . 303
primary selection . 165
printing files (in Dired) . 324
printing under MS-DOS . 460
program building . 255
program editing . 225, 267
Prolog mode . 225
prompt . 43
prompt, shell . 357
properbose . 374
puzzles . 374

Q
query replace . 102
quitting . 409
quitting (in search) . 92
quitting Emacs . 31
quitting on MS-DOS . 451
quoting . 33
quoting file names . 146

R
RCS . 123
read-only buffer . 151
read-only text, killing . 67
reading mail . 303
reading netnews . 349
rebinding keys, permanently 403
rebinding major mode keys 395
rebinding mouse buttons . 400
rebinding non-ASCII keys 400
rectangle . 73
rectangles and Picture mode 291
recursive copying . 324
recursive deletion . 320
recursive editing level . 369
redefining keys, this session 396
references, LaTEX. 217
Refill minor mode . 204
refilling text, word processor style 204
refreshing displayed files . 329
RefTEX package . 217
regexp . 95
region . 61
region face . 81
region highlighting . 62
registered file . 123
registers. 75
Registry (MS-Windows) . 435

528 GNU Emacs Manual

regular expression. 95
related files . 246
reload files . 368
remember editing session . 368
remote file access . 145
remote host . 359
remote repositories (CVS) 133, 141
renaming files (in Dired) . 324
repeating a command . 42
replacement . 100
reply to a message . 311
REPLYTO environment variable 295
reporting bugs . 416
reread a file . 119
resizing minibuffer . 44
resolving conflicts . 132
resource name, command-line argument 435
resource values, command-line argument 436
resources . 435
restore session . 368
restriction . 366
retrying a failed message . 311
reverse order in POP inboxes 318
reverse video, command-line argument. 432
Rlogin . 359
Rmail . 303
Romanian . 175
rot13 code . 317
running a hook . 386
running Lisp functions . 255

S
s-region package . 371
saved echo area messages . 22
Saveplace . 369
saving file name in a register 77
saving files . 110
saving keyboard macros . 392
saving number in a register 77
saving option value . 383
saving position in a register 75
saving rectangle in a register 76
saving sessions . 368
saving text in a register . 75
saving window configuration in a register 76
SCCS . 123
screen. 21
Scroll Bar mode . 171
Scroll-all mode . 162
scrolling. 84
scrolling all windows . 370
scrolling in the calendar . 333
scrolling windows together 162
SDB . 258
search and replace in multiple files 275

search and replace in multiple files (in Dired) . . 325
search multiple files (in Dired) 325
search-and-replace commands 100
searching . 91
searching documentation efficiently 53
searching for non-ASCII characters 92
searching in Rmail . 304
secondary selection . 165
sections of manual pages . 238
selected buffer . 149
selected window . 157
selecting buffers in other windows 159
selection, PC . 370
selection, primary . 165
selective display . 87
selective undo . 37
self-documentation . 53
sending mail . 293
sending patches for GNU Emacs 420
sentences . 200
server, using Emacs as . 360
setting a mark . 61
setting option value . 382
setting variables . 379
sexp . 232
shadow files . 118
shell commands . 351
shell commands, Dired . 325
SHELL environment variable 353
Shell mode . 353
shell scripts, and local file variables 388
Shell-script mode . 225
Show Paren mode . 234
shy group, in regexp . 98
Simula mode . 225
simultaneous editing . 117
single-frame terminals . 174
site init file . 404
‘site-start.el’ file, not loading 425
‘site-start.el’, the site startup file 404
size of minibuffer . 44
slashes repeated in file name 44
SliTEX mode . 213
Slovak . 175
Slovenian . 175
slow display during scrolling 82
Smerge mode . 143
Snake . 375
snapshots and version control 135
soft newline . 219
solitaire . 375
sorting . 364
sorting Dired buffer . 329
Spanish . 175
specific version control system 126
specify default font from the command line . . . 430

Concept Index 529

speedbar . 169
spell-checking the active region 107
spelling, checking and correcting 106
splitting columns . 367
standard fontset . 188
start iconified, command-line argument 434
starting Emacs . 31
startup (command line arguments) 423
startup (init file) . 403
startup fontset . 188
string substitution . 100
string syntax . 404
StudlyCaps . 375
StudlyCaps, making them readable 241
style (for indentation) . 231
subdirectories in Dired . 327
subscribe groups . 350
subshell . 351
subtree (Outline mode) . 211
summary (Rmail) . 312
summing time intervals . 348
sunrise and sunset . 336
Super (under MS-DOS) . 451
suspending . 31
suspicious constructions in C, C++ 245
switch buffers . 149
switches (command line) . 423
symlinks (in Dired) . 324
synchronizing windows . 87
synchronous X mode . 437
syntax highlighting and coloring 81
syntax of regexps . 95
syntax table . 403

T
t . 484
tab stops . 196
tables, indentation for . 196
tags . 227
tags table . 268
tags, C++ . 268
tags-based completion . 241
Tar mode . 144
Tcl mode . 225
techniquitous . 374
television . 70
Telnet . 359
TERM environment variable 417
Term mode . 359
terminal emulators, mouse support 174
termscript file . 417
Tetris . 375
TEX mode . 213
TEXEDIT environment variable 360
TEXINPUTS environment variable 216

text . 199
text and binary files on MS-DOS/MS-Windows

. 454
text colors, from command line 432
Text mode . 208
text/enriched MIME format 218
Thai . 175
Tibetan . 175
time (on mode line) . 88
time intervals, summing . 348
time stamps . 119
timeclock . 348
toggling marks (in Dired) 322
Tool Bar mode . 173
tooltips . 60
tooltips with GUD . 261
top level . 23
tower of Hanoi . 374
TPU . 371
trailing whitespace . 84
Transient Mark mode . 62
transposition of expressions 233
triple clicks . 400
truenames of files . 122
truncation . 39
trunk (version control) . 130
Turkish . 175
turn multibyte support on or off 176
two directories (in Dired) . 324
two-column editing . 367
typos, fixing . 105

U
unbalanced parentheses and quotes 232
uncompression . 144
undeletion (Rmail) . 305
undigestify . 317
undisplayable characters . 175
undo . 36
undo limit . 37
undoing window configuration changes 161
Unibyte operation . 190
unibyte operation (MS-DOS) 458
unibyte operation, and Lisp files 176
unibyte operation, command-line argument . . . 425
unibyte operation, environment variable 427
unique buffer names . 155
unmarking files (in Dired) 322
unsubscribe groups . 350
untranslated file system . 455
unzip archives . 145
upcase file names . 326
updating Dired buffer . 329
URLs . 372
URLs, activating . 372

530 GNU Emacs Manual

user name for remote file access 145
user option . 379
userenced . 374
using tab stops in making tables 196
usual erasure key . 410

V
variable . 379
vc-resolve-conflicts . 133
version backups . 133
version control . 122
version number to check in/out 126
VERSION_CONTROL environment variable 116
VHDL mode . 225
vi . 370
Vietnamese . 175
View mode . 143
viewing . 143
views of an outline . 212
visiting files . 110
visiting files, command-line argument 423
visiting image files . 147

W
watching files (CVS) . 141
Web . 372
weeks, which day they start on 332
wheel, mouse . 172
whitespace, trailing . 84
wide block cursor . 90
widening . 366
width and height of Emacs frame 433
width of the scroll bar . 172
wildcard characters in file names 112
Windmove package . 162

window configuration changes, undoing 161
Windows clipboard support 452
windows in Emacs . 157
windows, synchronizing . 87
Winner mode . 161
word processing . 218
word search . 94
word wrap . 203
words . 199
words, case conversion . 207
WordStar . 370
work file . 123
World Wide Web . 372
wrapping . 39
WYSIWYG . 218

X
X clipboard . 166
X cutting and pasting . 165
X resources, ‘~/.Xdefaults’ file 435
XDB . 258
xon-xoff . 412
xterm, mouse support . 174

Y
yahrzeits . 340
yanking . 70
yanking previous kills . 71

Z
zip . 145
Zippy . 375
Zmacs mode . 63
zoo . 145

i

Short Contents

Preface . 1

Distribution . 3

GNU GENERAL PUBLIC LICENSE . 5

Appendix A GNU Free Documentation License 13

Introduction . 19

1 The Organization of the Screen . 21

2 Characters, Keys and Commands 27

3 Entering and Exiting Emacs . 31

4 Basic Editing Commands . 33

5 The Minibuffer . 43

6 Running Commands by Name. 51

7 Help . 53

8 The Mark and the Region . 61

9 Killing and Moving Text . 67

10 Registers . 75

11 Controlling the Display . 79

12 Searching and Replacement . 91

13 Commands for Fixing Typos . 105

14 File Handling . 109

15 Using Multiple Buffers . 149

16 Multiple Windows . 157

17 Frames and X Windows . 163

18 International Character Set Support. 175

19 Major Modes . 193

20 Indentation. 195

21 Commands for Human Languages 199

22 Editing Programs . 225

23 Compiling and Testing Programs 255

24 Maintaining Programs . 267

25 Abbrevs . 283

26 Editing Pictures . 289

27 Sending Mail . 293

28 Reading Mail with Rmail . 303

29 Dired, the Directory Editor . 319

30 The Calendar and the Diary . 331

ii GNU Emacs Manual

31 Miscellaneous Commands . 349

32 Customization. 377

33 Dealing with Common Problems 409

Appendix B Command Line Arguments 423

Appendix C Emacs 20 Antinews . 443

Appendix D Emacs and the Mac OS. 447

Appendix E Emacs and MS-DOS . 451

The GNU Manifesto . 463

Glossary . 471

Key (Character) Index . 493

Command and Function Index . 501

Variable Index . 513

Concept Index . 519

iii

Table of Contents

Preface . 1

Distribution . 3

GNU GENERAL PUBLIC LICENSE 5
Preamble . 5
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 6
How to Apply These Terms to Your New Programs 10

Appendix A GNU Free Documentation License
. 13
ADDENDUM: How to use this License for your documents 18

Introduction . 19

1 The Organization of the Screen 21
1.1 Point . 21
1.2 The Echo Area . 22
1.3 The Mode Line . 23
1.4 The Menu Bar . 25

2 Characters, Keys and Commands 27
2.1 Kinds of User Input . 27
2.2 Keys . 28
2.3 Keys and Commands . 29
2.4 Character Set for Text . 30

3 Entering and Exiting Emacs 31
3.1 Exiting Emacs . 31

4 Basic Editing Commands 33
4.1 Inserting Text. 33
4.2 Changing the Location of Point . 34
4.3 Erasing Text . 36
4.4 Undoing Changes . 36
4.5 Files . 37
4.6 Help . 38
4.7 Blank Lines . 38
4.8 Continuation Lines . 39

iv GNU Emacs Manual

4.9 Cursor Position Information . 39
4.10 Numeric Arguments . 41
4.11 Repeating a Command . 42

5 The Minibuffer . 43
5.1 Minibuffers for File Names . 43
5.2 Editing in the Minibuffer . 44
5.3 Completion . 45

5.3.1 Completion Example . 45
5.3.2 Completion Commands . 45
5.3.3 Strict Completion . 46
5.3.4 Completion Options . 47

5.4 Minibuffer History . 47
5.5 Repeating Minibuffer Commands . 49

6 Running Commands by Name 51

7 Help . 53
7.1 Documentation for a Key . 55
7.2 Help by Command or Variable Name . 55
7.3 Apropos . 56
7.4 Keyword Search for Lisp Libraries . 57
7.5 Help for International Language Support 58
7.6 Help Mode Commands . 58
7.7 Other Help Commands . 59
7.8 Help on Active Text and Tooltips. 60

8 The Mark and the Region 61
8.1 Setting the Mark . 61
8.2 Transient Mark Mode . 62
8.3 Operating on the Region . 63
8.4 Commands to Mark Textual Objects. 64
8.5 The Mark Ring . 64
8.6 The Global Mark Ring . 65

9 Killing and Moving Text 67
9.1 Deletion and Killing . 67

9.1.1 Deletion . 67
9.1.2 Killing by Lines . 69
9.1.3 Other Kill Commands . 69

9.2 Yanking . 70
9.2.1 The Kill Ring . 70
9.2.2 Appending Kills . 70
9.2.3 Yanking Earlier Kills . 71

9.3 Accumulating Text . 72
9.4 Rectangles . 73

v

10 Registers . 75
10.1 Saving Positions in Registers . 75
10.2 Saving Text in Registers . 75
10.3 Saving Rectangles in Registers . 76
10.4 Saving Window Configurations in Registers 76
10.5 Keeping Numbers in Registers. 77
10.6 Keeping File Names in Registers . 77
10.7 Bookmarks . 77

11 Controlling the Display 79
11.1 Using Multiple Typefaces . 79
11.2 Font Lock mode . 81
11.3 Highlight Changes Mode . 83
11.4 Interactive Highlighting by Matching 83
11.5 Trailing Whitespace . 84
11.6 Scrolling . 84
11.7 Horizontal Scrolling . 86
11.8 Follow Mode . 87
11.9 Selective Display . 87
11.10 Optional Mode Line Features . 87
11.11 How Text Is Displayed. 88
11.12 Customization of Display . 89
11.13 Displaying the Cursor . 90

12 Searching and Replacement 91
12.1 Incremental Search . 91

12.1.1 Slow Terminal Incremental Search 93
12.2 Nonincremental Search . 94
12.3 Word Search . 94
12.4 Regular Expression Search . 95
12.5 Syntax of Regular Expressions . 95
12.6 Searching and Case . 100
12.7 Replacement Commands . 100

12.7.1 Unconditional Replacement 101
12.7.2 Regexp Replacement . 101
12.7.3 Replace Commands and Case. 101
12.7.4 Query Replace . 102

12.8 Other Search-and-Loop Commands . 103

13 Commands for Fixing Typos 105
13.1 Killing Your Mistakes . 105
13.2 Transposing Text . 105
13.3 Case Conversion . 106
13.4 Checking and Correcting Spelling . 106

vi GNU Emacs Manual

14 File Handling . 109
14.1 File Names . 109
14.2 Visiting Files . 110
14.3 Saving Files . 113

14.3.1 Backup Files . 114
14.3.1.1 Single or Numbered Backups. 115
14.3.1.2 Automatic Deletion of Backups 116
14.3.1.3 Copying vs.Renaming 116

14.3.2 Protection against Simultaneous Editing 117
14.3.3 Shadowing Files . 118
14.3.4 Updating Time Stamps Automatically 119

14.4 Reverting a Buffer . 119
14.5 Auto-Saving: Protection Against Disasters 120

14.5.1 Auto-Save Files . 120
14.5.2 Controlling Auto-Saving . 121
14.5.3 Recovering Data from Auto-Saves 121

14.6 File Name Aliases . 122
14.7 Version Control . 122

14.7.1 Introduction to Version Control 123
14.7.1.1 Supported Version Control Systems . . 123
14.7.1.2 Concepts of Version Control 123

14.7.2 Version Control and the Mode Line 124
14.7.3 Basic Editing under Version Control 124

14.7.3.1 Basic Version Control with Locking . . 124
14.7.3.2 Basic Version Control without Locking

. 125
14.7.3.3 Advanced Control in C-x C-q 126
14.7.3.4 Features of the Log Entry Buffer 126

14.7.4 Examining And Comparing Old Versions 126
14.7.5 The Secondary Commands of VC 127

14.7.5.1 Registering a File for Version Control
. 128

14.7.5.2 VC Status Commands 128
14.7.5.3 Undoing Version Control Actions 128
14.7.5.4 Dired under VC . 129
14.7.5.5 VC Dired Commands 130

14.7.6 Multiple Branches of a File 130
14.7.6.1 Switching between Branches 131
14.7.6.2 Creating New Branches. 131
14.7.6.3 Merging Branches 132
14.7.6.4 Multi-User Branching 133

14.7.7 Remote Repositories . 133
14.7.7.1 Version Backups . 133
14.7.7.2 Local Version Control 134

14.7.8 Snapshots . 135
14.7.8.1 Making and Using Snapshots 136
14.7.8.2 Snapshot Caveats 136

14.7.9 Miscellaneous Commands and Features of VC . . 137

vii

14.7.9.1 Change Logs and VC 137
14.7.9.2 Renaming VC Work Files and Master

Files . 138
14.7.9.3 Inserting Version Control Headers 138

14.7.10 Customizing VC . 139
14.7.10.1 General Options 140
14.7.10.2 Options for RCS and SCCS 140
14.7.10.3 Options specific for CVS 141

14.8 File Directories . 142
14.9 Comparing Files . 142
14.10 Miscellaneous File Operations . 143
14.11 Accessing Compressed Files . 144
14.12 File Archives . 144
14.13 Remote Files . 145
14.14 Quoted File Names . 146
14.15 File Name Cache . 146
14.16 Convenience Features for Finding Files 147

15 Using Multiple Buffers 149
15.1 Creating and Selecting Buffers . 149
15.2 Listing Existing Buffers . 150
15.3 Miscellaneous Buffer Operations . 151
15.4 Killing Buffers . 152
15.5 Operating on Several Buffers . 152
15.6 Indirect Buffers . 154
15.7 Convenience Features and Customization of Buffer Handling

. 155
15.7.1 Making Buffer Names Unique 155
15.7.2 Switching Between Buffers using Substrings . . . 155
15.7.3 Customizing Buffer Menus 156

16 Multiple Windows . 157
16.1 Concepts of Emacs Windows . 157
16.2 Splitting Windows . 158
16.3 Using Other Windows . 158
16.4 Displaying in Another Window . 159
16.5 Forcing Display in the Same Window 160
16.6 Deleting and Rearranging Windows. 160
16.7 Window Handling Convenience Features and Customization

. 161

viii GNU Emacs Manual

17 Frames and X Windows 163
17.1 Mouse Commands for Editing . 163
17.2 Secondary Selection . 165
17.3 Using the Clipboard . 166
17.4 Following References with the Mouse 166
17.5 Mouse Clicks for Menus . 166
17.6 Mode Line Mouse Commands . 167
17.7 Creating Frames . 167
17.8 Frame Commands . 168
17.9 Making and Using a Speedbar Frame 169
17.10 Multiple Displays . 169
17.11 Special Buffer Frames . 169
17.12 Setting Frame Parameters . 170
17.13 Scroll Bars . 171
17.14 Scrolling With “Wheeled” Mice . 172
17.15 Menu Bars . 172
17.16 Tool Bars . 173
17.17 Using Dialog Boxes . 173
17.18 Tooltips (or “Balloon Help”) . 173
17.19 Mouse Avoidance . 173
17.20 Non-Window Terminals. 174
17.21 Using a Mouse in Terminal Emulators 174

18 International Character Set Support 175
18.1 Introduction to International Character Sets 175
18.2 Enabling Multibyte Characters . 176
18.3 Language Environments . 177
18.4 Input Methods . 178
18.5 Selecting an Input Method . 180
18.6 Unibyte and Multibyte Non-ASCII characters 181
18.7 Coding Systems . 181
18.8 Recognizing Coding Systems . 183
18.9 Specifying a Coding System . 185
18.10 Fontsets . 188
18.11 Defining fontsets . 188
18.12 Undisplayable Characters . 190
18.13 Single-byte Character Set Support . 190

19 Major Modes. 193
19.1 How Major Modes are Chosen . 193

20 Indentation . 195
20.1 Indentation Commands and Techniques 195
20.2 Tab Stops . 196
20.3 Tabs vs. Spaces . 197

ix

21 Commands for Human Languages 199
21.1 Words . 199
21.2 Sentences . 200
21.3 Paragraphs . 201
21.4 Pages . 202
21.5 Filling Text . 203

21.5.1 Auto Fill Mode . 203
21.5.2 Refill Mode . 204
21.5.3 Explicit Fill Commands . 204
21.5.4 The Fill Prefix . 205
21.5.5 Adaptive Filling . 206

21.6 Case Conversion Commands . 207
21.7 Text Mode . 208
21.8 Outline Mode . 208

21.8.1 Format of Outlines . 209
21.8.2 Outline Motion Commands 210
21.8.3 Outline Visibility Commands 211
21.8.4 Viewing One Outline in Multiple Views 212
21.8.5 Folding Editing . 212

21.9 TEX Mode . 213
21.9.1 TEX Editing Commands . 214
21.9.2 LaTEX Editing Commands 215
21.9.3 TEX Printing Commands . 215
21.9.4 TEX Mode Miscellany . 217

21.10 Nroff Mode . 217
21.11 Editing Formatted Text . 218

21.11.1 Requesting to Edit Formatted Text 218
21.11.2 Hard and Soft Newlines . 219
21.11.3 Editing Format Information 219
21.11.4 Faces in Formatted Text . 220
21.11.5 Colors in Formatted Text 221
21.11.6 Indentation in Formatted Text 221
21.11.7 Justification in Formatted Text 222
21.11.8 Setting Other Text Properties 223
21.11.9 Forcing Enriched Mode . 224

x GNU Emacs Manual

22 Editing Programs. 225
22.1 Major Modes for Programming Languages 225
22.2 Top-Level Definitions, or Defuns . 226

22.2.1 Left Margin Convention . 226
22.2.2 Moving by Defuns . 226
22.2.3 Imenu . 227
22.2.4 Which Function Mode . 228

22.3 Indentation for Programs . 228
22.3.1 Basic Program Indentation Commands 228
22.3.2 Indenting Several Lines . 229
22.3.3 Customizing Lisp Indentation 230
22.3.4 Commands for C Indentation 231
22.3.5 Customizing C Indentation 231

22.4 Commands for Editing with Parentheses 232
22.4.1 Expressions with Balanced Parentheses 232
22.4.2 Moving in the Parenthesis Structure 234
22.4.3 Automatic Display Of Matching Parentheses . . . 234

22.5 Manipulating Comments . 235
22.5.1 Comment Commands . 235
22.5.2 Multiple Lines of Comments 236
22.5.3 Options Controlling Comments 237

22.6 Documentation Lookup . 237
22.6.1 Info Documentation Lookup 238
22.6.2 Man Page Lookup . 238
22.6.3 Emacs Lisp Documentation Lookup 239

22.7 Hideshow minor mode . 240
22.8 Completion for Symbol Names . 241
22.9 Glasses minor mode . 241
22.10 Other Features Useful for Editing Programs 241
22.11 C and Related Modes . 242

22.11.1 C Mode Motion Commands 242
22.11.2 Electric C Characters . 243
22.11.3 Hungry Delete Feature in C 244
22.11.4 Other Commands for C Mode 245
22.11.5 Comments in C Modes . 246

22.12 Fortran Mode . 246
22.12.1 Motion Commands . 247
22.12.2 Fortran Indentation. 247

22.12.2.1 Fortran Indentation and Filling
Commands . 247

22.12.2.2 Continuation Lines 248
22.12.2.3 Line Numbers . 248
22.12.2.4 Syntactic Conventions 249
22.12.2.5 Variables for Fortran Indentation. . . . 249

22.12.3 Fortran Comments . 250
22.12.4 Fortran Auto Fill Mode . 251
22.12.5 Checking Columns in Fortran 251
22.12.6 Fortran Keyword Abbrevs 252

xi

22.13 Asm Mode . 253

23 Compiling and Testing Programs 255
23.1 Running Compilations under Emacs 255
23.2 Searching with Grep under Emacs . 256
23.3 Compilation Mode . 256
23.4 Subshells for Compilation . 257
23.5 Running Debuggers Under Emacs . 258

23.5.1 Starting GUD . 258
23.5.2 Debugger Operation . 259
23.5.3 Commands of GUD . 259
23.5.4 GUD Customization . 261
23.5.5 GUD Tooltips . 261

23.6 Executing Lisp Expressions . 262
23.7 Libraries of Lisp Code for Emacs . 262
23.8 Evaluating Emacs-Lisp Expressions . 263
23.9 Lisp Interaction Buffers . 264
23.10 Running an External Lisp . 265

24 Maintaining Programs 267
24.1 Change Logs . 267
24.2 Tags Tables . 268

24.2.1 Source File Tag Syntax . 269
24.2.2 Creating Tags Tables . 270
24.2.3 Etags Regexps . 271
24.2.4 Selecting a Tags Table . 273
24.2.5 Finding a Tag . 273
24.2.6 Searching and Replacing with Tags Tables 275
24.2.7 Tags Table Inquiries . 276

24.3 Merging Files with Emerge . 276
24.3.1 Overview of Emerge . 276
24.3.2 Submodes of Emerge. 277
24.3.3 State of a Difference . 278
24.3.4 Merge Commands . 279
24.3.5 Exiting Emerge . 280
24.3.6 Combining the Two Versions 280
24.3.7 Fine Points of Emerge . 281

25 Abbrevs . 283
25.1 Abbrev Concepts . 283
25.2 Defining Abbrevs . 283
25.3 Controlling Abbrev Expansion . 284
25.4 Examining and Editing Abbrevs . 285
25.5 Saving Abbrevs . 286
25.6 Dynamic Abbrev Expansion . 287
25.7 Customizing Dynamic Abbreviation 288

xii GNU Emacs Manual

26 Editing Pictures . 289
26.1 Basic Editing in Picture Mode . 289
26.2 Controlling Motion after Insert . 290
26.3 Picture Mode Tabs . 290
26.4 Picture Mode Rectangle Commands 291

27 Sending Mail . 293
27.1 The Format of the Mail Buffer . 293
27.2 Mail Header Fields . 294
27.3 Mail Aliases . 296
27.4 Mail Mode . 297

27.4.1 Mail Sending . 297
27.4.2 Mail Header Editing . 298
27.4.3 Citing Mail . 298
27.4.4 Mail Mode Miscellany. 299

27.5 Mail Amusements . 300
27.6 Mail-Composition Methods . 300

28 Reading Mail with Rmail 303
28.1 Basic Concepts of Rmail . 303
28.2 Scrolling Within a Message . 303
28.3 Moving Among Messages . 304
28.4 Deleting Messages . 305
28.5 Rmail Files and Inboxes . 306
28.6 Multiple Rmail Files . 307
28.7 Copying Messages Out to Files . 308
28.8 Labels . 309
28.9 Rmail Attributes . 310
28.10 Sending Replies . 310
28.11 Summaries . 312

28.11.1 Making Summaries . 312
28.11.2 Editing in Summaries . 313

28.12 Sorting the Rmail File . 314
28.13 Display of Messages . 315
28.14 Rmail and Coding Systems . 315
28.15 Editing Within a Message . 316
28.16 Digest Messages . 317
28.17 Converting an Rmail File to Inbox Format 317
28.18 Reading Rot13 Messages. 317
28.19 movemail and POP . 317

xiii

29 Dired, the Directory Editor 319
29.1 Entering Dired . 319
29.2 Navigation in the Dired Buffer . 319
29.3 Deleting Files with Dired . 319
29.4 Flagging Many Files at Once . 320
29.5 Visiting Files in Dired . 321
29.6 Dired Marks vs. Flags . 322
29.7 Operating on Files . 323
29.8 Shell Commands in Dired . 325
29.9 Transforming File Names in Dired . 326
29.10 File Comparison with Dired . 327
29.11 Subdirectories in Dired . 327
29.12 Moving Over Subdirectories . 328
29.13 Hiding Subdirectories . 328
29.14 Updating the Dired Buffer . 329
29.15 Dired and find . 330

30 The Calendar and the Diary 331
30.1 Movement in the Calendar . 331

30.1.1 Motion by Standard Lengths of Time 331
30.1.2 Beginning or End of Week, Month or Year 332
30.1.3 Specified Dates . 332

30.2 Scrolling in the Calendar . 333
30.3 Counting Days . 333
30.4 Miscellaneous Calendar Commands . 333
30.5 LaTeX Calendar . 334
30.6 Holidays . 335
30.7 Times of Sunrise and Sunset . 336
30.8 Phases of the Moon . 337
30.9 Conversion To and From Other Calendars 337

30.9.1 Supported Calendar Systems 338
30.9.2 Converting To Other Calendars 338
30.9.3 Converting From Other Calendars 339
30.9.4 Converting from the Mayan Calendar 340

30.10 The Diary . 341
30.10.1 Commands Displaying Diary Entries 342
30.10.2 The Diary File . 343
30.10.3 Date Formats . 344
30.10.4 Commands to Add to the Diary 344
30.10.5 Special Diary Entries . 345

30.11 Appointments . 346
30.12 Daylight Savings Time . 347
30.13 Summing Time Intervals . 348

xiv GNU Emacs Manual

31 Miscellaneous Commands 349
31.1 Gnus . 349

31.1.1 Gnus Buffers . 349
31.1.2 When Gnus Starts Up . 349
31.1.3 Summary of Gnus Commands 350

31.2 Running Shell Commands from Emacs 351
31.2.1 Single Shell Commands . 351
31.2.2 Interactive Inferior Shell . 352
31.2.3 Shell Mode . 353
31.2.4 Shell Command History . 355

31.2.4.1 Shell History Ring 356
31.2.4.2 Shell History Copying 356
31.2.4.3 Shell History References 357

31.2.5 Directory Tracking . 357
31.2.6 Shell Mode Options . 358
31.2.7 Emacs Terminal Emulator. 358
31.2.8 Term Mode . 359
31.2.9 Page-At-A-Time Output . 359
31.2.10 Remote Host Shell . 359

31.3 Using Emacs as a Server . 360
31.4 Invoking emacsclient . 361
31.5 Hardcopy Output . 361
31.6 PostScript Hardcopy . 362
31.7 Variables for PostScript Hardcopy . 363
31.8 Sorting Text . 364
31.9 Narrowing . 366
31.10 Two-Column Editing . 367
31.11 Editing Binary Files . 368
31.12 Saving Emacs Sessions. 368
31.13 Recursive Editing Levels . 369
31.14 Emulation . 370
31.15 Hyperlinking and Navigation Features 371

31.15.1 Following URLs . 372
31.15.2 Activating URLs . 372
31.15.3 Finding Files and URLs at Point 372
31.15.4 Finding Function and Variable Definitions 373

31.16 Dissociated Press . 374
31.17 Other Amusements . 374

xv

32 Customization . 377
32.1 Minor Modes . 377
32.2 Variables . 379

32.2.1 Examining and Setting Variables 379
32.2.2 Easy Customization Interface 380

32.2.2.1 Customization Groups. 380
32.2.2.2 Changing an Option 381
32.2.2.3 Customizing Faces 384
32.2.2.4 Customizing Specific Items 385

32.2.3 Hooks . 386
32.2.4 Local Variables . 387
32.2.5 Local Variables in Files . 388

32.3 Keyboard Macros . 390
32.3.1 Basic Use . 391
32.3.2 Naming and Saving Keyboard Macros 392
32.3.3 Executing Macros with Variations 392

32.4 Customizing Key Bindings . 393
32.4.1 Keymaps . 393
32.4.2 Prefix Keymaps . 394
32.4.3 Local Keymaps . 395
32.4.4 Minibuffer Keymaps . 396
32.4.5 Changing Key Bindings Interactively 396
32.4.6 Rebinding Keys in Your Init File 397
32.4.7 Rebinding Function Keys . 398
32.4.8 Named ASCII Control Characters 399
32.4.9 Non-ASCII Characters on the Keyboard. 400
32.4.10 Rebinding Mouse Buttons 400
32.4.11 Disabling Commands . 402

32.5 Keyboard Translations . 402
32.6 The Syntax Table . 403
32.7 The Init File, ‘~/.emacs’ . 403

32.7.1 Init File Syntax . 404
32.7.2 Init File Examples . 405
32.7.3 Terminal-specific Initialization 407
32.7.4 How Emacs Finds Your Init File 407

xvi GNU Emacs Manual

33 Dealing with Common Problems 409
33.1 Quitting and Aborting. 409
33.2 Dealing with Emacs Trouble . 410

33.2.1 If 〈DEL〉 Fails to Delete . 410
33.2.2 Recursive Editing Levels . 411
33.2.3 Garbage on the Screen . 411
33.2.4 Garbage in the Text . 412
33.2.5 Spontaneous Entry to Incremental Search 412
33.2.6 Running out of Memory. 412
33.2.7 Recovery After a Crash . 413
33.2.8 Emergency Escape . 413
33.2.9 Help for Total Frustration . 414

33.3 Reporting Bugs . 414
33.3.1 When Is There a Bug . 414
33.3.2 Understanding Bug Reporting 415
33.3.3 Checklist for Bug Reports . 416
33.3.4 Sending Patches for GNU Emacs 420

33.4 Contributing to Emacs Development 422
33.5 How To Get Help with GNU Emacs 422

Appendix B Command Line Arguments 423
B.1 Action Arguments . 423
B.2 Initial Options . 424
B.3 Command Argument Example . 425
B.4 Resuming Emacs with Arguments . 426
B.5 Environment Variables . 426

B.5.1 General Variables . 427
B.5.2 Miscellaneous Variables . 429

B.6 Specifying the Display Name . 430
B.7 Font Specification Options . 430
B.8 Window Color Options . 432
B.9 Options for Window Geometry . 433
B.10 Internal and External Borders . 433
B.11 Frame Titles . 434
B.12 Icons . 434
B.13 X Resources . 435
B.14 Lucid Menu X Resources . 439
B.15 LessTif Menu X Resources . 440

Appendix C Emacs 20 Antinews. 443

xvii

Appendix D Emacs and the Mac OS 447
D.1 Keyboard Input on the Mac . 447
D.2 International Character Set Support on the Mac 447
D.3 Environment Variables and Command Line Arguments. . . 448
D.4 Volumes and Directories on the Mac 448
D.5 Specifying Fonts on the Mac . 449
D.6 Mac-Specific Lisp Functions . 449

Appendix E Emacs and MS-DOS 451
E.1 Keyboard and Mouse on MS-DOS. 451
E.2 Display on MS-DOS . 452
E.3 File Names on MS-DOS . 453
E.4 Text Files and Binary Files . 454
E.5 Printing and MS-DOS. 456
E.6 International Support on MS-DOS . 458
E.7 Subprocesses on MS-DOS . 460
E.8 Subprocesses on Windows 9X/ME and Windows NT/2K

. 461
E.9 Using the System Menu on Windows 462

The GNU Manifesto . 463
What’s GNU? Gnu’s Not Unix! . 463
Why I Must Write GNU . 464
Why GNU Will Be Compatible with Unix 464
How GNU Will Be Available . 464
Why Many Other Programmers Want to Help 464
How You Can Contribute . 465
Why All Computer Users Will Benefit . 465
Some Easily Rebutted Objections to GNU’s Goals 466

Glossary . 471

Key (Character) Index . 493

Command and Function Index 501

Variable Index . 513

Concept Index . 519

xviii GNU Emacs Manual

