
Viper Is a Package for Emacs Rebels
a Vi emulator for Emacs

October 2000, Viper Version 3.09

Michael Kifer (Viper)
Aamod Sane (VIP 4.4)
Masahiko Sato (VIP 3.5)

Distribution 1

Distribution

Copyright c© 1995, 1996, 1997, 2001 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms

of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover texts being “A
GNU Manual”, and with the Back-Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License” in the Emacs manual.

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

This document is part of a collection distributed under the GNU Free Documentation
License. If you want to distribute this document separately from the collection, you can do
so by adding a copy of the license to the document, as described in section 6 of the license.

Introduction 2

Introduction

We believe that one or more of the following statements are adequate descriptions:
Viper Is a Package for Emacs Rebels;
it is a VI Plan for Emacs Rescue
and/or a venomous VI PERil.

Viper is a Vi emulation package for Emacs. Viper contains virtually all of Vi and Ex
functionality and much more. It gives you the best of both worlds: Vi keystrokes for editing
combined with the GNU Emacs environment. Viper also fixes some common complaints
with Vi commands. This manual describes Viper, concentrating on the differences from Vi
and on the new features of Viper.

Viper was written by Michael Kifer. It is based on VIP version 3.5 by Masahiko Sato
and VIP version 4.4 by Aamod Sane. Viper tries to be compatible with these packages.

Viper is intended to be usable out of the box, without reading this manual — the defaults
are set to make Viper as close to Vi as possible. At startup, Viper will attempt to set the
most appropriate default environment for you, based on your familiarity with Emacs. It
will also tell you the basic GNU Emacs window management commands to help you start
immediately.

Although this manual explains how to customize Viper, some basic familiarity with
Emacs Lisp would be a plus.

It is recommended that you read the chapter Overview. The other chapters will be useful
for customization and advanced usage.

You should also learn to use the Info on-line hypertext manual system that comes with
Emacs. This manual can be read as an Info file. Try the command 〈ESC〉 x info with vanilla
Emacs sometime.

Comments and bug reports are welcome. kifer@cs.sunysb.edu is the current address
for Viper bug reports. Please use the Ex command :submitReport for this purpose.

Chapter 1: Overview of Viper 3

1 Overview of Viper

Viper is a Vi emulation on top of Emacs. At the same time, Viper provides a virtually
unrestricted access to Emacs facilities. Perfect compatibility with Vi is possible but not
desirable. This chapter tells you about the Emacs ideas that you should know about, how
to use Viper within Emacs and some incompatibilities.

This manual is written with the assumption that you are an experienced Vi
user who wants to switch to Emacs while retaining the ability to edit files Vi style.
Incredible as it might seem, there are experienced Emacs users who use Viper as a
backdoor into the superior (as every Vi user already knows) world of Vi! These users
are well familiar with Emacs bindings and prefer them in some cases, especially in
the Vi Insert state. John Hawkins <jshawkin@eecs.umich.edu> has provided a set
of customizations, which enables additional Emacs bindings under Viper. These
customizations can be included in your ‘~/.viper’ file and are found at the following
URL: ‘http://www.eecs.umich.edu/~jshawkin/viper-sample’.

Viper was formerly known as VIP-19, which was a descendant of VIP 3.5 by Masahiko
Sato and VIP 4.4 by Aamod Sane.

1.1 Emacs Preliminaries

Emacs can edit several files at once. A file in Emacs is placed in a buffer that usually has
the same name as the file. Buffers are also used for other purposes, such as shell interfaces,
directory editing, etc. See section “Directory Editor” in The Gnu Emacs Manual, for an
example.

A buffer has a distinguished position called the point. A point is always between 2
characters, and is looking at the right hand character. The cursor is positioned on the right
hand character. Thus, when the point is looking at the end-of-line, the cursor is on the
end-of-line character, i.e. beyond the last character on the line. This is the default Emacs
behavior.

The default settings of Viper try to mimic the behavior of Vi, preventing the cursor
from going beyond the last character on the line. By using Emacs commands directly
(such as those bound to arrow keys), it is possible to get the cursor beyond the end-of-line.
However, this won’t (or shouldn’t) happen if you restrict yourself to standard Vi keys, unless
you modify the default editing style. See Chapter 3 [Customization], page 21.

In addition to the point, there is another distinguished buffer position called the mark.
See section “Mark” in The GNU Emacs manual, for more info on the mark. The text
between the point and the mark is called the region of the buffer. For the Viper user, this
simply means that in addition to the Vi textmarkers a–z, there is another marker called
mark. This is similar to the unnamed Vi marker used by the jump commands ‘‘ and ’’,
which move the cursor to the position of the last absolute jump. Viper provides access to
the region in most text manipulation commands as r and R suffix to commands that operate
on text regions, e.g., dr to delete region, etc.

Furthermore, Viper lets Ex-style commands to work on the current region. This is done
by typing a digit argument before :. For instance, typing 1: will propmt you with something
like :123,135, assuming that the current region starts at line 123 and ends at line 135. There

Chapter 1: Overview of Viper 4

is no need to type the line numbers, since Viper inserts them automatically in front of the
Ex command.

See Section 2.1 [Basics], page 13, for more info.
Emacs divides the screen into tiled windows. You can see the contents of a buffer

through the window associated with the buffer. The cursor of the screen is positioned on
the character after point. Every window has a mode line that displays information about
the buffer. You can change the format of the mode line, but normally if you see ‘**’ at
the beginning of a mode line it means that the buffer is modified. If you write out the
contents of a buffer to a file, then the buffer will become not modified. Also if you see
‘%%’ at the beginning of the mode line, it means that the file associated with the buffer
is write protected. The mode line will also show the buffer name and current major and
minor modes (see below). A special buffer called Minibuffer is displayed as the last line in
a Minibuffer window. The Minibuffer window is used for command input output. Viper
uses Minibuffer window for / and : commands.

An Emacs buffer can have a major mode that customizes Emacs for editing text of a
particular sort by changing the functionality of the keys. Keys are defined using a keymap
that records the bindings between keystrokes and functions. The global keymap is common
to all the buffers. Additionally, each buffer has its local keymap that determines the mode
of the buffer. If a function is bound to some key in the local keymap then that function
will be executed when you type the key. If no function is bound to a key in the local map,
however, the function bound to the key in the global map will be executed. See section
“Major Modes” in The GNU Emacs Manual, for more information.

A buffer can also have a minor mode. Minor modes are options that you can use or not.
A buffer in text-mode can have auto-fill-mode as minor mode, which can be turned off
or on at any time. In Emacs, a minor mode may have it own keymap, which overrides the
local keymap when the minor mode is turned on. For more information, see section “Minor
Modes” in The GNU Emacs Manual

Viper is implemented as a collection of minor modes. Different minor modes are involved
when Viper emulates Vi command mode, Vi insert mode, etc. You can also turn Viper on
and off at any time while in Vi command mode. See Section 1.3 [States in Viper], page 5,
for more information.

Emacs uses Control and Meta modifiers. These are denoted as C and M, e.g. ^Z as C-z
and Meta-x as M-x. The Meta key is usually located on each side of the Space bar; it is
used in a manner similar to the Control key, e.g., M-x means typing x while holding the
Meta key down. For keyboards that do not have a Meta key, 〈ESC〉 is used as Meta. Thus
M-x is typed as 〈ESC〉 x. Viper uses 〈ESC〉 to switch from Insert state to Vi state. Therefore
Viper defines C-\ as its Meta key in Vi state. See Section 1.3.2 [Vi State], page 7, for more
info.

Emacs is structured as a lisp interpreter around a C core. Emacs keys cause lisp functions
to be called. It is possible to call these functions directly, by typing M-x function-name.

1.2 Loading Viper

The most common way to load it automatically is to include the following lines (in the
given order!):

Chapter 1: Overview of Viper 5

(setq viper-mode t)
(require ’viper)

in your ‘~/.emacs’ file. The ‘.emacs’ file is placed in your home directory and it is be
executed every time you invoke Emacs. This is the place where all general Emacs cus-
tomization takes place. Beginning with version 20.0, Emacsen have an interactive interface,
which simplifies the job of customization significantly.

Viper also uses the file ‘~/.viper’ for Viper-specific customization. If you wish to be in
Vi command state whenever this is deemed appropriate by the author, you can include the
following line in your ‘.viper’:

(setq viper-always t)

(See Section 1.3.2 [Vi State], page 7, for the explanation of Vi command state.)

The location of Viper customization file can be changed by setting the variable viper-
custom-file-name in ‘.emacs’ prior to loading Viper.

The latest versions of Emacs have an interactive customization facility, which allows you
to (mostly) bypass the use of the ‘.emacs’ and ‘.viper’ files. You can reach this customiza-
tion facility from within Viper’s VI state by executing the Ex command :customize.

Once invoked, Viper will arrange to bring up Emacs buffers in Vi state whenever this
makes sense. See Section 3.2.1 [Packages that Change Keymaps], page 30, to find out when
forcing Vi command state on a buffer may be counter-productive.

Even if your ‘.emacs’ and ‘.viper’ files do not contain any of the above lines, you can
still load Viper and enter Vi command state by typing the following from within Emacs:

M-x viper-mode

When Emacs first comes up, if you have not specified a file on the command line, it will
show the ‘*scratch*’ buffer, in the ‘Lisp Interaction’ mode. After you invoke Viper, you
can start editing files by using :e, :vi, or v commands. (See Section 4.4 [File and Buffer
Handling], page 52, for more information on v and other new commands that, in many
cases, are more convenient than :e, :vi, and similar old-style Vi commands.)

Finally, if at some point you would want to get de-Viperize your running copy of Emacs
after Viper has been loaded, the command M-x viper-go-away will do it for you. The
function toggle-viper-mode toggles Viperization of Emacs on and off.

1.3 States in Viper

Viper has four states, Emacs, Vi, Insert, and Replace.

‘Emacs state’
This is the state plain vanilla Emacs is normally in. After you have loaded
Viper, C-z will normally take you to Vi command state. Another C-z will
take you back to Emacs state. This toggle key can be changed, see Chapter 3
[Customization], page 21 You can also type M-x viper-mode to change to Vi
state.
For users who chose to set their user level to 1 at Viper setup time, switching to
Emacs state is deliberately made harder in order to not confuse the novice user.
In this case, C-z will either iconify Emacs (if Emacs runs as an application under

Chapter 1: Overview of Viper 6

X) or it will stop Emacs (if Emacs runs on a dumb terminal or in an Xterm
window).

‘Vi state’ This is the Vi command mode. Any of the Vi commands, such as i, o, a,
. . . , will take you to Insert state. All Vi commands may be used in this mode.
Most Ex commands can also be used. For a full list of Ex commands supported
by Viper, type : and then 〈TAB〉. To get help on any issue, including the Ex
commands, type :help. This will invoke Viper Info (if it is installed). Then
typing i will prompt you for a topic to search in the index. Note: to search for
Ex commands in the index, you should start them with a :, e.g., :WW.
In Viper, Ex commands can be made to work on the current Emacs region. This
is done by typing a digit argument before :. For instance, typing 1: will propmt
you with something like :123,135, assuming that the current region starts at
line 123 and ends at line 135. There is no need to type the line numbers, since
Viper inserts them automatically in front of the Ex command.

‘Insert state’
Insert state is the Vi insertion mode. 〈ESC〉 will take you back to Vi state.
Insert state editing can be done, including auto-indentation. By default, Viper
disables Emacs key bindings in Insert state.

‘Replace state’
Commands like cw invoke the Replace state. When you cross the boundary of
a replacement region (usually designated via a ‘$’ sign), it will automatically
change to Insert state. You do not have to worry about it. The key bindings
remain practically the same as in Insert state. If you type 〈ESC〉, Viper will
switch to Vi command mode, terminating the replacement state.

The modes are indicated on the mode line as <E>, <I>, <V>, and <R>, so that the
multiple modes do not confuse you. Most of your editing can be done in Vi and Insert
states. Viper will try to make all new buffers be in Vi state, but sometimes they may come
up in Emacs state. C-z will take you to Vi state in such a case. In some major modes,
like Dired, Info, Gnus, etc., you should not switch to Vi state (and Viper will not attempt
to do so) because these modes are not intended for text editing and many of the Vi keys
have special meaning there. If you plan to read news, browse directories, read mail, etc.,
from Emacs (which you should start doing soon!), you should learn about the meaning of
the various keys in those special modes (typing C-h m in a buffer provides help with key
bindings for the major mode of that buffer).

If you switch to Vi in Dired or similar modes—no harm is done. It is just that the
special key bindings provided by those modes will be temporarily overshadowed by Viper’s
bindings. Switching back to Viper’s Emacs state will revive the environment provided by
the current major mode.

States in Viper are orthogonal to Emacs major modes, such as C mode or Dired mode.
You can turn Viper on and off for any Emacs state. When Viper is turned on, Vi state can
be used to move around. In Insert state, the bindings for these modes can be accessed. For
beginners (users at Viper levels 1 and 2), these bindings are suppressed in Insert state, so
that new users are not confused by the Emacs states. Note that unless you allow Emacs
bindings in Insert state, you cannot do many interesting things, like language sensitive edit-
ing. For the novice user (at Viper level 1), all major mode bindings are turned off in Vi

Chapter 1: Overview of Viper 7

state as well. This includes the bindings for key sequences that start with C-c, which prac-
tically means that all major mode bindings are supported. See Chapter 3 [Customization],
page 21, to find out how to allow Emacs keys in Insert state.

1.3.1 Emacs State

You will be in this mode only by accident (hopefully). This is the state Emacs is normally
in (imagine!!). Now leave it as soon as possible by typing C-z. Then you will be in Vi state
(sigh of relief) :-).

Emacs state is actually a Viperism to denote all the major and minor modes (see Sec-
tion 1.1 [Emacs Preliminaries], page 3) other than Viper that Emacs can be in. Emacs
can have several modes, such as C mode for editing C programs, LaTeX mode for editing
LaTeX documents, Dired for directory editing, etc. These are major modes, each with a
different set of key-bindings. Viper states are orthogonal to these Emacs major modes. The
presence of these language sensitive and other modes is a major win over Vi. See Chapter 2
[Improvements over Vi], page 13, for more.

The bindings for these modes can be made available in the Viper Insert state as well
as in Emacs state. Unless you specify your user level as 1 (a novice), all major mode key
sequences that start with C-x and C-c are also available in Vi state. This is important
because major modes designed for editing files, such as cc-mode or latex-mode, use key
sequences that begin with C-x and C-c.

There is also a key that lets you temporarily escape to Vi command state from Emacs
or Insert states: typing C-c \ will let you execute a single Vi command while staying in
Viper’s Emacs or Insert state. In Insert state, the same can also be achieved by typing C-z.

1.3.2 Vi State

This is the Vi command mode. When Viper is in Vi state, you will see the sign <V> in
the mode line. Most keys will work as in Vi. The notable exceptions are:

C-x C-x is used to invoke Emacs commands, mainly those that do window manage-
ment. C-x 2 will split a window, C-x 0 will close a window. C-x 1 will close all
other windows. C-xb is used to switch buffers in a window, and C-xo to move
through windows. These are about the only necessary keystrokes. For the rest,
see the GNU Emacs Manual.

C-c For user levels 2 and higher, this key serves as a prefix key for the key sequences
used by various major modes. For users at Viper level 1, C-c simply beeps.

C-g and C-]

These are the Emacs ‘quit’ keys. There will be cases where you will have to
use C-g to quit. Similarly, C-] is used to exit ‘Recursive Edits’ in Emacs for
which there is no comparable Vi functionality and no key-binding. Recursive
edits are indicated by ‘[]’ brackets framing the modes on the mode line. See
section “Recursive Edit” in The GNU Emacs Manual. At user level 1, C-g is
bound to viper-info-on-file function instead.

C-\

Chapter 1: Overview of Viper 8

Viper uses 〈ESC〉 as a switch between Insert and Vi states. Emacs uses 〈ESC〉
for Meta. The Meta key is very important in Emacs since many functions
are accessible only via that key as M-x function-name. Therefore, we need to
simulate it somehow. In Viper’s Vi, Insert, and Replace states, the meta key
is set to be C-\. Thus, to get M-x, you should type C-\ x (if the keyboard has
no Meta key). This works both in the Vi command state and in the Insert and
Replace states. In Vi command state, you can also use \ 〈ESC〉 as the meta key.
Note: Emacs binds C-\ to a function that offers to change the keyboard input
method in the multilingual environment. Viper overrides this binding. However,
it is still possible to switch the input method by typing \ C-\ in the Vi command
state and C-z \ C-\ in the Insert state. Or you can use the MULE menu in the
menubar.

Other differences are mostly improvements. The ones you should know about are:

‘Undo’ u will undo. Undo can be repeated by the . key. Undo itself can be undone.
Another u will change the direction. The presence of repeatable undo means
that U, undoing lines, is not very important. Therefore, U also calls viper-undo.

‘Counts’ Most commands, ~, [[, p, /, . . . , etc., take counts.

‘Regexps’ Viper uses Emacs Regular Expressions for searches. These are a superset of Vi
regular expressions, excepting the change-of-case escapes ‘\u’, ‘\L’, . . . , etc. See
section “Regular Expressions” in The GNU Emacs Manual, for details. Files
specified to :e use csh regular expressions (globbing, wildcards, what have you).
However, the function viper-toggle-search-style, bound to C-c /, lets the
user switch from search with regular expressions to plain vanilla search and vice
versa. It also lets one switch from case-sensitive search to case-insensitive and
back. See Section 3.3 [Viper Specials], page 31, for more details.

‘Ex commands’
The current working directory of a buffer is automatically inserted in the mini-
buffer if you type :e then space. Absolute filenames are required less often in
Viper. For file names, Emacs uses a convention that is slightly different from
other programs. It is designed to minimize the need for deleting file names
that Emacs provides in its prompts. (This is usually convenient, but occasion-
ally the prompt may suggest a wrong file name for you.) If you see a prompt
/usr/foo/ and you wish to edit the file ~/.viper, you don’t have to erase the
prompt. Instead, simply continue typing what you need. Emacs will interpret
/usr/foo/~/.viper correctly. Similarly, if the prompt is ~/foo/ and you need
to get to /bar/file, keep typing. Emacs interprets ~/foo//bar/ as /bar/file,
since when it sees ‘//’, it understands that ~/foo/ is to be discarded.
The command :cd will change the default directory for the current buffer.
The command :e will interpret the filename argument in csh. See Chapter 3
[Customization], page 21, if you want to change the default shell. The command
:next takes counts from :args, so that :rew is obsolete. Also, :args will show
only the invisible files (i.e., those that are not currently seen in Emacs windows).
When applicable, Ex commands support file completion and history. This
means that by typing a partial file name and then 〈TAB〉, Emacs will try to

Chapter 1: Overview of Viper 9

complete the name or it will offer a menu of possible completions. This works
similarly to Tcsh and extends the behavior of Csh. While Emacs is waiting for a
file name, you can type M-p to get the previous file name you typed. Repeatedly
typing M-p and M-n will let you browse through the file history.
Like file names, partially typed Ex commands can be completed by typing 〈TAB〉,
and Viper keeps the history of Ex commands. After typing :, you can browse
through the previously entered Ex commands by typing M-p and M-n. Viper
tries to rationalize when it puts Ex commands on the history list. For instance,
if you typed :w! foo, only :w! will be placed on the history list. This is because
the last history element is the default that can be invoked simply by typing :

〈RET〉. If :w! foo were placed on the list, it would be all to easy to override
valuable data in another file. Reconstructing the full command, :w! foo, from
the history is still not that hard, since Viper has a separate history for file
names. By typing : M-p, you will get :w! in the Minibuffer. Then, repeated
M-p will get you through the file history, inserting one file name after another.
In contrast to :w! foo, if the command were :r foo, the entire command will
appear in the history list. This is because having :r alone as a default is
meaningless, since this command requires a file argument.

As Vi, Viper’s destructive commands can be re-executed by typing ‘.’. However, in addition,
Viper keeps track of the history of such commands. This history can be perused by typing
C-c M-p and C-c M-n. Having found the appropriate command, it can be then executed by
typing ‘.’. See Chapter 2 [Improvements over Vi], page 13, for more information.

1.3.3 Insert State

To avoid confusing the beginner (at Viper level 1 and 2), Viper makes only the standard
Vi keys available in Insert state. The implication is that Emacs major modes cannot be
used in Insert state. It is strongly recommended that as soon as you are comfortable, make
the Emacs state bindings visible (by changing your user level to 3 or higher). See Chapter 3
[Customization], page 21, to see how to do this.

Once this is done, it is possible to do quite a bit of editing in Insert state. For instance,
Emacs has a yank command, C-y, which is similar to Vi’s p. However, unlike p, C-y can
be used in Insert state of Viper. Emacs also has a kill ring where it keeps pieces of text
you deleted while editing buffers. The command M-y is used to delete the text previously
put back by Emacs’ C-y or by Vi’s p command and reinsert text that was placed on the
kill-ring earlier.

This works both in Vi and Insert states. In Vi state, M-y is a much better alternative
to the usual Vi’s way of recovering the 10 previously deleted chunks of text. In Insert
state, you can use this as follows. Suppose you deleted a piece of text and now you need
to re-insert it while editing in Insert mode. The key C-y will put back the most recently
deleted chunk. If this is not what you want, type M-y repeatedly and, hopefully, you will
find the chunk you want.

Finally, in Insert and Replace states, Viper provides the history of pieces of text inserted
in previous insert or replace commands. These strings of text can be recovered by repeatedly
typing C-c M-p or C-c M-n while in Insert or Replace state. (This feature is disabled in the

Chapter 1: Overview of Viper 10

minibuffer: the above keys are usually bound to other histories, which are more appropriate
in the minibuffer.)

You can call Meta functions from Insert state. As in Vi state, the Meta key is C-\. Thus
M-x is typed as C-\ x.

Other Emacs commands that are useful in Insert state are C-e and C-a, which move
the cursor to the end and the beginning of the current line, respectively. You can also use
M-f and M-b, which move the cursor forward (or backward) one word. If your display has
a Meta key, these functions are invoked by holding the Meta key and then typing f and b,
respectively. On displays without the Meta key, these functions are invoked by typing C-\

f and C-\ b (C-\ simulates the Meta key in Insert state, as explained above).
The key C-z is sometimes also useful in Insert state: it allows you to execute a single

command in Vi state without leaving the Insert state! For instance, C-z d2w will delete the
next two words without leaving the Insert state.

When Viper is in Insert state, you will see <I> in the mode line.

1.3.4 Replace State

This state is entered through Vi replacement commands, such as C, cw, etc., or by typing
R. In Replace state, Viper puts <R> in the mode line to let you know which state is in effect.
If Replace state is entered through R, Viper stays in that state until the user hits 〈ESC〉. If
this state is entered via the other replacement commands, then Replace state is in effect
until you hit 〈ESC〉 or until you cross the rightmost boundary of the replacement region. In
the latter case, Viper changes its state from Replace to Insert (which you will notice by the
change in the mode line).

Since Viper runs under Emacs, it is possible to switch between buffers while in Replace
state. You can also move the cursor using the arrow keys (even on dumb terminals!) and
the mouse. Because of this freedom (which is unattainable in regular Vi), it is possible to
take the cursor outside the replacement region. (This may be necessary for several reasons,
including the need to enable text selection and region-setting with the mouse.)

The issue then arises as to what to do when the user hits the 〈ESC〉 key. In Vi, this would
cause the text between cursor and the end of the replacement region to be deleted. But
what if, as is possible in Viper, the cursor is not inside the replacement region?

To solve the problem, Viper keeps track of the last cursor position while it was still
inside the replacement region. So, in the above situation, Viper would delete text between
this position and the end of the replacement region.

1.4 The Minibuffer

The Minibuffer is where commands are entered in. Editing can be done by commands
from Insert state, namely:

C-h Backspace

C-w Delete Word

C-u Erase line

C-v Quote the following character

Chapter 1: Overview of Viper 11

〈RET〉 Execute command

C-g and C-]

Emacs quit and abort keys. These may be necessary. See Section 1.3.2 [Vi
State], page 7, for an explanation.

M-p and M-n

These keys are bound to functions that peruse minibuffer history. The precise
history to be perused depends on the context. It may be the history of search
strings, Ex commands, file names, etc.

Most of the Emacs keys are functional in the Minibuffer. While in the Minibuffer, Viper
tries to make editing resemble Vi’s behavior when the latter is waiting for the user to type
an Ex command. In particular, you can use the regular Vi commands to edit the Minibuffer.
You can switch between the Vi state and Insert state at will, and even use the replace mode.
Initially, the Minibuffer comes up in Insert state.

Some users prefer plain Emacs bindings in the Minibuffer. To this end, set viper-vi-
style-in-minibuffer to nil in ‘.viper’. See Chapter 3 [Customization], page 21, to learn
how to do this.

When the Minibuffer changes Viper states, you will notice that the appearance of the
text there changes as well. This is useful because the Minibuffer has no mode line to tell
which Vi state it is in. The appearance of the text in the Minibuffer can be changed. See
Section 3.3 [Viper Specials], page 31, for more details.

1.5 Multiple Files in Viper

Viper can edit multiple files. This means, for example that you never need to suffer
through No write since last change errors. Some Viper elements are common over all
the files.

‘Textmarkers’
Textmarkers remember files and positions. If you set marker ‘a’ in file ‘foo’,
start editing file ‘bar’ and type ’a, then YOU WILL SWITCH TO FILE ‘foo’.
You can see the contents of a textmarker using the Viper command [<a-z>
where <a-z> are the textmarkers, e.g., [a to view marker ‘a’ .

‘Repeated Commands’
Command repetitions are common over files. Typing !! will repeat the last
! command whichever file it was issued from. Typing . will repeat the last
command from any file, and searches will repeat the last search. Ex commands
can be repeated by typing : 〈RET〉.Note: in some rare cases, that : 〈RET〉 may
do something dangerous. However, usually its effect can be undone by typing
u.

‘Registers’
Registers are common to files. Also, text yanked with y can be put back (p)
into any file. The Viper command]<a-z>, where <a-z> are the registers, can
be used to look at the contents of a register, e.g., type]a to view register ‘a’.
There is one difference in text deletion that you should be aware of. This
difference comes from Emacs and was adopted in Viper because we find it

Chapter 1: Overview of Viper 12

very useful. In Vi, if you delete a line, say, and then another line, these two
deletions are separated and are put back separately if you use the ‘p’ command.
In Emacs (and Viper), successive series of deletions that are not interrupted by
other commands are lumped together, so the deleted text gets accumulated and
can be put back as one chunk. If you want to break a sequence of deletions so
that the newly deleted text could be put back separately from the previously
deleted text, you should perform a non-deleting action, e.g., move the cursor
one character in any direction.

‘Absolute Filenames’
The current directory name for a file is automatically prepended to the file name
in any :e, :r, :w, etc., command (in Emacs, each buffer has a current directory).
This directory is inserted in the Minibuffer once you type space after :e, r, etc.
Viper also supports completion of file names and Ex commands (〈TAB〉), and
it keeps track of command and file history (M-p, M-n). Absolute filenames are
required less often in Viper.
You should be aware that Emacs interprets /foo/bar//bla as /bla and
/foo/~/bar as ~/bar. This is designed to minimize the need for erasing file
names that Emacs suggests in its prompts, if a suggested file name is not what
you wanted.
The command :cd will change the default directory for the current Emacs
buffer. The Ex command :e will interpret the filename argument in ‘csh’, by
default. See Chapter 3 [Customization], page 21, if you want to change this.

Currently undisplayed files can be listed using the :ar command. The command :n can be
given counts from the :ar list to switch to other files.

1.6 Unimplemented Features

Unimplemented features include:
• :ab and :una are not implemented. Both :map and :ab are considered obsolete, since

Emacs has much more powerful facilities for defining keyboard macros and abbrevia-
tions.

• :set option? is not implemented. The current :set can also be used to set Emacs
variables.

• :se list requires modification of the display code for Emacs, so it is not implemented.
A useful alternative is cat -t -e file. Unfortunately, it cannot be used directly inside
Emacs, since Emacs will obdurately change ‘^I’ back to normal tabs.

Chapter 2: Improvements over Vi 13

2 Improvements over Vi

Some common problems with Vi and Ex have been solved in Viper. This includes
better implementation of existing commands, new commands, and the facilities provided
by Emacs.

2.1 Basics

The Vi command set is based on the idea of combining motion commands with other
commands. The motion command is used as a text region specifier for other commands.
We classify motion commands into point commands and line commands.

The point commands are:
h, l, 0, $, w, W, b, B, e, E, (,), /, ?, ‘, f, F, t, T, %, ;, ,, ^

The line commands are:
j, k, +, -, H, M, L, {, }, G, ’, [[,]], []

If a point command is given as an argument to a modifying command, the region deter-
mined by the point command will be affected by the modifying command. On the other
hand, if a line command is given as an argument to a modifying command, the region de-
termined by the line command will be enlarged so that it will become the smallest region
properly containing the region and consisting of whole lines (we call this process expand-
ing the region), and then the enlarged region will be affected by the modifying command.
Text Deletion Commands (see Section 4.2.5 [Deleting Text], page 48), Change commands
(see Section 4.2.6 [Changing Text], page 49), even Shell Commands (see Section 4.6 [Shell
Commands], page 55) use these commands to describe a region of text to operate on. Thus,
type dw to delete a word, >} to shift a paragraph, or !’afmt to format a region from ‘point’
to textmarker ‘a’.

Viper adds the region specifiers ‘r’ and ‘R’. Emacs has a special marker called mark.
The text-area between the current cursor position point and the mark is called the region.
‘r’ specifies the raw region and ‘R’ is the expanded region (i.e., the minimal contiguous
chunk of full lines that contains the raw region). dr will now delete the region, >r will shift
it, etc. r,R are not motion commands, however. The special mark is set by m. and other
commands. See Section 4.2.2 [Marking], page 46, for more info.

Viper also adds counts to most commands for which it would make sense.
In the Overview chapter, some Multiple File issues were discussed (see Section 1.5 [Mul-

tiple Files in Viper], page 11). In addition to the files, Emacs has buffers. These can be seen
in the :args list and switched using :next if you type :set ex-cycle-through-non-files

t, or specify (setq ex-cycle-through-non-files t) in your ‘.viper’ file. See Chapter 3
[Customization], page 21, for details.

2.2 Undo and Backups

Viper provides multiple undo. The number of undo’s and the size is limited by the
machine. The Viper command u does an undo. Undo can be repeated by typing . (a
period). Another u will undo the undo, and further . will repeat it. Typing u does the first
undo, and changes the direction.

Chapter 2: Improvements over Vi 14

Since the undo size is limited, Viper can create backup files and auto-save files. It will
normally do this automatically. It is possible to have numbered backups, etc. For details,
see section “Backup and Auto-Save” in The GNU Emacs Manual

The results of the 9 previous changes are available in the 9 numeric registers, as in Vi.
The extra goody is the ability to view these registers, in addition to being able to access
them through p and M-y (See Section 1.3.3 [Insert State], page 9, for details.) The Viper
command] register will display the contents of any register, numeric or alphabetical.
The related command [textmarker will show the text around the textmarker. ‘register’
and ‘textmarker’ can be any letters from a through z.

2.3 History

History is provided for Ex commands, Vi searches, file names, pieces of text inserted
in earlier commands that use Insert or Replace state, and for destructive commands in Vi
state. These are useful for fixing those small typos that screw up searches and :s, and for
eliminating routine associated with repeated typing of file names or pieces of text that need
to be inserted frequently. At the : or / prompts in the Minibuffer, you can do the following:

M-p and M-n

To move to previous and next history items. This causes the history items to
appear on the command line, where you can edit them, or simply type Return
to execute.

M-r and M-s

To search backward and forward through the history.

〈RET〉 Type 〈RET〉 to accept a default (which is displayed in the prompt).

The history of insertions can be perused by typing C-c M-p and C-c M-n while in Insert
or Replace state. The history of destructive Vi commands can be perused via the same keys
when Viper is in Vi state. See Section 3.3 [Viper Specials], page 31, for details.

All Ex commands have a file history. For instance, typing :e, space and then M-p will
bring up the name of the previously typed file name. Repeatedly typing M-p, M-n, etc., will
let you browse through the file history.

Similarly, commands that have to do with switching buffers have a buffer history, and
commands that expect strings or regular expressions keep a history on those items.

2.4 Macros and Registers

Viper facilitates the use of Emacs-style keyboard macros. @# will start a macro definition.
As you type, the commands will be executed, and remembered (This is called “learn mode”
in some editors.) @register will complete the macro, putting it into ‘register’, where
‘register’ is any character from ‘a’ through ‘z’. Then you can execute this macro using
@register. It is, of course, possible to yank some text into a register and execute it using
@register. Typing @@, @RET, or @C-j will execute the last macro that was executed using
@register.

Viper will automatically lowercase the register, so that pressing the SHIFT key for @ will
not create problems. This is for @ macros and "p only. In the case of y, "Ayy will append
to register a. For [,],’,‘, it is an error to use a Uppercase register name.

Chapter 2: Improvements over Vi 15

The contents of a register can be seen by]register. ([textmarker will show the
contents of a textmarker).

The last keyboard macro can also be executed using *, and it can be yanked into a
register using @!register. This is useful for Emacs style keyboard macros defined using
C-x(and C-x). Emacs keyboard macros have more capabilities. See section “Keyboard
Macros” in The GNU Emacs Manual, for details.

Keyboard Macros allow an interesting form of Query-Replace: /pattern or n to go to
the next pattern (the query), followed by a Keyboard Macro execution @@ (the replace).

Viper also provides Vi-style macros. See Section 3.4 [Vi Macros], page 37, for details.

2.5 Completion

Completion is done when you type 〈TAB〉. The Emacs completer does not grok wildcards
in file names. Once you type a wildcard, the completer will no longer work for that file
name. Remember that Emacs interprets a file name of the form /foo//bar as /bar and
/foo/~/bar as ~/bar.

2.6 Improved Search

Viper provides buffer search, the ability to search the buffer for a region under the cursor.
You have to turn this on in ‘.viper’ either by calling

(viper-buffer-search-enable)

or by setting viper-buffer-search-char to, say, f3:
(setq viper-buffer-search-char ?g)

If the user calls viper-buffer-search-enable explicitly (the first method), then viper-
buffer-search-char will be set to g. Regardless of how this feature is enabled, the key
viper-buffer-search-char will take movement commands, like w,/,e, to find a region
and then search for the contents of that region. This command is very useful for searching
for variable names, etc., in a program. The search can be repeated by n or reversed by N.

Emacs provides incremental search. As you type the string in, the cursor will move to
the next match. You can snarf words from the buffer as you go along. Incremental Search
is normally bound to C-s and C-r. See Chapter 3 [Customization], page 21, to find out
how to change the bindings of C-r or C-s. For details, see section “Incremental Search” in
The GNU Emacs Manual

Viper also provides a query replace function that prompts through the Minibuffer. It is
invoked by the Q key in Vi state.

On a window display, Viper supports mouse search, i.e., you can search for a word by
clicking on it. See Section 3.3 [Viper Specials], page 31, for details.

Finally, on a window display, Viper highlights search patterns as it finds them. This
is done through what is known as faces in Emacs. The variable that controls how search
patterns are highlighted is viper-search-face. If you don’t want any highlighting at all,
put

(copy-face ’default ’viper-search-face)

Chapter 2: Improvements over Vi 16

in ‘~/.viper’. If you want to change how patterns are highlighted, you will have to change
viper-search-face to your liking. The easiest way to do this is to use Emacs customization
widget, which is accessible from the menubar. Viper customization group is located under
the Emulations customization group, which in turn is under the Editing group. All Viper
faces are grouped together under Viper’s Highlighting group.

Try it: it is really simple!

2.7 Abbreviation Facilities

It is possible in Emacs to define abbrevs based on the contents of the buffer. Sophisticated
templates can be defined using the Emacs abbreviation facilities. See section “Abbrevia-
tions” in The GNU Emacs Manual, for details.

Emacs also provides Dynamic Abbreviations. Given a partial word, Emacs will search
the buffer to find an extension for this word. For instance, one can type ‘Abbreviations’
by typing ‘A’, followed by a keystroke that completed the ‘A’ to ‘Abbreviations’. Repeated
typing will search further back in the buffer, so that one could get ‘Abbrevs’ by repeating
the keystroke, which appears earlier in the text. Emacs binds this to 〈ESC〉 /, so you will
have to find a key and bind the function dabbrev-expand to that key. Facilities like this
make Vi’s :ab command obsolete.

2.8 Movement and Markers

Viper can be set free from the line–limited movements in Vi, such as l refusing to move
beyond the line, 〈ESC〉 moving one character back, etc. These derive from Ex, which is a
line editor. If your ‘.viper’ contains

(setq viper-ex-style-motion nil)

the motion will be a true screen editor motion. One thing you must then watch out for
is that it is possible to be on the end-of-line character. The keys x and % will still work
correctly, i.e., as if they were on the last character.

The word-movement commands w, e, etc., and the associated deletion/yanking com-
mands, dw, yw, etc., can be made to understand Emacs syntax tables. If the variable
viper-syntax-preference is set to strict-vi then the meaning of word is the same as in
Vi. However, if the value is reformed-vi (the default) then the alphanumeric symbols will
be those specified by the current Emacs syntax table (which may be different for different
major modes) plus the underscore symbol _, minus some non-word symbols, like ’.;,|, etc.
Both strict-vi and reformed-vi work close to Vi in traditional cases, but reformed-vi
does a better job when editing text in non-Latin alphabets.

The user can also specify the value emacs, which would make Viper use exactly the
Emacs notion of word. In particular, the underscore may not be part of a word. Finally,
if viper-syntax-preference is set to extended, Viper words would consist of characters
that are classified as alphanumeric or as parts of symbols. This is convenient for writing
programs and in many other situations.

viper-syntax-preference is a local variable, so it can have different values for different
major modes. For instance, in programming modes it can have the value extended. In text

Chapter 2: Improvements over Vi 17

modes where words contain special characters, such as European (non-English) letters,
Cyrillic letters, etc., the value can be reformed-vi or emacs.

Changes to viper-syntax-preference should be done in the hooks to various major
modes by executing viper-set-syntax-preference as in the following example:

(viper-set-syntax-preference nil "emacs")

The above discussion of the meaning of Viper’s words concerns only Viper’s movement
commands. In regular expressions, words remain the same as in Emacs. That is, the
expressions \w, \>, \<, etc., use Emacs’ idea of what is a word, and they don’t look into the
value of variable viper-syntax-preference. This is because Viper doesn’t change syntax
tables in fear of upsetting the various major modes that set these tables.

Textmarkers in Viper remember the file and the position, so that you can switch files
by simply doing ’a. If you set up a regimen for using Textmarkers, this is very useful.
Contents of textmarkers can be viewed by [marker. (Contents of registers can be viewed
by]register).

2.9 New Commands

These commands have no Vi analogs.

C-x, C-c These two keys invoke many important Emacs functions. For example, if you
hit C-x followed by 2, then the current window will be split into 2. Except for
novice users, C-c is also set to execute an Emacs command from the current
major mode. 〈ESC〉 will do the same, if you configure 〈ESC〉 as Meta by setting
viper-no-multiple-ESC to nil in ‘.viper’. See Chapter 3 [Customization],
page 21. C-\ in Insert, Replace, or Vi states will make Emacs think Meta has
been hit.

\ Escape to Emacs to execute a single Emacs command. For instance, \ 〈ESC〉
will act like a Meta key.

Q Q is for query replace. By default, each string to be replaced is treated as a
regular expression. You can use (setq viper-re-query-replace nil) in your
‘.emacs’ file to turn this off. (For normal searches, :se nomagic will work.
Note that :se nomagic turns Regexps off completely, unlike Vi).

v

V

C-v These keys are used to visit files. v will switch to a buffer visiting file whose
name can be entered in the Minibuffer. V is similar, but will use a window
different from the current window. C-v is like V, except that a new frame (X
window) will be used instead of a new Emacs window.

If followed by a certain character ch, it becomes an operator whose argument
is the region determined by the motion command that follows (indicated as
<move>). Currently, ch can be one of c, C, g, q, and s. For instance, #qr will
prompt you for a string and then prepend this string to each line in the buffer.

c Change upper-case characters in the region to lower-case (downcase-region).
Emacs command M-l does the same for words.

Chapter 2: Improvements over Vi 18

C Change lower-case characters in the region to upper-case. For instance, # C

3 w will capitalize 3 words from the current point (upcase-region). Emacs
command M-u does the same for words.

g Execute last keyboard macro for each line in the region (viper-global-
execute).

q Insert specified string at the beginning of each line in the region (viper-quote-
region). The default string is composed of the comment character(s) appro-
priate for the current major mode.

s Check spelling of words in the region (spell-region). The function used for
spelling is determined from the variable viper-spell-function.

* Call last keyboard macro.

m . Set mark at point and push old mark off the ring

m<

m> Set mark at beginning and end of buffer, respectively.

m, Jump to mark and pop mark off the ring. See section “Mark” in The GNU
Emacs Manual, for more info.

] register

View contents of register

[textmarker

View filename and position of textmarker

@#

@register

@!

Begin/end keyboard macro. @register has a different meaning when used after
a @#. See Section 2.4 [Macros and Registers], page 14, for details

[] Go to end of heading.

g <movement command>
Search buffer for text delimited by movement command. The canonical example
is gw to search for the word under the cursor. See Section 2.6 [Improved Search],
page 15, for details.

C-g and C-]

Quit and Abort Recursive edit. These may be necessary on occasion. See
Section 1.3.2 [Vi State], page 7, for a reason.

C-c C-g Hitting C-c followed by C-g will display the information on the current buffer.
This is the same as hitting C-g in Vi, but, as explained above, C-g is needed
for other purposes in Emacs.

C-c / Without a prefix argument, this command toggles case-sensitive/case-
insensitive search modes and plain vanilla/regular expression search. With the
prefix argument 1, i.e., 1 C-c /, this toggles case-sensitivity; with the prefix

Chapter 2: Improvements over Vi 19

argument 2, toggles plain vanilla search and search using regular expressions.
See Section 3.3 [Viper Specials], page 31, for alternative ways to invoke this
function.

M-p and M-n

In the Minibuffer, these commands navigate through the minibuffer histories,
such as the history of search strings, Ex commands, etc.

C-c M-p and C-c M-n

In Insert or Replace state, these commands let the user peruse the history of
insertion strings used in previous insert or replace commands. Try to hit C-c M-

p or C-c M-n repeatedly and see what happens. See Section 3.3 [Viper Specials],
page 31, for more.
In Vi state, these commands let the user peruse the history of Vi-style destruc-
tive commands, such as dw, J, a, etc. By repeatedly typing C-c M-p or C-c

M-n you will cycle Viper through the recent history of Vi commands, displaying
the commands one by one. Once an appropriate command is found, it can be
executed by typing ‘.’.
Since typing C-c M-p is tedious, it is more convenient to bind an appropriate
function to a function key on the keyboard and use that key. See Section 3.3
[Viper Specials], page 31, for details.

Ex commands

The commands :args, :next, :pre behave differently. :pwd exists to get cur-
rent directory. The commands :b and :B switch buffers around. See Section 4.4
[File and Buffer Handling], page 52, for details. There are also the new com-
mands :RelatedFile and PreviousRelatedFile (which abbreviate to R and
P, respectively. See Section 3.3 [Viper Specials], page 31, for details.

Apart from the new commands, many old commands have been enhanced. Most notably,
Vi style macros are much more powerful in Viper than in Vi. See Section 3.4 [Vi Macros],
page 37, for details.

2.10 Useful Packages

Some Emacs packages are mentioned here as an aid to the new Viper user, to indicate
what Viper is capable of. A vast number comes with the standard Emacs distribution, and
many more exist on the net and on the archives.

This manual also mentions some Emacs features a new user should know about. The
details of these are found in the GNU Emacs Manual.

The features first. For details, look up the Emacs Manual.

‘Make’
Makes and Compiles can be done from the editor. Error messages will be parsed
and you can move to the error lines.

‘Shell’ You can talk to Shells from inside the editor. Your entire shell session can be
treated as a file.

Chapter 2: Improvements over Vi 20

‘Mail’ Mail can be read from and sent within the editor. Several sophisticated packages
exist.

‘Language Sensitive Editing’
Editing modes are written for most computer languages in existence. By con-
trolling indentation, they catch punctuation errors.

The packages, below, represents a drop in the sea of special-purpose packages that come
with standard distribution of Emacs.

‘Transparent FTP’
ange-ftp.el can ftp from the editor to files on other machines transparent to
the user.

‘RCS Interfaces’
vc.el for doing RCS commands from inside the editor

‘Directory Editor’
dired.el for editing contents of directories and for navigating in the file system.

‘Syntactic Highlighting’
font-lock.el for automatic highlighting various parts of a buffer using differ-
ent fonts and colors.

‘Saving Emacs Configuration’
desktop.el for saving/restoring configuration on Emacs exit/startup.

‘Spell Checker’
ispell.el for spell checking the buffer, words, regions, etc.

‘File and Buffer Comparison’
ediff.el for finding differences between files and for applying patches.

Emacs Lisp archives exist on ‘archive.cis.ohio-state.edu’ and ‘wuarchive.wustl.edu’

Chapter 3: Customization 21

3 Customization

Customization can be done in 2 ways.

• Elisp code in a ‘.viper’ file in your home directory. Viper loads ‘.viper’ just before
it does the binding for mode hooks. This is the recommended method.

• Elisp code in your ‘.emacs’ file before and after the (require ’viper) line. This
method is not recommended, unless you know what you are doing. Only two variables,
viper-mode and viper-custom-file-name are supposed to be customized in ‘.emacs’,
prior to loading Viper.

Most of Viper’s behavior can be customized via the interactive Emacs user interface. Choose
"Customize" from the menubar, click on "Editing", then on "Emulations". The customiza-
tion widget is self-explanatory. Once you are satisfied with your changes, save them into
a file and then include the contents of that file in the Viper customization repository,
‘.viper’ (except for viper-mode and viper-custom-file-name, which are supposed to go
into .emacs).

Some advanced customization cannot be accomplished this way, however, and has to
be done in Emacs Lisp. For the common cases, examples are provided that you can use
directly.

3.1 Rudimentary Changes

An easy way to customize Viper is to change the values of constants used in Viper. Here
is the list of the constants used in Viper and their default values. The corresponding :se
command is also indicated. (The symbols t and nil represent “true” and “false” in Lisp).

Viper supports both the abbreviated Vi variable names and their full names. Variable
completion is done on full names only. 〈TAB〉 and 〈SPC〉 complete variable names. Typing
‘=’ will complete the name and then will prompt for a value, if applicable. For instance,
:se au 〈SPC〉 will complete the command to :set autoindent; :se ta 〈SPC〉 will complete
the command and prompt further like this: :set tabstop = . However, typing :se ts 〈SPC〉
will produce a “No match” message because ts is an abbreviation for tabstop and Viper
supports completion on full names only. However, you can still hit 〈RET〉 or =, which will
complete the command like this: :set ts = and Viper will be waiting for you to type a
value for the tabstop variable. To get the full list of Vi variables, type :se 〈SPC〉 〈TAB〉.

viper-auto-indent nil
:se ai (:se autoindent)
:se ai-g (:se autoindent-global)

If t, enable auto indentation. by 〈RET〉, o or O command.

viper-auto-indent is a local variable. To change the value globally, use setq-
default. It may be useful for certain major modes to have their own values of
viper-auto-indent. This can be achieved by using setq to change the local
value of this variable in the hooks to the appropriate major modes.

:se ai changes the value of viper-auto-indent in the current buffer only; :se
ai-g does the same globally.

Chapter 3: Customization 22

viper-electric-mode t
If not nil, auto-indentation becomes electric, which means that 〈RET〉, O, and o

indent cursor according to the current major mode. In the future, this variable
may control additional electric features.
This is a local variable: setq changes the value of this variable in the current
buffer only. Use setq-default to change the value in all buffers.

viper-case-fold-search nil
:se ic (:se ignorecase)

If not nil, search ignores cases. This can also be toggled by quickly hitting /

twice.

viper-re-search nil
:se magic If not nil, search will use regular expressions; if nil then use vanilla search.

This behavior can also be toggled by quickly hitting / trice.

buffer-read-only
:se ro (:se readonly)

Set current buffer to read only. To change globally put (setq-default buffer-
read-only t) in your ‘.emacs’ file.

blink-matching-paren t
:se sm (:se showmatch)

Show matching parens by blinking cursor.

tab-width t (default setting via setq-default)
:se ts=value (:se tabstop=value)
:se ts-g=value (:se tabstop-global=value)

tab-width is a local variable that controls the width of the tab stops. To change
the value globally, use setq-default; for local settings, use setq.
The command :se ts sets the tab width in the current buffer only; it has no
effect on other buffers.
The command :se ts-g sets tab width globally, for all buffers where the tab is
not yet set locally, including the new buffers.
Note that typing 〈TAB〉 normally doesn’t insert the tab, since this key is usually
bound to a text-formatting function, indent-for-tab-command (which facili-
tates programming and document writing). Instead, the tab is inserted via the
command viper-insert-tab, which is bound to S-tab (shift + tab).
On some non-windowing terminals, Shift doesn’t modify the 〈TAB〉 key, so S-tab

behaves as if it were 〈TAB〉. In such a case, you will have to bind viper-insert-
tab to some other convenient key.

viper-shift-width 8
:se sw=value (:se shiftwidth=value)

The number of columns shifted by > and < commands.

viper-search-wrap-around t
:se ws (:se wrapscan)

If not nil, search wraps around the end/beginning of buffer.

Chapter 3: Customization 23

viper-search-scroll-threshold 2
If search lands within this many lines of the window top or bottom, the window
will be scrolled up or down by about 1/7-th of its size, to reveal the context. If
the value is negative—don’t scroll.

viper-tags-file-name "TAGS"
The name of the file used as the tag table.

viper-re-query-replace nil
If not nil, use reg-exp replace in query replace.

viper-want-ctl-h-help nil
If not nil, C-h is bound to help-command; otherwise, C-h is bound as usual in
Vi.

viper-vi-style-in-minibuffer t
If not nil, Viper provides a high degree of compatibility with Vi insert mode
when you type text in the Minibuffer; if nil, typing in the Minibuffer feels like
plain Emacs.

viper-no-multiple-ESC t
If you set this to nil, you can use 〈ESC〉 as Meta in Vi state. Normally, this
is not necessary, since graphical displays have separate Meta keys (usually on
each side of the space bar). On a dumb terminal, Viper sets this variable to
twice, which is almost like nil, except that double 〈ESC〉 beeps. This, too, lets
〈ESC〉 to be used as a Meta.

viper-ESC-keyseq-timeout 200 on tty, 0 on windowing display
Escape key sequences separated by this much delay (in milliseconds) are inter-
preted as command, ignoring the special meaning of 〈ESC〉 in VI. The default is
suitable for most terminals. However, if your terminal is extremely slow, you
might want to increase this slightly. You will know if your terminal is slow if
the 〈ESC〉 key sequences emitted by the arrow keys are interpreted as separately
typed characters (and thus the arrow keys won’t work). Making this value too
large will slow you down, so exercise restraint.

viper-fast-keyseq-timeout 200
Key sequences separated by this many milliseconds are treated as Vi-style key-
board macros. If the key sequence is defined as such a macro, it will be executed.
Otherwise, it is processed as an ordinary sequence of typed keys.
Setting this variable too high may slow down your typing. Setting it too low
may make it hard to type macros quickly enough.

viper-translate-all-ESC-keysequences t on tty, nil on windowing display
Normally, Viper lets Emacs translate only those ESC key sequences that are
defined in the low-level key-translation-map or function-key-map, such as those
emitted by the arrow and function keys. Other sequences, e.g., \\e/, are treated
as ESC command followed by a /. This is good for people who type fast and
tend to hit other characters right after they hit ESC. Other people like Emacs
to translate ESC sequences all the time. The default is to translate all sequences
only when using a dumb terminal. This permits you to use ESC as a meta key

Chapter 3: Customization 24

in insert mode. For instance, hitting ESC x fast would have the effect of typing
M-x. If your dumb terminal is not so dumb and understands the meta key, then
you probably will be better off setting this variable to nil. Try and see which
way suits you best.

viper-ex-style-motion t
Set this to nil, if you want l,h to cross lines, etc. See Section 2.8 [Movement
and Markers], page 16, for more info.

viper-ex-style-editing t
Set this to nil, if you want C-h and 〈DEL〉 to not stop at the beginning of a
line in Insert state, 〈X〉 and 〈x〉 to delete characters across lines in Vi command
state, etc.

viper-ESC-moves-cursor-back t
It t, cursor moves back 1 character when switching from insert state to vi state.
If nil, the cursor stays where it was before the switch.

viper-always t
t means: leave it to Viper to decide when a buffer must be brought up in
Vi state, Insert state, or Emacs state. This heuristics works well in virtually
all cases. nil means you either has to invoke viper-mode manually for each
buffer (or you can add viper-mode to the appropriate major mode hooks using
viper-load-hook).
This option must be set in the file ‘~/.viper’.

viper-custom-file-name "~/.viper"
File used for Viper-specific customization. Change this setting, if you want.
Must be set in ‘.emacs’ (not ‘.viper’!) before Viper is loaded. Note that you
have to set it as a string inside double quotes.

viper-spell-function ’ispell-region
Function used by the command #c<move> to spell.

viper-glob-function
The value of this variable is the function symbol used to expand wildcard sym-
bols. This is platform-dependent. The default tries to set this variable to work
with most shells, MS Windows, OS/2, etc. However, if it doesn’t work the
way you expect, you should write your own. Use viper-glob-unix-files and
viper-glob-mswindows-files in ‘viper-util.el’ as examples.
This feature is used to expand wildcards in the Ex command :e. Note that
Viper doesn’t support wildcards in the :r and :w commands, because file com-
pletion is a better mechanism.

ex-cycle-other-window t
If not nil, :n and :b will cycle through files in another window, if one exists.

ex-cycle-through-non-files nil
:n does not normally cycle through buffers. Set this to get buffers also.

viper-want-emacs-keys-in-insert
This is set to nil for user levels 1 and 2 and to t for user levels 3 and 4.
Users who specify level 5 are allowed to set this variable as they please (the

Chapter 3: Customization 25

default for this level is t). If set to nil, complete Vi compatibility is provided
in Insert state. This is really not recommended, as this precludes you from
using language-specific features provided by the major modes.

viper-want-emacs-keys-in-vi
This is set to nil for user level 1 and to t for user levels 2–4. At level 5, users
are allowed to set this variable as they please (the default for this level is t). If
set to nil, complete Vi compatibility is provided in Vi command state. Setting
this to nil is really a bad idea, unless you are a novice, as this precludes the
use of language-specific features provided by the major modes.

viper-keep-point-on-repeat t
If not nil, point is not moved when the user repeats the previous command by
typing ‘.’ This is very useful for doing repeated changes with the . key.

viper-repeat-from-history-key ’f12
Prefix key used to invoke the macros f12 1 and f12 2 that repeat the second-
last and the third-last destructive command. Both these macros are bound (as
Viper macros) to viper-repeat-from-history, which checks the second key
by which it is invoked to see which of the previous commands to invoke. Viper
binds f12 1 and f12 2 only, but the user can bind more in ‘~/.viper’. See
Section 3.4 [Vi Macros], page 37, for how to do this.

viper-keep-point-on-undo nil
If not nil, Viper tries to not move point when undoing commands. Instead, it
will briefly move the cursor to the place where change has taken place. However,
if the undone piece of text is not seen in window, then point will be moved to
the place where the change took place. Set it to t and see if you like it better.

viper-delete-backwards-in-replace nil
If not nil, 〈DEL〉 key will delete characters while moving the cursor backwards.
If nil, the cursor will move backwards without deleting anything.

viper-replace-overlay-face ’viper-replace-overlay-face
On a graphical display, Viper highlights replacement regions instead of putting
a ‘$’ at the end. This variable controls the so called face used to highlight the
region.
By default, viper-replace-overlay-face underlines the replacement on
monochrome displays and also lays a stipple over them. On color displays,
replacement regions are highlighted with color.
If you know something about Emacs faces and don’t like how Viper highlights
replacement regions, you can change viper-replace-overlay-face by speci-
fying a new face. (Emacs faces are described in the Emacs Lisp reference.) On
a color display, the following customization method is usually most effective:

(set-face-foreground viper-replace-overlay-face "DarkSlateBlue")
(set-face-background viper-replace-overlay-face "yellow")

For a complete list of colors available to you, evaluate the expression (x-
defined-colors). (Type it in the buffer *scratch* and then hit the C-j

key.

Chapter 3: Customization 26

viper-replace-overlay-cursor-color "Red"
Cursor color when it is inside the replacement region. This has effect only on
color displays and only when Emacs runs as an X application.

viper-insert-state-cursor-color nil
If set to a valid color, this will be the cursor color when Viper is in insert state.

viper-replace-region-end-delimiter "$"
A string used to mark the end of replacement regions. It is used only on TTYs
or if viper-use-replace-region-delimiters is non-nil.

viper-replace-region-start-delimiter ""
A string used to mark the beginning of replacement regions. It is used only on
TTYs or if viper-use-replace-region-delimiters is non-nil.

viper-use-replace-region-delimiters
If non-nil, Viper will always use viper-replace-region-end-delimiter and
viper-replace-region-start-delimiter to delimit replacement regions,
even on color displays (where this is unnecessary). By default, this variable is
non-nil only on TTYs or monochrome displays.

viper-allow-multiline-replace-regions t
If non-nil, multi-line text replacement regions, such as those produced by com-
mands c55w, 3C, etc., will stay around until the user exits the replacement mode.
In this variable is set to nil, Viper will emulate the standard Vi behavior, which
supports only intra-line replacement regions (and multi-line replacement regions
are deleted).

viper-toggle-key "\C-z"
Specifies the key used to switch from Emacs to Vi and back. Must be set in
‘.viper’. This variable can’t be changed interactively after Viper is loaded.
In Insert state, this key acts as a temporary escape to Vi state, i.e., it will set
Viper up so that the very next command will be executed as if it were typed in
Vi state.

viper-ESC-key "\e"
Specifies the key used to escape from Insert/Replace states to Vi. Must be set
in ‘.viper’. This variable cannot be changed interactively after Viper is loaded.

viper-buffer-search-char nil
Key used for buffer search. See Section 3.3 [Viper Specials], page 31, for details.

viper-surrounding-word-function ’viper-surrounding-word
The value of this variable is a function name that is used to determine what
constitutes a word clicked upon by the mouse. This is used by mouse search
and insert.

viper-search-face ’viper-search-face
Variable that controls how search patterns are highlighted when they are found.

viper-vi-state-hook nil
List of parameterless functions to be run just after entering the Vi command
state.

Chapter 3: Customization 27

viper-insert-state-hook nil
Same for Insert state. This hook is also run after entering Replace state.

viper-replace-state-hook nil
List of (parameterless) functions called just after entering Replace state (and
after all viper-insert-state-hook).

viper-emacs-state-hook nil
List of (parameterless) functions called just after switching from Vi state to
Emacs state.

viper-load-hook nil
List of (parameterless) functions called just after loading Viper. This is the last
chance to do customization before Viper is up and running.

You can reset some of these constants in Viper with the Ex command :set (when so
indicated in the table). Or you can include a line like this in your ‘.viper’ file:

(setq viper-case-fold-search t)

3.2 Key Bindings

Viper lets you define hot keys, i.e., you can associate keyboard keys such as F1, Help,
PgDn, etc., with Emacs Lisp functions (that may already exist or that you will write). Each
key has a "preferred form" in Emacs. For instance, the Up key’s preferred form is [up], the
Help key’s preferred form is [help], and the Undo key has the preferred form [f14]. You can
find out the preferred form of a key by typing M-x describe-key-briefly and then typing
the key you want to know about.

Under the X Window System, every keyboard key emits its preferred form, so you can
just type

(global-set-key [f11] ’calendar) ; L1, Stop
(global-set-key [f14] ’undo) ; L4, Undo

to bind L1 so it will invoke the Emacs Calendar and to bind L4 so it will undo changes.
However, on a dumb terminal or in an Xterm window, even the standard arrow keys may
not emit the right signals for Emacs to understand. To let Emacs know about those keys,
you will have to find out which key sequences they emit by typing C-q and then the key (you
should switch to Emacs state first). Then you can bind those sequences to their preferred
forms using function-key-map as follows:

(cond ((string= (getenv "TERM") "xterm")
(define-key function-key-map "\e[192z" [f11]) ; L1
(define-key function-key-map "\e[195z" [f14]) ; L4, Undo

The above illustrates how to do this for Xterm. On VT100, you would have to replace
"xterm" with "vt100" and also change the key sequences (the same key may emit different
sequences on different types of terminals).

The above keys are global, so they are overwritten by the local maps defined by the
major modes and by Viper itself. Therefore, if you wish to change a binding set by a major
mode or by Viper, read this.

Chapter 3: Customization 28

Viper users who wish to specify their own key bindings should be concerned only with
the following three keymaps: viper-vi-global-user-map for Vi state commands, viper-
insert-global-user-map for Insert state commands, and viper-emacs-global-user-map
for Emacs state commands (note: customized bindings for Emacs state made to viper-
emacs-global-user-map are not inherited by Insert state).

For more information on Viper keymaps, see the header of the file ‘viper.el’. If
you wish to change a Viper binding, you can use the define-key command, to modify
viper-vi-global-user-map, viper-insert-global-user-map, and viper-emacs-
global-user-map, as explained below. Each of these key maps affects the corresponding
Viper state. The keymap viper-insert-global-user-map also affects Viper’s Replace
state.
If you want to bind a key, say C-v, to the function that scrolls page down and to make 0

display information on the current buffer, putting this in ‘.viper’ will do the trick in Vi
state:

(define-key viper-vi-global-user-map "\C-v" ’scroll-down)

To set a key globally,
(define-key viper-emacs-global-user-map "\C-c m" ’smail)
(define-key viper-vi-global-user-map "0" ’viper-info-on-file)

Note, however, that this binding may be overwritten by other keymaps, since the global
keymap has the lowest priority. To make sure that nothing will override a binding in Emacs
state, you can write this:

(define-key viper-emacs-global-user-map "\C-c m" ’smail)

To customize the binding for C-h in Insert state:
(define-key viper-insert-global-user-map "\C-h" ’my-del-backwards-function)

Each Emacs command key calls some lisp function. If you have enabled the Help, (see
Section 3.1 [Rudimentary Changes], page 21) C-h k will show you the function for each
specific key; C-h b will show all bindings, and C-h m will provide information on the major
mode in effect. If Help is not enabled, you can still get help in Vi state by prefixing the
above commands with \, e.g., \ C-h k (or you can use the Help menu in the menu bar, if
Emacs runs under X).

Viper users can also change bindings on a per major mode basis. As with global bindings,
this can be done separately for each of the three main Viper states. To this end, Viper
provides the function viper-modify-major-mode.

To modify keys in Emacs state for my-favorite-major-mode, the user needs to create a
sparse keymap, say, my-fancy-map, bind whatever keys necessary in that keymap, and put

(viper-modify-major-mode ’dired-mode ’emacs-state my-fancy-map)

in ‘~/.viper’. To do the same in Vi and Insert states, you should use vi-state and
insert-state. Changes in Insert state are also in effect in Replace state. For instance,
suppose that the user wants to use dd in Vi state under Dired mode to delete files, u to
unmark files, etc. The following code in ‘~/.viper’ will then do the job:

(setq my-dired-modifier-map (make-sparse-keymap))
(define-key my-dired-modifier-map "dd" ’dired-flag-file-deletion)
(define-key my-dired-modifier-map "u" ’dired-unmark)
(viper-modify-major-mode ’dired-mode ’vi-state my-dired-modifier-map)

Chapter 3: Customization 29

A Vi purist may want to modify Emacs state under Dired mode so that k, l, etc., will
move around in directory buffers, as in Vi. Although this is not recommended, as these
keys are bound to useful Dired functions, the trick can be accomplished via the following
code:

(setq my-dired-vi-purist-map (make-sparse-keymap))
(define-key my-dired-vi-purist-map "k" ’viper-previous-line)
(define-key my-dired-vi-purist-map "l" ’viper-forward-char)
(viper-modify-major-mode ’dired-mode ’emacs-state my-dired-vi-purist-map)

Yet another way to customize key bindings in a major mode is to edit the list viper-
major-mode-modifier-list using the customization widget. (This variable is in the Viper-
misc customization group.) The elements of this list are triples of the form: (major-mode
viper-state keymap), where the keymap contains bindings that are supposed to be active in
the given major mode and the given viper-state.

Effects similar to key binding changes can be achieved by defining Vi keyboard macros
using the Ex commands :map and :map!. The difference is that multi-key Vi macros do
not override the keys they are bound to, unless these keys are typed in quick succession.
So, with macros, one can use the normal keys alongside with the macros. If per-mode
modifications are needed, the user can try both ways and see which one is more convenient.
See Section 3.4 [Vi Macros], page 37, for details.

Note: in major modes that come up in Emacs state by default, the aforesaid modifica-
tions may not take place immediately (but only after the buffer switches to some other Viper
state and then back to Emacs state). To avoid this, one should add viper-change-state-
to-emacs to an appropriate hook of that major mode. (Check the function viper-set-
hooks in ‘viper.el’ for examples.) However, if you have set viper-always to t, chances
are that you won’t need to perform the above procedure, because Viper will take care of
most useful defaults.

Finally, Viper has a facility that lets the user define per-buffer bindings, i.e., bindings
that are in effect in some specific buffers only. Unlike per-mode bindings described above,
per-buffer bindings can be defined based on considerations other than the major mode.
This is done via the function viper-add-local-keys, which lets one specify bindings that
should be in effect in the current buffer only and for a specific Viper state. For instance,

(viper-add-local-keys ’vi-state ’(("ZZ" . TeX-command-master)
("ZQ" . viper-save-kill-buffer)))

redefines ZZ to invoke TeX-command-master in vi-state and ZQ to save-then-kill the current
buffer. These bindings take effect only in the buffer where this command is executed. The
typical use of this function is to execute the above expression from within a function that is
included in a hook to some major mode. For instance, the above expression could be called
from a function, my-tex-init, which may be added to tex-mode-hook as follows:

(add-hook ’tex-mode-hook ’my-tex-init)

When TeX mode starts, the hook is executed and the above Lisp expression is evaluated.
Then, the bindings for ZZ and ZQ are changed in Vi command mode for all buffers in TeX
mode.

Another useful application is to bind ZZ to send-mail in the Mail mode buffers (the
specifics of this depend on which mail package you are using, rmail, mh-e, vm, etc. For
instance, here is how to do this for mh-e, the Emacs interface to MH:

Chapter 3: Customization 30

(defun mh-add-vi-keys ()
"Set up ZZ for MH-e and XMH."
(viper-add-local-keys ’vi-state ’(("ZZ" . mh-send-letter))))

(add-hook ’mh-letter-mode-hook ’mh-add-vi-keys)

You can also use viper-add-local-keys to set per buffer bindings in Insert state and
Emacs state by passing as a parameter the symbols insert-state and emacs-state, re-
spectively. As with global bindings, customized local bindings done to Emacs state are not
inherited by Insert state.

On rare occasions, local keys may be added by mistake. Usually this is done indirectly,
by invoking a major mode that adds local keys (e.g., shell-mode redefines 〈RET〉). In such a
case, exiting the wrong major mode won’t rid you from unwanted local keys, since these keys
are local to Viper state and the current buffer, not to the major mode. In such situations,
the remedy is to type M-x viper-zap-local-keys.

So much about Viper-specific bindings. See section “Customization” in The GNU Emacs
Manual, and the Emacs quick reference card for the general info on key bindings in Emacs.

3.2.1 Packages that Change Keymaps

Viper is designed to coexist with all major and minor modes of Emacs. This means
that bindings set by those modes are generally available with Viper (unless you explicitly
prohibit them by setting viper-want-emacs-keys-in-vi and viper-want-emacs-keys-
in-insert to nil). If viper-always is set to t, Viper will try to bring each buffer in the
Viper state that is most appropriate for that buffer. Usually, this would be the Vi state,
but sometimes it could be the Insert state or the Emacs state.

Some major mode bindings will necessarily be overwritten by Viper. Indeed, in Vi state,
most of the 1-character keys are used for Vi-style editing. This usually causes no problems
because most packages designed for editing files typically do not bind such keys. Instead,
they use key sequences that start with C-x and C-c. This is why it was so important for us
to free up C-x and C-c. It is common for language-specific major modes to bind 〈TAB〉 and
C-j (the line feed) keys to various formatting functions. This is extremely useful, but may
require some getting used to for a Vi user. If you decide that this feature is not for you,
you can re-bind these keys as explained earlier (see Chapter 3 [Customization], page 21).

Binding for 〈TAB〉 is one of the most unusual aspects of Viper for many novice users. In
Emacs, 〈TAB〉 is used to format text and programs, and is extremely useful. For instance,
hitting 〈TAB〉 causes the current line to be re-indented in accordance with the context. In
programming, this is very important, since improper automatic indentation would imme-
diately alert the programmer to a possible error. For instance, if a) or a " is missing
somewhere above the current line, 〈TAB〉 is likely to mis-indent the line.

For this reason, Viper doesn’t change the standard Emacs binding of 〈TAB〉, thereby
sacrificing Vi compatibility (except for users at level 1). Instead, in Viper, the key S-tab

(shift+ tab) is chosen to emulate Vi’s 〈TAB〉.
We should note that on some non-windowing terminals, Shift doesn’t modify the 〈TAB〉

key, so S-tab behaves as if it were 〈TAB〉. In such a case, you will have to bind viper-
insert-tab to some other convenient key.

Some packages, notably Dired, Gnus, Info, etc., attach special meaning to common keys
like 〈SPC〉, x, d, v, and others. This means that Vi command state is inappropriate for

Chapter 3: Customization 31

working with these packages. Fortunately, these modes operate on read-only buffers and
are designed not for editing files, but for special-purpose browsing, reading news, mail,
etc., and Vi commands are meaningless in these situations. For this reason, Viper doesn’t
force Vi state on such major modes—it brings them in Emacs state. You can switch to Vi
state by typing C-z if, for instance, you want to do Vi-style search in a buffer (although,
usually, incremental search, which is bound to C-s, is sufficient in these situations). But
you should then switch back to Emacs state if you plan to continue using these major modes
productively. You can also switch to Vi temporarily, to execute just one command. This is
done by typing C-c \. (In some of these modes, / and : are bound Vi-style, unless these
keys perform essential duties.)

If you would like certain major modes to come up in Emacs state rather than Vi state (but
Viper thinks otherwise), you should put these major modes on the viper-emacs-state-
mode-list list and delete them from viper-vi-state-mode-list. Likewise, you can force
Viper’s Insert state on a major mode by putting it in viper-insert-state-mode-list.

It is also possible to impose Vi on some major modes, even though they may bind com-
mon keys to specialized commands. This might make sense for modes that bind only a small
number of common keys. For instance, Viper subverts the Shell mode by changing the bind-
ings for C-m and C-d using viper-add-local-keys described in section on customization
(see Chapter 3 [Customization], page 21).

In some cases, some minor modes might override certain essential bindings in Vi com-
mand state. This is not a big priblem because this can happen only in the beginning, when
the minor mode kicks in. Typing M-x viper-mode will correct the situation. Viper knows
about several such minor modes and takes care of them, so the above trick is usually not
necessary. If you find that some minor mode, e.g., nasty-mode.el interferes with Viper,
putting the following in ‘.viper’ should fix the problem:

(viper-harness-minor-mode "nasty-mode")

The argument to viper-harness-minor-mode is the name of the file for the offending minor
mode with the suffixes ‘.el’ and ‘.elc’ removed.

It may not be always obvious which minor mode is at fault. The only guidance here is
to look into the file that defines the minor mode you are suspecting, say nasty-mode.el,
and see if it has a variable called nasty-mode-map. Then check if there is a statement of
the form

(define-key nasty-mode-map key function)

that binds the misbehaving keys. If so, use the above line to harness nasty-mode. If your
suspicion is wrong, no harm is done if you harness a minor mode that doesn’t need to be
harnessed.

3.3 Viper Specials

Viper extends Vi with a number of useful features. This includes various search functions,
histories of search strings, Ex commands, insertions, and Vi’s destructive commands. In
addition, Viper supports file name completion and history, completion of Ex commands and
variables, and many other features. Some of these features are explained in detail elsewhere
in this document. Other features are explained here.

(viper-buffer-search-enable)

Chapter 3: Customization 32

viper-buffer-search-char nil
Enable buffer search. Explicit call to viper-buffer-search-enable
sets viper-buffer-search-char to g. Alternatively, the user can set
viper-buffer-search-char in ‘.viper’ to a key sequence to be used for
buffer search. There is no need to call viper-buffer-search-enable in that
case.

viper-toggle-search-style
This function, bound to C-c /, lets one toggle case-sensitive and case-insensitive
search, and also switch between plain vanilla search and search via regular ex-
pressions. Without the prefix argument, the user is asked which mode to toggle.
With prefix argument 1, this toggles case-sensitivity. With prefix argument 2,
regular expression/vanilla search will be toggled.

However, we found that the most convenient way to toggle these options is to
bind a Vi macro to bind // to toggles case sensitivity and to /// to toggles
vanilla search. Thus, quickly hitting / twice will switch Viper from case sensitive
search to case-insensitive. Repeating this once again will restore the original
state. Likewise, quickly hitting / three times will switch you from vanilla-style
search to search via regular expressions. If you hit something other than / after
the first / or if the second / doesn’t follow quickly enough, then Viper will issue
the usual prompt / and will wait for input, as usual in Vi. If you don’t like
this behavior, you can “unrecord” these macros in your ‘~/.viper’ file. For
instance, if you don’t like the above feature, put this in ‘~/.viper’:

(viper-set-searchstyle-toggling-macros ’undefine)

Vi-isms in Emacs state
Some people find it useful to use the Vi-style search key, ‘/’, to invoke search
in modes which Viper leaves in emacs-state. These modes are: dired-mode,
mh-folder-mode, gnus-group-mode, gnus-summary-mode, Info-mode, and
Buffer-menu-mode (more may be added in the future). So, in the above
modes, Viper binds ‘/’ so that it will behave Vi-style. Furthermore, in those
major modes, Viper binds ‘:’ to invoke ex-style commands, like in vi-state.
And, as described above, ‘//’ and ‘///’ get bound to Vi-style macros that
toggle case-insensitivity and regexp-search.

If you don’t like these features—which I don’t really understand—you can un-
bind ‘/’ and ‘:’ in viper-dired-modifier-map (for Dired) or in viper-slash-
and-colon-map, for other modes.

To unbind the macros ‘//’ and ‘///’ for a major mode where you feel they
are undesirable, execute viper-set-emacs-state-searchstyle-macros with
a non-nil argument. This can be done either interactively, by supplying a prefix
argument, or by placing

(viper-set-emacs-state-searchstyle-macros ’undefine)

in the hook to the major mode (e.g., dired-mode-hook). See Section 3.4 [Vi
Macros], page 37, for more information on Vi macros.

viper-heading-start

Chapter 3: Customization 33

viper-heading-end
Regular Expressions for [[and]]. Note that Emacs defines Regexps for para-
graphs and sentences. See section “Paragraphs and Sentences” in The GNU
Emacs Manual, for details.

M-x viper-set-expert-level
Change your user level interactively.

viper-smart-suffix-list ’("" "tex" "c" "cc" "el" "p")
Viper supports Emacs-style file completion when it prompts the user for a file
name. However, in many cases, the same directory may contain files with
identical prefix but different suffixes, e.g., prog.c, prog.o, paper.tex, paper.dvi.
In such cases, completion will stop at the ‘.’. If the above variable is a list of
strings representing suffixes, Viper will try these suffixes in the order listed and
will check if the corresponding file exists.
For instance, if completion stopped at ‘paper.’ and the user typed 〈RET〉, then
Viper will check if the files ‘paper.’, ‘paper.tex’, ‘paper.c’, etc., exist. It will
take the first such file. If no file exists, Viper will give a chance to complete
the file name by typing the appropriate suffix. If ‘paper.’ was the intended file
name, hitting return will accept it.
To turn this feature off, set the above variable to nil.

viper-insertion-ring-size 14
Viper remembers what was previously inserted in Insert and Replace states.
Several such recent insertions are kept in a special ring of strings of size viper-
insertion-ring-size. If you enter Insert or Replace state you can reinsert
strings from this ring by typing C-c M-p or C-c M-n. The former will search
the ring in the direction of older insertions, and the latter will search in the
direction of newer insertions. Hitting C-c M-p or C-c M-n in succession will
undo the previous insertion from the ring and insert the next item on the ring.
If a larger ring size is needed, change the value of the above variable in the
‘~/.viper’ file.
Since typing these sequences of keys may be tedious, it is suggested that the
user should bind a function key, such as f31, as follows:

(define-key viper-insert-global-user-map [f31]
’viper-insert-prev-from-insertion-ring)

This binds f31 (which is usually R11 on a Sun workstation) to the function that
inserts the previous string in the insertion history. To rotate the history in the
opposite direction, you can either bind an unused key to viper-insert-next-
from-insertion-ring or hit any digit (1 to 9) then f31.
One should not bind the above functions to M-p or M-n, since this will interfere
with the Minibuffer histories and, possibly, other major modes.

viper-command-ring-size 14
Viper keeps track of the recent history of destructive commands, such as dw, i,
etc. In Vi state, the most recent command can be re-executed by hitting ‘.’, as
in Vi. However, repeated typing C-c M-p will cause Viper to show the previous
destructive commands in the minibuffer. Subsequent hitting ‘.’ will execute

Chapter 3: Customization 34

the command that was displayed last. The key C-c M-n will cycle through
the command history in the opposite direction. Since typing C-c M-p may be
tedious, it is more convenient to bind an appropriate function to an unused
function key on the keyboard and use that key. For instance, the following

(define-key viper-vi-global-user-map [f31]
’viper-prev-destructive-command)

binds the key f31 (which is usually R11 on a Sun workstation) to the function
that searches the command history in the direction of older commands. To
search in the opposite direction, you can either bind an unused key to viper-
next-destructive-command or hit any digit (1 to 9) then f31.
One should not bind the above functions to M-p or M-n, since this will interfere
with the Minibuffer histories and, possibly, other major modes.

viper-minibuffer-vi-face ’viper-minibuffer-vi-face

viper-minibuffer-insert-face ’viper-minibuffer-insert-face

viper-minibuffer-emacs-face ’viper-minibuffer-emacs-face
These faces control the appearance of the minibuffer text in the corresponding
Viper states. You can change the appearance of these faces through Emacs’
customization widget, which is accessible through the menubar.
Viper is located in this widget under the Emulations customization subgroup of
the Editing group. All Viper faces are grouped together in Viper’s Highlighting
customization subgroup.
Note that only the text you type in is affected by the above faces. Prompts and
Minibuffer messages are not affected.
Purists who do not like adornments in the minibuffer can always zap them by
putting

(copy-face ’default ’viper-minibuffer-vi-face)
(copy-face ’default ’viper-minibuffer-insert-face)
(copy-face ’default ’viper-minibuffer-emacs-face)

in the ‘~/.viper’ file or through the customization widget, as described above.
However, in that case, the user will not have any indication of the current Viper
state in the minibuffer. (This is important if the user accidentally switches to
another Viper state by typing 〈ESC〉 or C-z).

M-x viper-go-away
Make Viper disappear from the face of your running Emacs instance. If your
fingers start aching again, M-x viper-mode might save your day.

M-x toggle-viper-mode
Toggle Viperization of Emacs on and off.

Viper provides some support for multi-file documents and programs. If a document
consists of several files we can designate one of them as a master and put the following at
the end of that file:

;;; Local Variables:
;;; eval: (viper-setup-master-buffer "file1" "file2" "file3" "file4")
;;; End:

Chapter 3: Customization 35

where file1 to file4 are names of files related to the master file. Next time, when
the master file is visited, the command viper-setup-master-buffer will be evaluated
and the above files will be associated with the master file. Then, the new Ex command
:RelatedFile (abbr. :R) will display files 1 to 4 one after another, so you can edit them.
If a file is not in any Emacs buffer, it will be visited. The command PreviousRelatedFile

(abbr., :P) goes through the file list in the opposite direction.
These commands are akin to :n and :N, but they allow the user to focus on relevant files

only.
Note that only the master file needs to have the aforementioned block of commands. Also,

";;;" above can be replaced by some other markers. Semicolon is good for Lisp programs,
since it is considered a comment designator there. For LaTeX, this could be "%%%", and
for C the above block should be commented out.

Even though these commands are sometimes useful, they are no substitute for the pow-
erful tag table facility of Emacs. Viper’s :tag command in a primitive interface to Emacs
tags. See section “Tags” in The Gnu Emacs Manual, for more information on tags.

The following two commands are normally bound to a mouse click and are part of Viper.
They work only if Emacs runs as an application under X Windows (or under some other
window system for which a port of GNU Emacs 20 is available). Clicking the mouse when
Emacs is invoked in an Xterm window (using emacs -nw) will do no good.

viper-mouse-search-key (meta shift 1)
This variable controls the mouse-search feature of Viper. The default value
states that holding Meta and Shift keys while clicking mouse button 1 should
initiate search for a region under the mouse pointer (defined below). This
command can take a prefix argument, which indicates the occurrence of the
pattern to search for.
Note: while loading initially, Viper binds this mouse action only if it is not
already bound to something else. If you want to use the mouse-search feature,
and the Meta-Shift-Mouse-1 mouse action is already bound to something else,
you can rebind the mouse-search feature by setting viper-mouse-search-key
to something else in your ~/.viper file:

(setq viper-mouse-search-key ’(meta 1))

This would bind mouse search to the action invoked by pressing the Meta key
and clicking mouse button 1. The allowed values of viper-mouse-search-key
are lists that contain a mouse-button number (1,2, or 3) and any combination
of the words ‘control’, ‘meta’, and ‘shift’.
If the requested mouse action (e.g., (meta 1)) is already taken for other purposes
then you have to confirm your intention by placing the following command in
~/.viper after setting viper-mouse-search-key:

(viper-bind-mouse-search-key ’force)

You can also change this setting interactively, through the customization widget
of Emacs (choose option "Customize.Customize Group" from the menubar).
The region that is chosen as a pattern to search for is determined as follows. If
search is invoked via a single click, Viper chooses the region that lies between
the beginning of the “word” under the pointer (“word” is understood in Vi

Chapter 3: Customization 36

sense) and the end of that word. The only difference with Vi’s words is that in
Lisp major modes ‘-’ is considered an alphanumeric symbol. This is done for
the convenience of working with Lisp symbols, which often have an ‘-’ in them.
Also, if you click on a non-alphanumeric character that is not a word separator
(in Vi sense) then this character will also be considered alphanumeric, provided
that it is adjacent (from either side) to an alphanumeric character. This useful
feature gives added control over the patterns selected by the mouse click.

On a double-click, the region is determined by the beginning of the current
Vi’s “Word” (i.e., the largest non-separator chunk of text) and the End of that
“Word” (as determined by the E command).

On a triple-click, the region consists of the entire line where the click occurred
with all leading and trailing spaces and tabs removed.

viper-mouse-insert-key (meta shift 2)
This variable controls the mouse-insert feature of Viper. The above default
value states that holding Meta and Shift keys while clicking mouse button 2
should insert the region surrounding the mouse pointer. The rules defining this
region are the same as for mouse-search. This command takes an optional prefix
argument, which indicates how many such regions to snarf from the buffer and
insert. (In case of a triple-click, the prefix argument is ignored.)

Note: while loading initially, Viper binds this mouse action only if it not already
bound to something else. If you want to use this feature and the default mouse
action is already bound, you can rebind mouse-insert by placing this command
in ~/.viper:

(setq viper-mouse-insert-key ’(meta 2))

If you want to bind mouse-insert to an action even if this action is already taked
for other purposes in Emacs, then you should add this command to ~/.viper,
after setting viper-mouse-insert-key:

(viper-bind-mouse-insert-key ’force)

This value can also be changed via the Emacs customization widget at the
menubar.

viper-multiclick-timeout
This variable controls the rate at which double-clicking must occur for the
purpose of mouse search and mouse insert. By default, this is set to double-
click-time in Emacs and to mouse-track-multi-click-time milliseconds in
XEmacs.

Note: The above functions search and insert in the selected window of the latest active
frame. This means that you can click in another window or another frame and have search
or insertion done in the frame and window you just left. This lets one use these functions in a
multi-frame configuration. However, this may require some getting used to. For instance, if
you are typing in a frame, A, and then move the mouse to frame B and click to invoke mouse
search, search (or insertion) will be performed in frame A. To perform search/insertion in
frame B, you will first have to shift focus there, which doesn’t happen until you type a
character or perform some other action in frame B—mouse search doesn’t shift focus.

Chapter 3: Customization 37

If you decide that you don’t like the above feature and always want search/insertion
be performed in the frame where the click occurs, don’t bind (and unbind, if necessary)
viper-mouse-catch-frame-switch from the mouse event it is bound to.

Mouse search is integrated with Vi-style search, so you can repeat it with n and N. It
should be also noted that, while case-sensitivity of search in Viper is controlled by the
variable viper-case-fold-search, the case of mouse search is controlled by the Emacs
variable case-fold-search, which may be set differently from viper-case-fold-search.
Therefore, case-sensitivity of mouse search may be different from that of the usual Vi-style
search.

Finally, if the way Viper determines the word to be searched for or to be inserted is
not what you want, there is a variable, viper-surrounding-word-function, which can be
changed to indicate another function for snarfing words out of the buffer. The catch is that
you will then have to write such a function and make it known to your Emacs. The function
viper-surrounding-word in ‘viper.el’ can be used as a guiding example.

3.4 Vi Macros

Viper supports much enhanced Vi-style macros and also facilitates the use of Emacs-
style macros. To define a temporary macro, it is generally more convenient to use Emacs
keyboard macro facility. Emacs keyboard macros are usually defined anonymously, and the
latest macro can be executed by typing C-x e (or *, if Viper is in Vi state). If you need to
use several temporary macros, Viper lets you save them to a register (a lowercase letter);
such macros can then be executed by typing @a in Vi state (if a macro was previously saved
in register a). See Section 2.4 [Macros and Registers], page 14, for details.

If, however, you need to use a macro regularly, it must be given a permanent name and
saved. Emacs manual explains how to do this, but invocation of named Emacs macros is
quite different from Vi’s. First, invocation of permanent Emacs macros takes time because
of the extra keys. Second, binding such macros to function keys, for fast access, hogs
valuable real estate on the keyboard.

Vi-style macros are better in that respect, since Vi lets the user overload the meaning
of key sequences: keys typed in fast succession are treated specially, if this key sequence is
bound to a macro.

Viper provides keyboard macros through the usual Ex commands, :map and :map!. Vi-
style macros are much more powerful in Viper than they are in the original Vi and in other
emulators. This is because Viper implements an enhanced vi-style interface to the powerful
Emacs keyboard macro facility.

First, any Emacs command can be executed while defining a macro, not just the Vi
commands. In particular, the user can invoke Emacs commands via M-x command-name or
by pressing various function keys on the keyboard. One can even use the mouse, although
this is usually not useful and is not recommended (and macros defined with the use of the
mouse cannot be saved in command history and in the startup file, for future use).

Macros defined by mixing Vi and Emacs commands are represented as vectors. So, don’t
be confused when you see one (usually through the history of Ex commands). For instance,
if gg is defined by typing l, the up-arrow key and M-x next-line, its definition will look
as follows in Emacs:

Chapter 3: Customization 38

[l up (meta x) n e x t - l i n e return]

Second, Viper macros are defined in a WYSIWYG style. This means that commands are
executed as you type them, so you can see precisely what is being defined. Third, macros
can be bound to arbitrary sequences of keys, not just to printable keys. For instance, one
can define a macro that will be invoked by hitting f3 then f2 function keys. (The keys
delete and backspace are excluded; also, a macro invocation sequence can’t start with
〈ESC〉. Some other keys, such as f1 and help, can’t be bound to macros under Emacs, since
they are bound in key-translation-map, which overrides any other binding the user gives
to keys. In general, keys that have a binding in key-translation-map can’t be bound to
a macro.)

Fourth, in Viper, one can define macros that are specific to a given buffer, a given
major mode, or macros that are defined for all buffers. In fact, the same macro name can
have several different definitions: one global, several definitions for various major modes,
and definitions for various specific buffers. Buffer-specific definitions override mode-specific
definitions, which, in turn, override global definitions.

As if all that is not enough, Viper (through its interface to Emacs macros) lets the
user define keyboard macros that ask for confirmation or even prompt the user for input
and then continue. To do this, one should type C-x q (for confirmation) or C-u C-x q (for
prompt). For details, see section “Customization” in The GNU Emacs Manual

When the user finishes defining a macro (which is done by typing C-x) — a departure
from Vi), you will be asked whether you want this macro to be global, mode-specific, or
buffer-specific. You will also be given a chance to save the macro in your ‘~/.viper’ file.
This is the easiest way to save a macro and make it permanently available. If you work
your startup files with bare hands, here is how Viper saves the above macro so that it will
be available in Viper’s Insert state (and Replace state) in buffer my-buf only:

(viper-record-kbd-macro "gg" ’insert-state
[l up (meta x) n e x t - l i n e return]
"my-buf")

To do the same for Vi state and all buffers with the major mode cc-mode, use:
(viper-record-kbd-macro "gg" ’vi-state

[l up (meta x) n e x t - l i n e return]
’cc-mode)

Both macro names and macro definitions are vectors of symbols that denote keys on the
keyboard. Some keys, like \, , or digit-keys must be escaped with a backslash. Modified
keys are represented as lists. For instance, holding Meta and Control and pressing f4 is
represented as (control meta f4). If all members of a vectors are printable characters (or
sequences, such as \e, \t, for 〈ESC〉 and 〈TAB〉), then they can also be represented as strings:

(viper-record-kbd-macro "aa" ’vi-state "aaa\e" "my-buffer")

Thus, typing aa fast in Vi state will switch Viper to Insert state (due to the first a), insert
aa, and then it will switch back to Vi state. All this will take effect only in the buffer named
my-buffer.

Note that the last argument to viper-record-kbd-macro must be either a string (a
buffer name), a symbol representing a major mode, or t; the latter says that the macro is
to be defined for all buffers (which is how macros are defined in original Vi).

Chapter 3: Customization 39

For convenience, Viper also lets you define Vi-style macros in its Emacs state. There is
no Ex command, like :map and :map! for doing this, but the user can include such a macro
in the ‘~/.viper’ file. The only thing is that the viper-record-kbd-macro command
should specify emacs-state instead of vi-state or insert-state.

The user can get rid of a macro either by using the Ex commands :unmap and :unmap!

or by issuing a call to viper-unrecord-kbd-macro. The latter is more powerful, since it
can delete macros even in emacs-state. However, viper-unrecord-kbd-macro is usually
needed only when the user needs to get rid of the macros that are already predefined in
Viper. The syntax is:

(viper-unrecord-kbd-macro macro state)

The second argument must be vi-state, insert-state, or emacs-state. The first argu-
ment is a name of a macro. To avoid mistakes in specifying names of existing macros, type
M-x viper-describe-kbd-macros and use a name from the list displayed by this command.

If an error occurs during macro definition, Emacs aborts the process, and it must be
repeated. This is analogous to Vi, except that in Vi the user doesn’t know there is an
error until the macro is actually run. All that means that in order for a definition to be
successful, the user must do some simple planning of the process in advance, to avoid errors.
For instance, if you want to map gg to llll in Vi state, you must make sure that there is
enough room on the current line. Since l moves the cursor forward, it may signal an error
on reaching the end of line, which will abort the definition.

These precautions are necessary only when defining macros; they will help avoid the
need to redo the job. When macros are actually run, an error during the execution will
simply terminate the current execution (but the macro will remain mapped).

A macro name can be a string of characters or a vector of keys. The latter makes it
possible to define macros bound to, say, double-hits on a function key, such as up or f13.
This is very useful if you run out of function keys on your keyboard; it makes Viper macro
facility a keyboard doubler, so to speak.

Elsewhere (See Section 3.2 [Key Bindings], page 27, for details), we review the standard
Emacs mechanism for binding function keys to commands. For instance,

(global-set-key [f13] ’repeat-complex-command)

binds the key f13 to the Emacs function that repeats the last minibuffer command. Under
Viper, however, you may still use this key for additional purposes, if you bind, say, a double-
hitting action for that key to some other function. Emacs doesn’t allow the user to do that,
but Viper does this through its keyboard macro facility. To do this, type :map first. When
you are asked to enter a macro name, hit f13 twice, followed by 〈RET〉 or 〈SPC〉.

Emacs will now start the mapping process by actually executing Vi and Emacs com-
mands, so that you could see what will happen each time the macro is executed. Suppose
now we wanted to bind the key sequence f13 f13 to the command eval-last-sexp. To
accomplish this, we can type M-x eval-last-sexp followed by C-x). If you answer posi-
tively to Viper’s offer to save this macro in ‘~/.viper’ for future uses, the following will be
inserted in that file:

(viper-record-kbd-macro [f16 f16] ’vi-state
[(meta x) e v a l - l a s t - s e x p]
’lisp-interaction-mode)

Chapter 3: Customization 40

To illustrate the above point, Viper provides two canned macros, which, by default, are
bound to [f12 \1] and [f12 \2] (invoked by typing f12 then 1 and 2, respectively). These
macros are useful shortcuts to Viper’s command ring history. The first macro will execute
the second-last destructive command (the last one is executed by ., as usual). The second
macro executes the third-last command.

If you need to go deeper into the command history, you will have to use other commands,
as described earlier in this section; or you can bind, say, f12 \3 like this:

(viper-record-kbd-macro [f12 \3] ’vi-state
[(meta x) r e p e a t - f r o m - h i s t o r y]
t)

Note that even though the macro uses the function key f12, the key is actually free and
can still be bound to some Emacs function via define-key or global-set-key.

Viper allows the user to define macro names that are prefixes of other macros. For
instance, one can define [[and [[[[to be macros. If you type the exact sequence of such
keys and then pause, Viper will execute the right macro. However, if you don’t pause and,
say, type [[[[text then the conflict is resolved as follows. If only one of the key sequences,
[[or [[[[has a definition applicable to the current buffer, then, in fact, there is no conflict
and the right macro will be chosen. If both have applicable definitions, then the first one
found will be executed. Usually this is the macro with a shorter name. So, in our case,
[[[[text will cause the macro [[to be executed twice and then the remaining keys, t e x

t, will be processed.
When defining macros using :map or :map!, the user enters the actually keys to be used

to invoke the macro. For instance, you should hit the actual key f6 if it is to be part of
a macro name; you do not write f 6. When entering keys, Viper displays them as strings
or vectors (e.g., "abc" or [f6 f7 a]). The same holds for unmapping. Hitting 〈TAB〉 while
typing a macro name in the :unmap or :unmap! command will cause name completion.
Completions are displayed as strings or vectors. However, as before, you don’t actually
type ‘"’, ‘[’, or ‘]’ that appear in the completions. These are meta-symbols that indicate
whether the corresponding macro name is a vector or a string.

One last difference from Vi: Vi-style keyboard macros cannot be defined in terms of
other Vi-style keyboard macros (but named Emacs macros are OK). More precisely, while
defining or executing a macro, the special meaning of key sequences (as Vi macros) is
ignored. This is because it is all too easy to create an infinite loop in this way. Since Viper
macros are much more powerful than Vi’s it is impossible to detect such loops. In practice,
this is not really a limitation but, rather, a feature.

We should also note that Vi macros are disabled in the Minibuffer, which helps keep
some potential troubles away.

The rate at which the user must type keys in order for them to be recognized as a
timeout macro is controlled by the variable viper-fast-keyseq-timeout, which defaults
to 200 milliseconds.

For the most part, Viper macros defined in ‘~/.viper’ can be shared between X and TTY
modes. The problem with TTY may be that the function keys there generate sequences of
events instead of a single event (as under a window system). Emacs maps some of these
sequences back to the logical keys (e.g., the sequences generated by the arrow keys are
mapped to up, left, etc.). However, not all function keys are mapped in this way. Macros

Chapter 3: Customization 41

that are bound to key sequences that contain such unmapped function keys have to be
redefined for TTY’s (and possibly for every type of TTY you may be using). To do this,
start Emacs on an appropriate TTY device and define the macro using :map, as usual.

Finally, Viper provides a function that conveniently displays all macros currently defined.
To see all macros along with their definitions, type M-x viper-describe-kbd-macros.

Chapter 4: Commands 42

4 Commands

This section is a semi-automatically bowdlerized version of the Vi reference created by
‘maart@cs.vu.nl’ and others. It can be found on the Vi archives. This reference has been
adapted for Viper.

4.1 Groundwork

The VI command set is based on the idea of combining motion commands with other
commands. The motion command is used as a text region specifier for other commands.
We classify motion commands into point commands and line commands.

The point commands are:
h, l, 0, $, w, W, b, B, e, E, (,), /, ?, ‘, f, F, t, T, %, ;, ,, ^

The line commands are:
j, k, +, -, H, M, L, {, }, G, ’, [[,]], []

Text Deletion Commands (see Section 4.2.5 [Deleting Text], page 48), Change commands
(see Section 4.2.6 [Changing Text], page 49), even Shell Commands (see Section 4.6 [Shell
Commands], page 55) use these commands to describe a region of text to operate on.

Viper adds two region descriptors, r and R. These describe the Emacs regions (see
Section 2.1 [Basics], page 13), but they are not movement commands.

The command description uses angle brackets ‘<>’ to indicate metasyntactic variables,
since the normal conventions of using simple text can be confusing with Viper where the
commands themselves are characters. Watch out where < shift commands and <count> are
mentioned together!!!

‘<move>’ refers to the above movement commands, and ‘<a-z>’ refers to registers or
textmarkers from ‘a’ to ‘z’. Note that the ‘<move>’ is described by full move commands,
that is to say they will take counts, and otherwise behave like normal move commands.
‘<address>’ refers to Ex line addresses, which include

. <No address>
Current line

.+n .-n Add or subtract for current line

number Actual line number, use .= to get the line number

’<a-z> Textmarker

$ Last line

x,y Where x and y are one of the above

% For the whole file, same as (1,$).

/<pat>/
?<pat>? Next or previous line with pattern <pat>.

Note that the pattern is allowed to contain newline character (inserted as C-

qC-j). Therefore, one can search for patterns that span several lines.

Chapter 4: Commands 43

Note that ‘%’ is used in Ex commands :e and :r <shell-cmd> to mean current file. If
you want a ‘%’ in your command, it must be escaped as ‘\%’. Note that :w and the regular
:r <file> command doesn’t support the meta symbols ‘%’ and ‘#’, because file history is
a better mechanism. Similarly, ‘#’ expands to the previous file. The previous file is the
first file in :args listing. This defaults to previous window in the VI sense if you have one
window only.
Others like ‘<args> -- arguments’, ‘<cmd> -- command’ etc. should be fairly obvious.
Common characters referred to include:

<sp> Space

<ht> Tab

<lf> Linefeed

<esc> Escape

<cr> Return, Enter

We also use ‘word’ for alphanumeric/non-alphanumeric words, and ‘WORD’ for whitespace
delimited words. ‘char’ refers to any ASCII character, ‘CHAR’ to non-whitespace character.
Brackets ‘[]’ indicate optional parameters; ‘<count>’ also optional, usually defaulting to 1.
Brackets are elided for ‘<count>’ to eschew obfuscation.

Viper’s idea of Vi’s words is slightly different from Vi. First, Viper words understand
Emacs symbol tables. Therefore, all symbols declared to be alphanumeric in a symbol table
can automatically be made part of the Viper word. This is useful when, for instance, editing
text containing European, Cyrillic, Japanese, etc., texts.

Second, Viper lets you depart from Vi’s idea of a word by changing the a syntax prefer-
ence via the customization widget (the variable viper-syntax-preference) or by executing
viper-set-syntax-preference interactively.

By default, Viper syntax preference is reformed-vi, which means that Viper considers
only those symbols to be part of a word that are specified as word-symbols by the current
Emacs syntax table (which may be different for different major modes) plus the underscore
symbol _, minus the symbols that are not considered words in Vi (e.g., ‘,’,;, etc.), but may
be considered as word-symbols by various Emacs major modes. Reformed-Vi works very
close to Vi, and it also recognizes words in other alphabets. Therefore, this is the most
appropriate mode for editing text and is likely to fit all your needs.

You can also set Viper syntax preference to strict-vi, which would cause Viper to view
all non-English letters as non-word-symbols.

You can also specify emacs as your preference, which would make Viper use exactly the
same notion of a word as Emacs does. In particular, the underscore may not be part of a
word in some major modes.

Finally, if viper-syntax-preference is set to extended, Viper words would consist of
characters that are classified as alphanumeric or as parts of symbols. This is convenient for
editing programs.

viper-syntax-preference is a local variable, so it can have different values for different
major modes. For instance, in programming modes it can have the value extended. In text
modes where words contain special characters, such as European (non-English) letters,

Chapter 4: Commands 44

Cyrillic letters, etc., the value can be reformed-vi or emacs. If you consider using different
syntactic preferences for different major modes, you should execute, for example,

(viper-set-syntax-preference nil "extended")

in the appropriate major mode hooks.
The above discussion concerns only the movement commands. In regular expressions,

words remain the same as in Emacs. That is, the expressions \w, \>, \<, etc., use Emacs’
idea of what is a word, and they don’t look into the value of variable viper-syntax-
preference. This is because Viper avoids changing syntax tables in order to not thwart
the various major modes that set these tables.

The usual Emacs convention is used to indicate Control Characters, i.e C-h for Control-
h. Do not confuse this to mean the separate characters C - h!!! The ^ is itself, never used
to indicate a Control character.

Finally, we note that Viper’s Ex-style commands can be made to work on the current
Emacs region. This is done by typing a digit argument before :. For instance, typing 1:

will propmt you with something like :123,135, assuming that the current region starts at
line 123 and ends at line 135. There is no need to type the line numbers, since Viper inserts
them automatically in front of the Ex command.

4.2 Text Handling

4.2.1 Move Commands

<count> h C-h

<count> chars to the left.

<count> j <lf> C-n

<count> lines downward.

<count> l <sp>
<count> chars to the right.

<count> k C-p

<count> lines upward.

<count> $ To the end of line <count> from the cursor.

<count> ^ To the first CHAR <count> - 1 lines lower.

<count> - To the first CHAR <count> lines higher.

<count> + <cr>
To the first CHAR <count> lines lower.

0 To the first char of the line.

<count> | To column <count>

<count> f<char>
<count> <char>s to the right (find).

<count> t<char>
Till before <count> <char>s to the right.

Chapter 4: Commands 45

<count> F<char>
<count> <char>s to the left.

<count> T<char>
Till after <count> <char>s to the left.

<count> ; Repeat latest f t F T <count> times.

<count> , Repeat latest f t F T <count> times in opposite direction.

<count> w <count> words forward.

<count> W <count> WORDS forward.

<count> b <count> words backward.

<count> B <count> WORDS backward.

<count> e To the end of word <count> forward.

<count> E To the end of WORD <count> forward.

<count> G Go to line <count> (default end-of-file).

<count> H To line <count> from top of the screen (home).

<count> L To line <count> from bottom of the screen (last).

M To the middle line of the screen.

<count>) <count> sentences forward.

<count> (<count> sentences backward.

<count> } <count> paragraphs forward.

<count> { <count> paragraphs backward.

<count>]]

To the <count>th heading.

<count> [[

To the <count>th previous heading.

<count> []

To the end of <count>th heading.

m<a-z> Mark the cursor position with a letter.

‘<a-z> To the mark.

’<a-z> To the first CHAR of the line with the mark.

[<a-z> Show contents of textmarker.

]<a-z> Show contents of register.

‘‘ To the cursor position before the latest absolute jump (of which are examples
/ and G).

’’ To the first CHAR of the line on which the cursor was placed before the latest
absolute jump.

Chapter 4: Commands 46

<count> /<string>
To the <count>th occurrence of <string>.

<count> /<cr>
To the <count>th occurrence of <string> from previous / or ?.

<count> ?<string>
To the <count>th previous occurrence of <string>.

<count> ?<cr>
To the <count>th previous occurrence of <string> from previous ? or /.

n Repeat latest / ? (next).

N Repeat latest search in opposite direction.

C-c / Without a prefix argument, this command toggles case-sensitive/case-
insensitive search modes and plain vanilla/regular expression search. With the
prefix argument 1, i.e., 1 C-c /, this toggles case-sensitivity; with the prefix
argument 2, toggles plain vanilla search and search using regular expressions.
See Section 3.3 [Viper Specials], page 31, for alternative ways to invoke this
function.

% Find the next bracket/parenthesis/brace and go to its match. By default,
Viper ignores brackets/parentheses/braces that occur inside parentheses. You
can change this by setting viper-parse-sexp-ignore-comments to nil in your
‘.viper’ file. This option can also be toggled interactively if you quickly hit
%%%.
This latter feature is implemented as a vi-style keyboard macro. If you don’t
want this macro, put

(viper-set-parsing-style-toggling-macro ’undefine)

in your ‘~/.viper’ file.

4.2.2 Marking

Emacs mark is referred to in the region specifiers r and R. See Section 1.1 [Emacs
Preliminaries], page 3, and See Section 2.1 [Basics], page 13, for explanation. Also see
section “Mark” in The GNU Emacs manual, for an explanation of the Emacs mark ring.

m<a-z> Mark the current file and position with the specified letter.

m . Set the Emacs mark (see Section 1.1 [Emacs Preliminaries], page 3) at point.

m ^ Set the Emacs mark (see Section 1.1 [Emacs Preliminaries], page 3) back to
where it was last set with the m. command. This is useful when you set the
mark with m., but then some other command (such as L or G) changes it in a
way that you didn’t like.

m < Set the Emacs mark at beginning of buffer.

m > Set the Emacs mark at end of buffer.

m , Jump to the Emacs mark.

Chapter 4: Commands 47

:mark <char>
Mark position with text marker named <char>. This is an Ex command.

:k <char> Same as :mark.

‘‘ Exchange point and mark.

’’ Exchange point and mark and go to the first CHAR on line.

’<a-z> Go to specified Viper mark.

Go to specified Viper mark and go to the first CHAR on line.

4.2.3 Appending Text

See Section 4.7 [Options], page 56, to see how to change tab and shiftwidth size. See the
GNU Emacs manual, or try C-ha tabs (If you have turned Emacs help on). Check out the
variable indent-tabs-mode to put in just spaces. Also see options for word-wrap.

<count> a <count> times after the cursor.

<count> A <count> times at the end of line.

<count> i <count> times before the cursor (insert).

<count> I <count> times before the first CHAR of the line

<count> o On a new line below the current (open). The count is only useful on a slow
terminal.

<count> O On a new line above the current. The count is only useful on a slow terminal.

<count> ><move>
Shift the lines described by <count><move> one shiftwidth to the right (layout!).

<count> >>
Shift <count> lines one shiftwidth to the right.

<count> ["<a-z1-9>]p
Put the contents of the (default undo) buffer <count> times after the cursor.
The register will be automatically down-cased.

<count> ["<a-z1-9>]P
Put the contents of the (default undo) buffer <count> times before the cursor.
The register will

[<a-z> Show contents of textmarker.

]<a-z> Show contents of register.

<count> . Repeat previous command <count> times. For destructive commands as well
as undo.

f1 1 and f1 2

While . repeats the last destructive command, these two macros repeat the
second-last and the third-last destructive commands. See Section 3.4 [Vi
Macros], page 37, for more information on Vi macros.

Chapter 4: Commands 48

C-c M-p and C-c M-n

In Vi state, these commands help peruse the history of Vi’s destructive com-
mands. Successive typing of C-c M-p causes Viper to search the history in the
direction of older commands, while hitting C-c M-n does so in reverse order.
Each command in the history is displayed in the Minibuffer. The displayed
command can then be executed by typing ‘.’.
Since typing the above sequences of keys may be tedious, the functions doing
the perusing can be bound to unused keyboard keys in the ‘~/.viper’ file. See
Section 3.3 [Viper Specials], page 31, for details.

4.2.4 Editing in Insert State

Minibuffer can be edited similarly to Insert state, and you can switch between In-
sert/Replace/Vi states at will. Some users prefer plain Emacs feel in the Minibuffer. To
this end, set viper-vi-style-in-minibuffer to nil.

C-v Deprive the next char of its special meaning (quoting).

C-h One char back.

C-w One word back.

C-u Back to the begin of the change on the current line.

4.2.5 Deleting Text

There is one difference in text deletion that you should be aware of. This difference
comes from Emacs and was adopted in Viper because we find it very useful. In Vi, if you
delete a line, say, and then another line, these two deletions are separated and are put back
separately if you use the ‘p’ command. In Emacs (and Viper), successive series of deletions
that are not interrupted by other commands are lumped together, so the deleted text gets
accumulated and can be put back as one chunk. If you want to break a sequence of deletions
so that the newly deleted text could be put back separately from the previously deleted
text, you should perform a non-deleting action, e.g., move the cursor one character in any
direction.

<count> x Delete <count> chars under and after the cursor.

<count> X Delete <count> chars before the cursor.

<count> d<move>
Delete from point to endpoint of <count><move>.

<count> dd

Delete <count> lines.

D The rest of the line.

<count> <<move>
Shift the lines described by <count><move> one shiftwidth to the left (layout!).

<count> <<
Shift <count> lines one shiftwidth to the left.

Chapter 4: Commands 49

4.2.6 Changing Text

<count> r<char>
Replace <count> chars by <char> - no <esc>.

<count> R Overwrite the rest of the line, appending change count - 1 times.

<count> s Substitute <count> chars.

<count> S Change <count> lines.

<count> c<move>
Change from begin to endpoint of <count><move>.

<count> cc

Change <count> lines.

<count> C The rest of the line and <count> - 1 next lines.

<count> =<move>
Reindent the region described by move.

<count> ~ Switch lower and upper cases.

<count> J Join <count> lines (default 2).

:[x,y]s/<pat>/<repl>/<f>
Substitute (on lines x through y) the pattern <pat> (default the last pat-
tern) with <repl>. Useful flags <f> are ‘g’ for ‘global’ (i.e. change every non-
overlapping occurrence of <pat>) and ‘c’ for ‘confirm’ (type ‘y’ to confirm a
particular substitution, else ‘n’). Instead of / any punctuation CHAR unequal
to <space> <tab> and <lf> can be used as delimiter.
In Emacs, ‘\&’ stands for the last matched expression, so s/[ab]+/\&\&/ will
double the string matched by [ab]. Viper doesn’t treat ‘&’ specially, unlike Vi:
use ‘\&’ instead.
Note: The newline character (inserted as C-qC-j) can be used in <repl>.

:[x,y]copy [z]

Copy text between x and y to the position after z.

:[x,y]t [z]

Same as :copy.

:[x,y]move [z]

Move text between x and y to the position after z.

& Repeat latest Ex substitute command, e.g. :s/wrong/right.

C-c / Toggle case-sensitive search. With prefix argument, toggle vanilla/regular ex-
pression search.

#c<move> Change upper-case characters in the region to lower-case.

#C<move> Change lower-case characters in the region to upper-case.

#q<move> Insert specified string at the beginning of each line in the region

Chapter 4: Commands 50

C-c M-p and C-c M-n

In Insert and Replace states, these keys are bound to commands that peruse
the history of the text previously inserted in other insert or replace commands.
By repeatedly typing C-c M-p or C-c M-n, you will cause Viper to insert these
previously used strings one by one. When a new string is inserted, the previous
one is deleted.
In Vi state, these keys are bound to functions that peruse the history of de-
structive Vi commands. See Section 3.3 [Viper Specials], page 31, for details.

4.2.7 Search and Replace

See Section 4.1 [Groundwork], page 42, for Ex address syntax. See Section 4.7 [Options],
page 56, to see how to get literal (non-regular-expression) search and how to stop search
from wrapping around.

<count> /<string>
To the <count>th occurrence of <string>.

<count> ?<string>
To the <count>th previous occurrence of <string>.

<count> g<move>
Search for the text described by move. (off by default)

n Repeat latest / ? (next).

N Idem in opposite direction.

% Find the next bracket and go to its match

:[x,y]g/<string>/<cmd>
Search globally [from line x to y] for <string> and execute the Ex <cmd> on
each occurrence.

:[x,y]v/<string>/<cmd>
Execute <cmd> on the lines that don’t match.

#g<move> Execute the last keyboard macro for each line in the region. See Section 2.4
[Macros and Registers], page 14, for more info.

Q Query Replace.

:ta <name>
Search in the tags file where <name> is defined (file, line), and go to it.

:[x,y]s/<pat>/<repl>/<f>
Substitute (on lines x through y) the pattern <pat> (default the last pat-
tern) with <repl>. Useful flags <f> are ‘g’ for ‘global’ (i.e. change every non-
overlapping occurrence of <pat>) and ‘c’ for ‘confirm’ (type ‘y’ to confirm a
particular substitution, else ‘n’). Instead of / any punctuation character other
than <space> <tab> and <lf> can be used as delimiter.
Note: The newline character (inserted as C-qC-j) can be used in <repl>.

& Repeat latest Ex substitute command, e.g. :s/wrong/right.

Chapter 4: Commands 51

:global /<pattern>/<ex-command>
:g /<pattern>/<ex-command>

Execute <ex-command> on all lines that match <pattern>.

:vglobal /<pattern>/<ex-command>
:v /<pattern>/<ex-command>

Execute <ex-command> on all lines that do not match <pattern>.

4.2.8 Yanking

<count> y<move>
Yank from begin to endpoint of <count><move>.

<count> "<a-z>y<move>
Yank from begin to endpoint of <count><move> to register.

<count> "<A-Z>y<move>
Yank from begin to endpoint of <count><move> and append to register.

<count> yy

<count> lines.

<count> Y Idem (should be equivalent to y$ though).

m<a-z> Mark the cursor position with a letter.

[<a-z> Show contents of textmarker.

]<a-z> Show contents of register.

<count> ["<a-z1-9>]p
Put the contents of the (default undo) buffer <count> times after the cursor.
The register will be automatically down-cased.

<count> ["<a-z1-9>]P
Put the contents of the (default undo) buffer <count> times before the cursor.
The register will

4.2.9 Undoing

u U Undo the latest change.

. Repeat undo.

:q! Quit Vi without writing.

:e! Re-edit a messed-up file.

:rec Recover file from autosave. Viper also creates backup files that have a ‘~’
appended to them.

Chapter 4: Commands 52

4.3 Display

C-g At user level 1, give file name, status, current line number and relative position.
At user levels 2 and higher, abort the current command.

C-c g Give file name, status, current line number and relative position – all user levels.

C-l Refresh the screen.

<count> C-e

Expose <count> more lines at bottom, cursor stays put (if possible).

<count> C-y

Expose <count> more lines at top, cursor stays put (if possible).

<count> C-d

Scroll <count> lines downward (default the number of the previous scroll; ini-
tialization: half a page).

<count> C-u

Scroll <count> lines upward (default the number of the previous scroll; initial-
ization: half a page).

<count> C-f

<count> pages forward.

<count> C-b

<count> pages backward (in older versions C-b only works without count).

<count> z<cr>

zH Put line <count> at the top of the window (default the current line).

<count> z-

zL Put line <count> at the bottom of the window (default the current line).

<count> z.

zM Put line <count> in the center of the window (default the current line).

4.4 File and Buffer Handling

In all file handling commands, space should be typed before entering the file name. If
you need to type a modifier, such as >> or !, don’t put any space between the command
and the modifier.

Note that many Ex commands, e.g., :w, accept command arguments. The effect is
that the command would start acting on the current region. For instance, if the current
region spans the lines 11 through 22, then if you type 1:w you would see ‘:11,22w’ in the
minibuffer.

:q Quit buffer except if modified.

:q! Quit buffer without checking. In Viper, these two commands are identical.
Confirmation is required if exiting modified buffers that visit files.

Chapter 4: Commands 53

:suspend

:stop Suspend Viper

:[x,y] w Write the file. Viper makes sure that a final newline is always added to any file
where this newline is missing. This is done by setting Emacs variable require-
final-newline to t. If you don’t like this feature, use setq-default to set
require-final-newline to nil. This must be done in ‘.viper’ file.

:[x,y] w <name>
Write to the file <name>.

:[x,y] w>> <name>
Append the buffer to the file <name>. There should be no space between w and
>>. Type space after the >> and see what happens.

:w! <name>
Overwrite the file <name>. In Viper, :w and :w! are identical. Confirmation is
required for writing to an existing file (if this is not the file the buffer is visiting)
or to a read-only file.

:x,y w <name>
Write lines x through y to the file <name>.

:wq Write the file and kill buffer.

:r <file> [<file> ...]

Read file into a buffer, inserting its contents after the current line.

:xit Same as :wq.

:Write

:W Save all unsaved buffers, asking for confirmation.

:WWrite

:WW Like W, but without asking for confirmation.

ZZ Save current buffer and kill it. If user level is 1, then save all files and kill Emacs.
Killing Emacs is the wrong way to use it, so you should switch to higher user
levels as soon as possible.

:x [<file>]
Save and kill buffer.

:x! [<file>]
:w![<file>] and :q.

:pre Preserve the file – autosave buffers.

:rec Recover file from autosave.

:f Print file name and lines.

:cd [<dir>]
Set the working directory to <dir> (default home directory).

:pwd Print present working directory.

Chapter 4: Commands 54

:e [+<cmd>] <files>
Edit files. If no filename is given, edit the file visited by the current buffer. If
buffer was modified or the file changed on disk, ask for confirmation. Unlike
Vi, Viper allows :e to take multiple arguments. The first file is edited the same
way as in Vi. The rest are visited in the usual Emacs way.

:e! [+<cmd>] <files>
Re-edit file. If no filename, re-edit current file. In Viper, unlike Vi, e! is
identical to :e. In both cases, the user is asked to confirm if there is a danger
of discarding changes to a buffer.

:q! Quit Vi without writing.

C-^ Edit the alternate (normally the previous) file.

:rew Obsolete

:args List files not shown anywhere with counts for next

:n [count] [+<cmd>] [<files>]
Edit <count> file, or edit files. The count comes from :args.

:N [count] [+<cmd>] [<files>]
Like :n, but the meaning of the variable ex-cycle-other-window is reversed.

:b Switch to another buffer. If ex-cycle-other-window is t, switch in another win-
dow. Buffer completion is supported. The variable viper-read-buffer-function
controls which function is actually used to read the buffer name. The de-
fault is read-buffer, but better alternatives are also available in Emacs (e.g.,
iswitchb-read-buffer).

:B Like :b, but the meaning of ex-cycle-other-window is reversed.

:<address>r <name>
Read the file <name> into the buffer after the line <address>.

v, V, C-v Edit a file in current or another window, or in another frame. File name is
typed in Minibuffer. File completion and history are supported.

4.5 Mapping

:map <string>
Start defining a Vi-style keyboard macro. For instance, typing :map www fol-
lowed by :!wc % and then typing C-x) will cause www to run wc on current file
(Vi replaces ‘%’ with the current file name).

C-x) Finish defining a keyboard macro. In Viper, this command completes the pro-
cess of defining all keyboard macros, whether they are Emacs-style or Vi-style.
This is a departure from Vi, needed to allow WYSIWYG mapping of keyboard
macros and to permit the use of function keys and arbitrary Emacs functions
in the macros.

:unmap <string>
Deprive <string> of its mappings in Vi state.

Chapter 4: Commands 55

:map! <string>
Map a macro for Insert state.

:unmap! <string>
Deprive <string> of its mapping in Insert state (see :unmap).

@<a-z> In Vi state, execute the contents of register as a command.

@@ In Vi state, repeat last register command.

@# In Vi state, begin keyboard macro. End with @<a-z>. This will put the macro in
the proper register. Register will be automatically down-cased. See Section 2.4
[Macros and Registers], page 14, for more info.

@!<a-z> In Vi state, yank anonymous macro to register

* In Vi state, execute anonymous macro (defined by C-x(and C-x)).

C-x e Like *, but works in all Viper states.

#g<move> Execute the last keyboard macro for each line in the region. See Section 2.4
[Macros and Registers], page 14, for more info.

[<a-z> Show contents of textmarker.

]<a-z> Show contents of register.

4.6 Shell Commands

The symbol ‘%’ is used in Ex shell commands to mean current file. If you want a ‘%’ in
your command, it must be escaped as ‘\%’. However if ‘%’ is the first character, it stands as
the address for the whole file. Similarly, ‘#’ expands to the previous file. The previous file
is the first file in :args listing. This defaults to the previous file in the VI sense if you have
one window.

Symbols ‘%’ and ‘#’ are also used in the Ex commands :e and :r <shell-cmd>. The
commands :w and the regular :r <file> command don’t support these meta symbols,
because file history is a better mechanism.

:sh Execute a subshell in another window

:[x,y]!<cmd>
Execute a shell <cmd> [on lines x through y; % is replace by current file, \% is
changed to %

:[x,y]!! [<args>]
Repeat last shell command [and append <args>].

:!<cmd> Just execute command and display result in a buffer.

:!! <args>
Repeat last shell command and append <args>

<count> !<move><cmd>
The shell executes <cmd>, with standard input the lines described by
<count><move>, next the standard output replaces those lines (think of ‘cb’,
‘sort’, ‘nroff’, etc.).

Chapter 4: Commands 56

<count> !!<cmd>
Give <count> lines as standard input to the shell <cmd>, next let the standard
output replace those lines.

:[x,y] w !<cmd>
Let lines x to y be standard input for <cmd> (notice the <sp> between w and
!).

:<address>r !<cmd>
Put the output of <cmd> after the line <address> (default current).

:<address>r <name>
Read the file <name> into the buffer after the line <address> (default current).

:make Run the make command in the current directory.

4.7 Options

autoindent

ai autoindent – In append mode after a <cr> the cursor will move directly below
the first character on the previous line. This setting affects the current buffer
only.

autoindent-global

ai-global

Same as ‘autoindent’, but affects all buffers.

noautoindent

noai Cancel autoindent.

noautoindent-global

noai-g Cancel autoindent-global.

ignorecase

ic ignorecase – No distinction between upper and lower cases when searching.

noignorecase

noic Cancel ignorecase.

magic

ma Regular expressions used in searches; nomagic means no regexps.

nomagic

noma Cancel magic.

readonly

ro readonly – The file is not to be changed. If the user attempts to write to this
file, confirmation will be requested.

noreadonly

noro Cancel readonly.

Chapter 4: Commands 57

shell=<string>
sh=<string>

shell – The program to be used for shell escapes (default ‘$SHELL’ (default
‘/bin/sh’)).

shiftwidth=<count>
sw=<count>

shiftwidth – Gives the shiftwidth (default 8 positions).

showmatch

sm showmatch – Whenever you append a), Vi shows its match if it’s on the same
page; also with { and }. If there’s no match, Vi will beep.

noshowmatch

nosm Cancel showmatch.

tabstop=<count>
ts=<count>

tabstop – The length of a <ht>; warning: this is only IN the editor, outside of
it <ht>s have their normal length (default 8 positions). This setting affects the
current buffer only.

tabstop-global

ts-g Same as ‘tabstop’, but affects all buffers.

wrapmargin=<count>
wm=<count>

wrapmargin – In append mode Vi automatically puts a <lf> whenever there is
a <sp> or <ht> within <wm> columns from the right margin.

wrapscan

ws wrapscan – When searching, the end is considered ‘stuck’ to the begin of the
file.

nowrapscan

nows Cancel wrapscan.

:set <option>
Turn <option> on.

:set no<option>
Turn <option> off.

:set <option>=<value>
Set <option> to <value>.

4.8 Emacs Related Commands

C-\ Begin Meta command in Vi or Insert states. Most often used as C-\ x (M-x).
Note: Emacs binds C-\ to a function that offers to change the keyboard input
method in the multilingual environment. Viper overrides this binding. However,
it is still possible to switch the input method by typing \ C-\ in the Vi command

Chapter 4: Commands 58

state and C-z \ C-\ in the Insert state. Or you can use the MULE menu on
the menubar.

C-z In Insert and Replace states, prepare Viper to accept the next command and
execute it as if Viper was in Vi state. Then return to Insert state.
In Vi state, switch to Emacs state; in Emacs state, switch to Vi state.

C-c \ Switches to Vi state for the duration of a single command. Then goes back to
the original Viper state. Works from Vi, Insert, Replace, and Emacs states.

C-x0 Close Window

C-x1 Close Other Windows

C-x2 Split Window

C-xo Move among windows

C-xC-f Emacs find-file, useful in Insert state

C-y Put back the last killed text. Similar to Vi’s p, but also works in Insert and
Replace state. This command doesn’t work in Vi command state, since this
binding is taken for something else.

M-y Undoes the last C-y and puts another kill from the kill ring. Using this com-
mand, you can try may different kills until you find the one you need.

4.9 Mouse-bound Commands

The following two mouse actions are normally bound to special search and insert com-
mands in of Viper:

S-Mouse-1

Holding Shift and clicking mouse button 1 will initiate search for a region under
the mouse pointer. This command can take a prefix argument. Note: Viper
sets this binding only if this mouse action is not already bound to something
else. See Section 3.3 [Viper Specials], page 31, for more information.

S-Mouse-2

Holding Shift and clicking button 2 of the mouse will insert a region surrounding
the mouse pointer. This command can also take a prefix argument. Note: Viper
sets this binding only if this mouse action is not already bound to something
else. See Section 3.3 [Viper Specials], page 31, for more details.

Acknowledgments 59

Acknowledgments

Viper, formerly known as VIP-19, was written by Michael Kifer. Viper is based on the
original VIP package by Masahiko Sato and on its enhancement, VIP 4.4, by Aamod Sane.
This manual is an adaptation of the manual for VIP 4.4, which, in turn, was based on Sato’s
manual for VIP 3.5.

Many contributors on the net pointed out bugs and suggested a number of useful features.
Here is a (hopefully) complete list of contributors:

aaronl@vitelus.com (Aaron Lehmann),
ahg@panix.com (Al Gelders),
amade@diagram.fr (Paul-Bernard Amade),
ascott@fws214.intel.com (Andy Scott),
bronson@trestle.com (Scott Bronson),
cook@biostat.wisc.edu (Tom Cook),
csdayton@midway.uchicago.edu (Soren Dayton),
dave@hellgate.utah.edu,
dominik@strw.LeidenUniv.nl (Carsten Dominik),
dwallach@cs.princeton.edu (Dan Wallach),
dwight@toolucky.llnl.gov (Dwight Shih),
dxc@xprt.net (David X. Callaway),
edmonds@edmonds.home.cs.ubc.ca (Brian Edmonds),
gin@mo.msk.ru (Golubev I.N.),
gviswana@cs.wisc.edu (Guhan Viswanathan),
gvr@halcyon.com (George V. Reilly),
hatazaki@bach.convex.com (Takao Hatazaki),
hpz@ibmhpz.aug.ipp-garching.mpg.de (Hans-Peter Zehrfeld),
jackr@dblues.engr.sgi.com (Jack Repenning),
jamesm@bga.com (D.J. Miller II),
jjm@hplb.hpl.hp.com (Jean-Jacques Moreau),
jl@cse.ogi.edu (John Launchbury),
jobrien@hchp.org (John O’Brien),
johnw@borland.com (John Wiegley),
kanze@gabi-soft.fr (James Kanze),
kin@isi.com (Kin Cho),
kwzh@gnu.org (Karl Heuer),
lindstro@biostat.wisc.edu (Mary Lindstrom),
minakaji@osaka.email.ne.jp (Mikio Nakajima),
Mark.Bordas@East.Sun.COM (Mark Bordas),
meyering@comco.com (Jim Meyering),
martin@xemacs.org (Martin Buchholz),
mbutler@redfernnetworks.com (Malcolm Butler),
mveiga@dit.upm.es (Marcelino Veiga Tuimil),
paulk@summit.esg.apertus.com (Paul Keusemann),
pfister@cs.sunysb.edu (Hanspeter Pfister),
phil_brooks@MENTORG.COM (Phil Brooks),
pogrell@informatik.hu-berlin.de (Lutz Pogrell),
pradyut@cs.uchicago.edu (Pradyut Shah),
roderick@argon.org (Roderick Schertler),

Acknowledgments 60

rxga@ulysses.att.com,
sawdey@lcse.umn.edu (Aaron Sawdey),
simonb@prl.philips.co.uk (Simon Blanchard),
stephen@farrell.org (Stephen Farrell),
sudish@MindSpring.COM (Sudish Joseph),
schwab@issan.informatik.uni-dortmund.de (Andreas Schwab)
terra@diku.dk (Morten Welinder),
thanh@informatics.muni.cz (Han The Thanh),
toma@convex.convex.com,
vrenjak@sun1.racal.com (Milan Vrenjak),
whicken@dragon.parasoft.com (Wendell Hicken),
zapman@cc.gatech.edu (Jason Zapman II),

Key Index 61

Key Index

#
. 17

#c<move> . 17, 50

#C<move> . 18, 50

#g<move> . 18, 51, 55

#q<move> . 18

#q<move> . 50

#s<move> . 18

$
$. 46

%
% . 46, 51

&
& . 50, 51

’
’’ . 46, 47

’<a-z> . 46, 47

(
(. 46

)
) . 46

*
* . 18, 55

,
, . 46

-
- . 46

.

. 48, 51

/
/<cr> . 46

/<string> . 46, 51

;
; . 46

=
=<move> . 50

?
?<cr> . 46

?<string> . 46, 51

@
@! . 18

@!<a-z> . 55

@# . 18, 55

@@ . 55

@<a-z> . 18, 55

[
[[. 46

[] . 18, 46

[<a-z> . 18, 46, 48, 51, 55

]
]] . 46

]<a-z> . 18, 46, 48, 51, 55

‘
‘‘ . 46, 47

‘<a-z> . 46, 47

{
{ . 46

|
| . 46

Key Index 62

}
} . 46

~
~ . 50

"
"<a-z>y<move> . 51

"<A-Z>y<move> . 51

"<a-z1-9>p . 48, 51

"<a-z1-9>P . 48, 51

+
+ . 46

>
>> . 48

><move> . 48

^
^ . 46

\
\ . 17

\& . 50

<
<< . 48

<<move> . 48

<a-z> . 42

<address> . 42

<args> . 43

<cmd> . 43

<cr> . 46

<lf> . 46

<move> . 42

<sp> . 46

0
0 . 46

A
a . 48

A . 48

B
b . 46
B . 46

C
C . 50
C-] . 7, 18
C-^ . 54
C-\ . 7, 58
C-b . 52
C-c . 7, 17
C-c / . 8, 18, 46
C-c C-g . 18
C-c M-n . 19, 48, 50
C-c M-p . 19, 48, 50
C-c\ . 58
C-d . 52
C-e . 52
C-f . 52
C-g . 7, 18, 52
C-h . 46
C-l . 52
C-n . 46
C-p . 46
C-u . 48, 52
C-v . 17, 48
C-w . 48
C-x . 7, 17
C-x0 . 58
C-x1 . 58
C-x2 . 58
C-xC-f . 58
C-xo . 58
C-y . 52, 58
C-z . 5, 7, 58
c<move> . 50
cc . 50

D
D . 48
d<move> . 48
dd . 48

E
e . 46
E . 46
〈ESC〉 . 5

F
f<char> . 46
F<char> . 46

Key Index 63

G
G . 46

g<move> . 51

H
h . 46

H . 46

I
i . 5, 48

J
j . 46

J . 50

K
k . 46

L
l . 46

L . 46

M
M . 46

m, . 47

M-n . 19

M-p . 19

M-y . 58

m. 47

m> . 47

m^ . 47

m< . 47

m<a-z> . 46, 47, 51

meta button1up . 58

meta button2up . 58

meta shift button1up . 36

meta shift button2up . 36

N
n . 46, 51

N . 46, 51

O
o . 48

O . 48

P
p . 48, 51

P . 48, 51

Q
Q . 17, 51

R
R . 50

r<char> . 50

S
s . 50

S . 50

S-Mouse-1 . 36, 58

S-Mouse-2 . 36, 58

T
t<char> . 46

T<char> . 46

U
u . 8, 51

U . 51

V
v . 17, 54

V . 17, 54

W
w . 46

W . 46

X
x . 48

X . 48

Y
Y . 51

y<move> . 51

yank . 51

yy . 51

Key Index 64

Z
z- . 52
z. 52
z<cr> . 52

zH . 52

zL . 52

zM . 52

ZZ . 54

Function Index 65

Function Index

!
!!<cmd> . 56
!<cmd> . 56
!<move><cmd> . 56

:
:!!<args> . 56
:!<cmd> . 56
:<address>r !<cmd> . 56
:<address>r <name> . 56
:args . 19, 54
:cd [<dir>] . 54
:copy [z] . 50
:e [<files>] . 54
:e! . 51
:e![<files>] . 54
:edit [<files>] . 54
:edit![<files>] . 54
:f . 54
:g . 51
:global . 51
:k . 47
:make . 56
:map . 29
:map <char> <seq> . 55
:map!<char> <seq> . 55
:mark . 47
:move [z] . 50
:n . 19
:n [<count> | <file>] . 54
:pre . 19, 54
:PreviousRelatedFile 19, 35
:pwd . 19, 54
:q . 54
:q! . 51, 54
:quit . 54
:quit! . 54
:r . 54
:read . 54
:rec . 51, 54
:RelatedFile . 19, 35
:rew . 54
:s/<pat>/<repl>/<f> . 50
:set . 21
:set <option> . 57
:set <option>=<value> . 57
:set ai . 57
:set autoindent . 57
:set ic . 57
:set ignorecase . 57
:set magic . 57

:set no<option> . 57

:set readonly . 57

:set ro . 57

:set sh=<string> . 57

:set shell=<string> . 57

:set shiftwidth=<count> 57

:set showmatch . 57

:set sm . 57

:set sw=<count> . 57

:set tab-stop-local=<count> 57

:set tabstop=<count> . 57

:set ts=<count> . 57

:set wm=<count> . 57

:set wrapmargin=<count> 57

:set wrapscan . 57

:set ws . 57

:sh . 56

:stop . 54

:substitute/<pat>/<repl>/<f>. 50, 51

:suspend . 54

:t [z] . 50

:tag <name> . 51

:unmap <char> . 55

:unmap!<char> . 55

:v . 51

:vglobal . 51

:W . 54

:w !<cmd> . 56

:w >> <file> . 54

:w <file> . 54

:w!<file> . 54

:wq . 54

:Write . 54

:write >> <file> . 54

:write <file> . 54

:write!<file> . 54

:WW . 54

:WWrite . 54

:x . 54

:x! . 54

:x,y w !<cmd> . 56

:yank . 51

A
add-hook . 31

R
remove-hook . 31

Function Index 66

T
toggle-viper-mode . 5, 34

V
viper-add-local-keys . 30
viper-buffer-search-enable 32
viper-describe-kbd-macros 41
viper-glob-function . 24
viper-go-away . 5, 34
viper-harness-minor-mode 31
viper-mode . 31

viper-modify-major-mode 28

viper-mouse-click-insert-word 36

viper-mouse-click-search-word 36

viper-set-emacs-state-searchstyle-macros

. 32

viper-set-expert-level . 33

viper-set-hooks . 31

viper-set-parsing-style-toggling-macro . . . 46

viper-set-searchstyle-toggling-macros 32

viper-set-syntax-preference 17, 44

viper-unrecord-kbd-macro 39

viper-zap-local-keys . 30

Variable Index 67

Variable Index

B
buffer-read-only . 27

E
ex-cycle-other-window . 27
ex-cycle-through-non-files 27

F
function-key-map . 30

V
viper-allow-multiline-replace-regions 27
viper-always . 27, 31
viper-auto-indent . 27
viper-buffer-search-char 27, 32
viper-case-fold-search . 27
viper-command-ring-size 33
viper-custom-file-name . 27
viper-delete-backwards-in-replace 27
viper-dired-modifier-map 32
viper-electric-mode . 27
viper-emacs-global-user-map 30
viper-emacs-state-hook . 27
viper-emacs-state-mode-list 31
viper-ESC-key . 27
viper-ESC-keyseq-timeout 27
viper-ESC-moves-cursor-back 27
viper-ex-style-editing . 27
viper-ex-style-motion . 27
viper-fast-keyseq-timeout 27
viper-insert-global-user-map 30
viper-insert-state-cursor-color 26

viper-insert-state-hook 27
viper-insert-state-mode-list 31
viper-insertion-ring-size 33
viper-keep-point-on-repeat 27
viper-keep-point-on-undo 27
viper-major-mode-modifier-list 29
viper-mouse-insert-key 35, 36
viper-multiclick-timeout 36
viper-no-multiple-ESC . 27
viper-parse-sexp-ignore-comments 46
viper-re-query-replace . 27
viper-re-search . 27
viper-read-buffer-function . 54
viper-replace-overlay-cursor-color 26
viper-replace-overlay-face 27
viper-replace-region-end-symbol 27
viper-replace-region-start-symbol 27
viper-replace-state-hook 27
viper-search-face . 15, 27
viper-search-scroll-threshold 27
viper-search-wrap-around 27
viper-shift-width . 27
viper-slash-and-colon-map 32
viper-smart-suffix-list 33
viper-spell-function 18, 27
viper-surrounding-word-function 27
viper-syntax-preference 16, 44
viper-tags-file-name . 27
viper-toggle-key . 27
viper-vi-global-user-map 30
viper-vi-state-hook . 27
viper-vi-state-mode-list 31
viper-vi-style-in-minibuffer 27
viper-want-ctl-h-help . 27
viper-want-emacs-keys-in-insert 27, 31
viper-want-emacs-keys-in-vi 27, 31

Package Index 68

Package Index

A
ange-ftp.el . 20

D
desktop.el . 20
dired.el . 20

E
ediff.el . 20

F
font-lock.el . 20

I
ispell.el . 20

V
vc.el . 20

Concept Index 69

Concept Index

#
(Previous file) . 43

‘#’ (Previous file) . 55

%
% (Current file) . 43, 55

% (Ex address) . 42

‘%’ (Ex address) . 55

.

.emacs . 21

.viper . 21

<

<a-z> . 42

<address> . 42

<args> . 43

<cmd> . 43

<cr> . 43

<esc> . 43

<ht> . 43

<lf> . 43

<move> . 42

<sp> . 43

A
abbrevs . 16

absolute file names . 12

appending . 47

auto fill . 57

auto save . 13

autoindent . 56

B
backup files . 13, 51

buffer . 3

buffer (modified) . 4

buffer information . 4

buffer search . 15

C
C-c and Viper . 30

case and searching . 56

case-insensitive search 8, 19, 46

case-sensitive search . 8, 19, 46

changing case . 17, 49

changing tab width . 57

char . 43

CHAR . 43

column movement . 44

Command history . 19

command line . 4

Command ring . 19

compiling . 19

completion . 15

Control keys . 4

customization . 21

cut and paste . 51

D
describing regions . 13

desktop . 20

Destructive command history 33

Destructive command ring . 33

dired . 20

dynamic abbrevs . 16

E
ediff . 20

Emacs state . 5, 7

email . 20

end (of buffer) . 3

end (of line) . 3

Ex addresses . 42

Ex commands . 5, 8, 44

Ex style motion. 16

expanding (region) . 13

F
font-lock . 20

G
global keymap . 4

Concept Index 70

H
headings . 33, 44
history . 14

I
incremental search . 15
initialization . 21
Insert state . 5, 9, 48
inserting . 47
Insertion history . 19
Insertion ring . 19, 33
interactive shell . 19
ispell . 20

J
joining lines . 49

K
key bindings . 27, 54
key mapping . 54
keyboard macros . 14, 18
keymap . 4
keymaps . 27

L
last keyboard macro . 15
layout . 57
line commands . 13, 42
line editor motion . 16
literal searching . 56
local keymap . 4
looking at . 3

M
macros . 14
mail . 20
major mode . 4
make . 19
managing multiple files . 11
mark . 3
markers . 11, 14, 44
marking . 46
matching parens . 44, 57
Meta key . 4, 7, 10
Minibuffer . 4, 10, 14
minor mode . 4
mode . 4
mode line . 4, 6
mouse . 35
mouse search . 15

mouse-insert. 36
mouse-search . 35
movement commands . 13, 44
movements . 42
Multifile documents and programs 34
multiple files . 11, 52
multiple undo . 8

P
paragraphs . 33, 44
paren matching . 44, 57
paste . 47, 51
point . 3
point commands . 13, 42
put . 47

Q
query replace . 15, 17
quoting regions . 49

R
r and R region specifiers 13, 42
RCS . 20
readonly files . 56
region . 3, 13
region specification . 13
register execution . 14, 18
registers . 11, 14
regular expressions . 8
Replace state . 5, 10

S
scrolling. 52
searching . 44, 57
sections . 33, 44
sentences . 33, 44
setting variables . 21
shell . 19, 57
shell commands . 55
shifting text . 48, 57
substitution . 49
syntax table . 16, 44

T
tabbing . 57
text . 3
text processing . 50
textmarkers . 11, 14, 17, 44
transparent ftp . 20

Concept Index 71

U
undo . 8, 13, 51

V
vanilla search . 8, 19, 46
variables for customization 21
version maintenance . 20
Vi macros . 37
Vi options . 56
Vi state . 5, 7

viewing registers and markers 14

Viper and C-c . 30

Viper as minor mode . 4

W
window . 4

word search . 15

word wrap . 57

words . 43

WORDS . 43

Concept Index 72

i

Table of Contents

Distribution . 1

Introduction . 2

1 Overview of Viper . 3
1.1 Emacs Preliminaries . 3
1.2 Loading Viper . 4
1.3 States in Viper . 5

1.3.1 Emacs State . 7
1.3.2 Vi State . 7
1.3.3 Insert State . 9
1.3.4 Replace State . 10

1.4 The Minibuffer . 10
1.5 Multiple Files in Viper . 11
1.6 Unimplemented Features . 12

2 Improvements over Vi . 13
2.1 Basics . 13
2.2 Undo and Backups . 13
2.3 History . 14
2.4 Macros and Registers . 14
2.5 Completion . 15
2.6 Improved Search . 15
2.7 Abbreviation Facilities . 16
2.8 Movement and Markers . 16
2.9 New Commands . 17
2.10 Useful Packages . 19

3 Customization . 21
3.1 Rudimentary Changes . 21
3.2 Key Bindings . 27

3.2.1 Packages that Change Keymaps 30
3.3 Viper Specials . 31
3.4 Vi Macros . 37

ii

4 Commands . 42
4.1 Groundwork . 42
4.2 Text Handling . 44

4.2.1 Move Commands . 44
4.2.2 Marking . 46
4.2.3 Appending Text . 47
4.2.4 Editing in Insert State . 48
4.2.5 Deleting Text . 48
4.2.6 Changing Text . 49
4.2.7 Search and Replace . 50
4.2.8 Yanking . 51
4.2.9 Undoing . 51

4.3 Display . 52
4.4 File and Buffer Handling . 52
4.5 Mapping . 54
4.6 Shell Commands . 55
4.7 Options . 56
4.8 Emacs Related Commands . 57
4.9 Mouse-bound Commands . 58

Acknowledgments . 59

Key Index . 61

Function Index . 65

Variable Index . 67

Package Index . 68

Concept Index . 69

