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Abstract

We present a technique for characterizing X-ray sensitive photodiode arrays and charge-coupled device (CCD) arrays.
The technique uses simple statistical estimators (means, variances and correlation functions) to determine the response,
noise, resolution and detective quantum efficiency of a position-sensitive detector. We apply this technique by characterizing
a linear diode array and a CCD array exposed to direct illumination by X-rays. Correlations between neighboring pixels
were important, and they are included in the calculation of the detective quantum efficiency and noise of the detector.

1. Introduction

The advent of high intensity X-ray synchrotron sources
coupled with the development of X-ray position-sensitive
detectors (PSD) has allowed us to study time-resolved non-
equilibrium dynamics in solid-state systems. For example,
one-dimensional PSD have been used to study the isother-
mal crystallization of metallic glasses by measuring struc-
ture factors with a time resolution of a few milliseconds
[1], and to study the early stage dynamics of order-disorder
transitions in FesAl [2] and CuzAu [3]. Two-dimensional
PSD have been used to study the dynamics of a first order
phase transition in CujAu with coherent X-rays [4] and to
determine strain kinetics in In,Ga; - xAs quantum wells [5].

To obtain meaningful quantitative data from a PSD, one
must know whether the response of the detector is linear
with respect to the number of incident photons, measure the
uniformity of response over the detector area, and determine
the noise, the resolution function, and the detective quantum
efficiency. For coherent diffraction experiments [4], the full
spatial resolution of the detector is required, and spatial and
temporal correlation of the signal are the quantities to be
measured. Thus correlations inherent to the detector have to
be exactly known.

In this paper, we show how the response of a PSD can be
characterized by comparing measured averages, variances
and pixel-to-pixel correlation functions to the expected sta-
tistical estimators for Poisson counting statistics. Similar
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techniques have been used previously to measure the detec-
tive quantum efficiency of a detector [6], or to evaluate the
linearity constant between the PSD signal and the number of
detected photons [7]. Significant spatial correlation exists
between neighboring pixels for a typical PSD (see Figs. 2
and 10). We show how to extract the resolution from the
measured correlation function. The effect of a finite detec-
tor resolution, which induces spatial correlations between
neighboring pixels of a PSD, reduces the noise of the PSD
when compared to expected Poisson noise. This must be
taken into account in the evaluation of the detective quan-
tum efficiency.

In Section 2, we first discuss the case where each pixel
of the detector is independent of its neighbors. Then, we
generalize this technique to include the spatial correlation
that may be present in a real one- or two-dimensional de-
tector. Finally, two examples are given: Section 3 gives the
characterization of a X-ray sensitive linear photodiode ar-
ray, and Section 4 describes a more general treatment for a
two-dimensional charge coupled device (CCD).

2. Description of the technique
2.1. Description of the detection process.

Solid-state PSD are typically made of an array of Si pho-
todiodes or MOS capacitors, which can be used as integrat-
ing detectors for X-rays. Two modes of operation of solid-
state X-ray detectors are generally used: direct X-ray illu-
mination or optical coupling using light produced in an X-
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Table 1
Definitions
T Exposure time
Vir 1) Digital signal measured at position r = ry; between time 1 and 1, + 7. ry;
j and t; are discrete due to the nature of the detection process
(r.0) Incident number of photons on the surface of a pixel r at ¢ as measured
Lr, . - . 4
H by a reference detector having near unit detective quantum efficiency
nglr.t) Detected number of photons.

— (” );
a2 (nidy
V) =5 SN v
il - vV : 2
Siv(n) = = Do, (V1)) = (VD))

(Ver.0)r = 3= 300 Ve

Sy = go=g L (Vi) = (V(r)n)?

Detective quantum efficiency of the detector

Time average of signal V. It is measured by averaging a time sequence of
N scans

Estimator for the variance of V, measured with a time sequence of N scans

Spatial average of signal V. It is measured by averaging Np pixels in a
given scan at time

Estimator for the variance of Np pixels

ray fluorescent material. Direct illumination of the detector
gives the full spatial resolution of the pixels, while opti-
cal coupling increases the detective quantum efficiency for
harder X-rays and allows for changes in the effective detec-
tor area by appropriate lenses. In this paper, we use direct
illumination of the PSD. For silicon, 3.6 eV are required
to create an electron-hole pair [8]. A photon in the range
of 5-20 keV will generate thousands of electron-hole pairs,
some of which are then collected on the Si diode capaci-
tance. After a preset exposure time 7, the collected charge
is measured, amplified, digitized and finally cleared for the
next integration. The digitized signal V(r,r) is an integer
number measured in analog-to-digital units (ADU). Here r
is a discrete one- or two-dimensional vector pointing to the
center of a given pixel of the PSD, and ¢ refers to the in-
tegration between time t and ¢ + 7. The variables used are
summarized in Table 1. The number of ADU per detected
photon is determined by the gain of the digitizer circuit. A
so-called dark pattern must be taken without illumination to
snbtract an offset signal from the data, which may vary from
pixel to pixel. To relate the detected signal to the incident
intensity, one has to measure the detector linearity, unifor-
mity, noise, resolution and detective quantum efficiency.

Illuminating the detector with a spatially uniform source
of light or X-rays allows one to test the uniformity of the
detector response. To generate this uniform source, we scat-
ter a beam of monochromatic X-rays from an amorphous
sample (e.g. a piece of polyimide [7,9] or polystyrene) and
place the detector far away from the sample.

To test linearity, one varies the incident flux of photons and
the integration time independently to see whether the number
of photons incident on the surface of pixel r, integrated
between ¢ and ¢ + 7, n;(r, t), is the only relevant quantity.
One must find a function that relates the detected signal V

to n; so that V = f(m). In general, f may not be linear.
Therefore to linearize the detector’s signal, one would apply
the inverse of f to V. Details of this treatment are given in
Section 4.

We assume that the noise in the signal V has two sources:
counting statistics of the photons and an “electronic” noise
from the detection process. Naturally, the noise due to count-
ing statistics depends on ng, the number of detected photons,
rather than on n;. In general (ng(r, 1)), = a(r) (ni(r, 1)),
where a(r) is called the detective quantum efficiency of a
pixel centered at r, as defined in Ref. [6]. Here the brackets
refer to a time average. One finds that @ < 1 because pho-
tons are absorbed or reflected before they reach the detection
volume, or because they pass the detection volume without
detection. We show how ng(r, r) may be determined by an-
alyzing the fluctuations in the signal V(r, ) for equivalent
exposures.

2.2. Technique for characterizing independent linear
detectors

The detector characterization technique is based on the
following idea. Due to the nature of the detection process,
ng obeys Poisson statistics, so the mean and variance of ng
are equal [10]. If we assume linearity and neglect any elec-
tronic noise contribution from the detector electronics, the
signal in a detector is given by V = knq, where k is the cal-
ibration constant, equal to the average number of ADU per
detected photons. By measuring N patterns, we can calcu-
late the signal mean and variance from their definitions in
Table 1. (V); = k(ng), is the mean signal. The variance of V,
S,zy, is equal to sz,z‘nd, and for Poisson noise, Sf_,,d = (ng);.
So the ratio §?y/(V), = k allows to measure the calibra-
tion constant. Unless otherwise stated, the terms mean and
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variance used in this paper refer to the unbiased estimators
of the true mean and variance of a given variable. Here we
assumed that the signal V in a given pixel is independent
of the signal in its nearest neighbors, and that the standard
deviation of the number of photo-electrons created per de-
tected photons is much smaller than its average [7]. What
follows is a generalization of this idea by considering other
noise sources and couplings between detectors.

For a real PSD, we found that the ratio k increases as
(V), approaches zero, due to electronic noise contributions
to the variance. This intensity dependence can be removed
by including in V' the detected photons and the electronic
noise contributions so that

V(r,t) = k(ryng(r,t) + Ve(r, 1), (1)
and on average
(V(r,0))e = k(r){na(r, 1)) (2)

Note that here the value of k£ may vary between different
pixels. V. is the electronic noise signal, and we assumed
(V.)r = 0, which is assured by the subtraction of the dark
pattern described earlier. We assume both V; and nq are inde-
pendent random variables. The physics of this noise is dis-
cussed in details elsewhere [6]. Here we are only interested
on the mean and variance of the noise, which are measured
separately with the source of X-rays turned off. The time
averaged variance of V(r,1) is

Sty(r) =K (1) 87, (1) + Sty (1)
+2k(r) covi(na(r,t),Ve(r,t)), (3)

where
_ -
covi(A, B) = 5— D (A1) = (A)) (B(1) = (B):)
i=]

(4)

is the covariance of two random variables A and B.
cov,(ng, V.) = 0, by the assumption of independence. Di-
viding Eq. (3) by Eq. (2), and recalling that Sf‘,,d(r) =
{nq(r,t)), for a Poisson distribution [10], one finds that

S2y(r) — Sty (1)
(V(r,t))

To determine an estimate of the ratio of ADU to detected
photons for each pixel, one evaluates the mean and variance
for each pixel based on N scans, subtracting a measured dark
variance S;y, from the signal variance. The subtraction of
S;"_VD in Eq. (5) makes k intensity independent for a real PSD,
as the average signal goes to zero. Once k(r) is known, a(r)
can be calculated after measuring n;(r,t) with a detector
with near unit efficiency. The detective quantum efficiency
may then be calculated as

(V(r,6)
k(r)(ni(r,t));

k(r) = (5)

(6)

a(r) =

The spatial variations of the detector array appear as the
variations in k(r), or detector to detector variations. In order
to determine whether these fluctuations are significant, the
error in k(r) expected from Poisson and electronic noise
has to be considered. The uncertainty in the determination
of k(r) depends on the number of measurements N. From
standard error propagation analysis (see the derivation in the
Appendix), we estimate the expected error in k, o (r), by

) 2 i Sk()
kg(r] = N-=-1 kz(r](v(r‘f]):z

Stw(r) (1 1
+(V(r, 1))? (N g Nd) y M

Here, we used Sy — Sy, = k(V), to simplify Eq. (A.25).
Ny is the number of scans used to determine the average dark
pattern. Eq. (7) is made of four terms: the first term 2/ (N —
1) is the error due to counting statistics (see Eq. (A.22))
and the last three terms containing Sﬁpe and Sflw are due to
the electronic noise.

To minimize the error, one should take N as large as pos-
sible to reduce the error due to counting statistics. This is
achieved by taking a small exposure time 7. As 7 and V
approaches zero, the minimum error is reached when both
noise contributions to oy are equal. For smaller 7, o in-
creases due to the electronic noise. As a rule of thumb, one
should measure Ng = N dark patterns, so that the average
dark pattern is measured precisely. To get a relative preci-
sion € = o/ k, one should choose T such that the detected

\/ Sy {1+ $2,,/k2}, and measure N ~ 4 /€

scans with and without X-rays.

For count rates available at synchrotron sources, one may
find that the signal obtained for the finest time resolution 7 is
always much larger than the dark noise. Then fewer dark pat-
terns need to be measured. For large signals (V), > \./Fv:

and for N > Ng, 0% = ky/2/(N —1) + 8% /(Na(V)?).
When (V) > Vn =I,IS$,CN/(2N.1 , ok =2 ka/2/(N—1),
and counting statistics is the dominant contribution to the
error. In Fig. 1b for example, the signal in the central pix-
els of the array is within this limit since Vi, = 66 ADU. For
V < Vi, oy is dominated by the detector electronic noise.

As mentioned above, this treatment assumed that each
pixel is independent from its neighbors. If this is not true,
this correlation reduces the variance, and k(r) is not the
number of ADU per detected photon. This case is discussed
next.

signal V ~

2.3. Treatment including pixel-to-pixel correlations.

To understand the effect of couplings between detectors,
we consider first a toy model for a one-dimensional PSD,
where two neighboring pixels share some fraction x of their
signals. Following the previous notation, replacing r by an
integer index i, the signal in the ith pixel, V(i, 1), is defined
by
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V(i,t) = (1 — x)kna(i,t) + xkna (i +1,1), (8)

where k is the number of ADU per detected photon, and
na(i,t) is the number of photons measured by an indepen-
dent detector if x was zero, and it is assumed that 0 < x <
0.5. The case for x # 0 occurs in real PSD because the
charge created by photons is shared by adjacent pixels. This
coupling affects the statistics of the signal. For a spatially
uniform exposure, (nq(i, ) ), and (nq(i+1,t)); are the same
within counting statistics, and (V (i, t)); equals on average
kng, where g is the mean of the probability density of ng.
For two independent Poisson distributed random variables
[10], ng (i, £) and ng(i+1,¢), with {ng(i, )na(i+1,1)), =
(na(i, 1)) {na(i + 1, 1)), = 7ig%, the variance of V(i, ) is

Sty (i) = {(V(i, )% — (V(i, 1))]
=K {(1 - x)*+ 2} m. (9)

By letting x = 0, we recover the case discussed in Sec-
tion 2.2, For a finite x, the variance is always smaller than
the variance of uncoupled detectors as (1 — x)2+x% < 1 for
0 < x < 0.5. Now Sty () /(V(i, )} = k{(1 — x)* + x*},
so that from a measurement of this ratio alone, k cannot be
extracted. A second measurement is needed in order to solve
for k and x.

The resolution function could be measured to determine
x, by illuminating only one pixel with a source which is
smaller than the pixel size. For a PSD, this requires colli-
mating the X-ray beam through a pinhole with a diameter of
only a few micrometers, and scanning the pinhole over the
detector area. This technique may be difficult to apply, be-
cause one needs an intense X-ray source to generate a usable
micrometer beam and a translation system with micrometer
resolution. The measurements of pixel-to-pixel correlation
offers a useful alternative for measuring the resolution func-
tion. In this model, the measured covariance of V (i, t) and
V(i+1,1) is given by

covi(V(i,1),V(i+ 1,1))
(VEDVE+1,0) = (VDN (VE+1,0),
x(1 — x)k’7na, (10)

which gives k = (2cov, + SﬁV)X(V); and x = % =
1/24/(S2y — 2covi) /(82 +2cov,).

Next nearest neighbor pixels can also be coupled due to
the diffusion of photo-electrons far away from the absorp-
tion site. To measure these distant correlations, a general
correlation function between V(r,t) and V(r+ A, 1) is de-
fined as

covi(V(r,1),V(r+ 4,t))

C(r,4) =
CEgg) S (DS, (r + 4)

(1)

where the averages and variances are defined in Table 1,
and A4 is the relative displacement between the pixels. Two
limiting cases in this definition may be calculated easily.

For large 4, V(r,¢) and V(r + 4, 1) are independent, and
C(r,4) =0. For A=0, C(r,0) = 1 since the numerator
becomes identical to S7,. If the signal between neighbors is
not independent, one finds in general —1 < C(r, 4) < 1.
To estimate the resolution function and its effect on the
measured noise, we now include all pixel-to-pixel couplings.
Developed for shot noise processes [11], the model de-
scribes a stochastic process created by random superposition
of a constant response function A(r") for each photon [12].
The function k(') describes the spread of the signal in the
detector. The measured signal at pixel r, V(r, ), is a sum of
disturbances which hit the detector at random positions r;,

V(r,t) = Zh(r,- —r). (12)
i=1

In our case, ng is the number of detected photons between
time ¢ and t + 7, sampled from a Poisson distribution. The
ri arc chosen from a uniform distribution since the signal is
assumed to be spatially uniform. The model can be general-
ized to include spatial variations in the incident signal [11],
and the results will not depend on the fact that h may vary
with each photon if the variance of h is small enough. The
model further assumes that A(r") is the same for each pixel
and that the signal in a given detector is not correlated in
time. A complete derivation of the moments of V is given
in detail in Ref. [11]. It is shown that

(V(r,H) = (nd{r,:)),uL"/h(r‘} dr, (13)

Sty = (V2(r, 1)) — {V(r, )7

:<"d<f,f))r1r’£"/h2(r’) dr'?, (14)
2
Clr A) = LB DV(E & A0 = V(E. O);
Sty

/h(r’)h(r’+ A) dr’?
= (15)

/ Rr'y ar'

where L? is the linear size or area of a detector in d = 1,2
dimensions. (V(r, 1)), S?y and C(r, A) can be estimated
from repeated measurements, and (ng), can be solved from
these equations with an appropriate model for A(r'). Choos-
ing h(r') = k6(r'), we recover Eq. (5) from the ratio of
Egs. (14) and (13). Here, the model is further simplified
by assuming that h(r’) is discrete, and replacing integrals
by sums. To recover Egs. (9) and (10) from Eq. (13)-
(15), let h(0) = k(1 —x), h(1) = kx, and h(r') = 0, for
|r'| > 1. Using the measured spatial autocorrelation func-
tion, one can often evaluate the resolution function h(r")
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Table 2
Position-sensitive detectors characteristics

EG&G Reticon 20485AU-822 T1 4849 CCD
Array size 2048 pixels 390 by 584 pixels
Pixel dimension 25 pm wide, 2.0 mm high 224x22.4 pm
Specified resolution 1.5 pixels. 2 pixels
Characteristic length Diffusion length 50 um Depletion layer 12 pum
Window 250 pm Be window, 1 um Si0Q; overcoat 250 pm Be window
Amplifier gain 1 ADU/1300 electrons Adjustable
Readout time 4 us/pixel, 8 ms for the array 6 us/pixel, 1 s for the array
Readout noise < 1.2 ADU rms 20 electrons/ pixel
Integration time 8 ms to two hours A few us to minutes
or , . : . : 104 ; ; > ; :
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Fig. 1. (a) Time averaged signal (V(r)),, variance 5:2.V (r), and calibration constant k = S,Z‘Vf{'lr"(r)); versus pixel number for 6.93 keV X-rays, N = 100.
The error bars for the mean, variance and ratio are calculated from formulas discussed in Section 2 and the appendix. (b) Same as above, but with 8.05 keV
X-rays, N = 8000,
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by inverting Eq. (15). From Eq. (13), one can calculate ng
from (V(r,t)};. Then Eq. (6) becomes

LYV),

e ey
(ni)q / h(r') dr'?

Good statistics for the measured autocorrelation functions
can be in principle obtained by correlating the signal from
thousands of scans. If no time correlation exists and one ex-
pects the detectors to be almost identical, one can save this
effort by taking a spatial average and variance over detec-
tors of a single uniform scattering pattern instead of time
averages. One can get excellent statistics from a single scan
of a 500x500 CCD array by averaging over the 250 000
pixels. In the two examples discussed next, direct measure-
ments showed no time correlation of the signals. For our
detectors, we found that a time average and a spatial aver-
age are quantitatively similar, both for means and variances.
Time averages or spatial averages can thus be interchanged
for convenience.

(16)

3. Characterization of a linear PSD

The photodiode array used contains 2048 rectangular pix-
els with 25 wm wide and 2.0 mm high active areas. The res-
olution is specified as 1.5 pixels wide so there will be some
correlation between pixels. It is operated at —40°C, cooled
by a Peltier stage, to reduce the electronic noise. The array
is operated by a Princeton Instrument ST1000 controller and
the data is transferred to a IBM PC 386-AT through a cus-
tom designed 1/O board from PL. Software is provided with
the package to control the data acquisition parameters, store
the data and visualize the data. Scans can be accumulated
by a 32 bit register and pixels can be grouped to increase
the scan rate while sacrificing the spatial resolution. Further
characteristics of the detector are summarized in Table 2.

Fig. 1 shows some experimental data obtained for the
linear array. As defined in Table 1 and Eq. (5), the mean,
variance and ratio of variance over mean of V are plotted
for every 20th pixels of the array at two different X-ray
energies, 6.93 and 8.05 keV. The first data set was obtained
by scattering 6.93 keV X-rays onto a Bragg peak of Fe;Al,
constantin time. 100 scattering patterns were averaged. Note
that the mean is quite smooth (i.e. well defined to within
0.3%) but that the fluctuations on the variance are substantial
(14%). For N = 100 measurements, the relative error on
the mean is 1/+/Nng with ny = 1000, while the error on the
variance is 1/2/(N — 1). The error bars on the ratio were
calculated from Eq. (7). A least squares fit of k(r) to a
constant, weighted with error bars calculated from Eq. (7),
yields k = 0.682 and a x* of 1.1.

To determine the uniformity of k(r), 8000 patterns were
measured and analyzed. Fig. 1b was obtained by scattering
8.05 keV X-rays, coming from an X-ray tube with a Cu

target and a Ge (111) monochromator set on Cu Ka. The
beam covered approximately half of the array. The small
tails on the average are due to diffuse scattering. Note the
logarithmic axes for the mean and the variance; the signal
varies over three order of magnitude but the ratio is essen-
tially independent of signal level. A dark variance of 1.1
ADU? causes the large fluctuations in k(r) when the X-ray
signal is comparable to the electronic noise signal. Measur-
ing more dark patterns (larger Ng) would reduce the error
on k. A least-square fit of the ratio to a constant between
pixel 650 to 1400 gives k = 0.792 and a x* of 2, indicat-
ing the possibility of systematic variations in pixels with a
rms amplitude of 2%. Note that a large number of identi-
cal exposures have to be analyzed to detect fluctuations this
small. If signal variations between pixels of the order of a
few percent are important, then these fluctuations have to
be taken into account by using a different calibration con-
stant for each pixel. Note that the number of electron-hole
pairs created is proportional to the photon energy. This is
reflected in the two different values of k, 0.682 and 0.792
at 6.93 and 8.05 keV, respectively.

The inset of Fig. 2 shows the autocorrelation function
of V(r,t) as calculated from Eq. (11) for nearest neigh-
bor coupling (4 = 1). Here r has been replaced by an in-
teger index for the one dimensional detector. The spatial
average of the correlation function, (C (i, 1)); = 0.2201 £
0.0004. The spatial variance of the correlation function,
S2c = (1.21£0.06) x 107*, agrees well with the expected
variance [ 13] of 1 /N, where N is the number of scans aver-
aged. Within error, C (i, 1) is equal for all pixels. For larger
A, we found (C(i,2));i = 0.0319, (C(i,3)); = 0.0062,
(C(i,4)): = 0.0012 and (C(i,5)); = 0.0004, all measured
within £0.0004. The technique is very sensitive, since we
can measure very small corrclations between pixels sepa-

10 —— T T T T T
E 0.26 ’4
~0.24
Tt
<0.22 ¢
10-_1 3 Soz0 ﬁm* N‘hﬁu{u | —
- F =, e OI:ixc] or:lmher-li {lés’; -
25073 ;
?_): -
10_3 3 * 3
—4 1 1 1 =

3
A (25pm)

Fig. 2. Spatial average of C(i, 4), as defined in Eq. (11), versus 4. Each
point was calculated from an average over all pixels of C(i, 4), shown in
the inset for 4 = 1.
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rated by 100 um. Fig. 2 shows (C (i, 4)); versus 4. The de-
cay of the correlation function is approximately exponential,
which is consistent with the diffusion of the electric charge
to neighboring pixels [ 14].

As discussed in Section 2, the resolution function A(i")
is evaluated from Eqgs. (13)~(15), based on the assumption
that only A(0), A(—1) and A(1) are non-zero, and that
h(—1) = k(1) = h;. Replacing the integrals by sums in
Eqgs. (13)-(15), one finds that

_ Sy (B +2R)

W G | (17)
and
2hoh
(C(‘\dﬂ))r‘:ﬁ:&zzm, (18)

which gives hop = 0.947 and h; = 0.107. To transform
the signal V to detected photons, one must divide V by
[ h(r) dr = ho + 2k = 1.16 instead of by k. The above
model reproduces the essential features but does not give
the next nearest neighbors correlation correctly. With this
model, (C(i,2)); = hi/(h§ +2h) = 0.012, which is lower
than the observed correlation. This can be fixed by extend-
ing the range of the response function to the third neighbor
[15].

The detective quantum efficiency was evaluated by mea-
suring n; with a scintillation counter masked by a 1.3 mm
hole, and then (V), was measured by centering the height
of the PSD behind this hole. Using Eq. (16), we find @ =
37 4+ 2% for 8.05 keV X-rays. This can be compared to the
expected detective quantum efficiency estimated for trans-
mission through the 250 um Be window of the detector,
transmission through an additional 1 gm SiO; overcoat and
the fraction of absorbed X-rays in the electron diffusion
length of the Si, fs;,

@ = exp( — fBepBelBe ) €XP(— Hsio, Psio; 1510, )
X[1 — exp(—pusipsitsi) ] (19)

Using the mass absorption coefficients 1.1, 36.4, 64.7 cm*/g
for Be, Si and SiO,, respectively [16] at 8.05 keV, and
densities of 1.85, 2.32, 2.21 g/cm’, and a diffusion length
tsi = 50 pm as specified by the manufacturer [17], this
estimate gives @ = 50%, and agrees reasonably well with
the measured value.

4. Characterization of a CCD array

The principle of photon detection of a CCD is similar to
the linear array described in Section 2. In a CCD, the de-
tected charge is stored in MOS capacitors and read by a se-
ries of parallel row transfers and serial pixel-to-pixel trans-
fers. For coherent X-ray experiments [4], we used a virtual
phase architecture TI 4849 chip, with 390 x 584 22.4 pum

CCD array or scintillator

7 keV photons

o

Amorphous scatterer
Ion chamber

Fig. 3. Experimental set up for the characterization of the CCD array. The
X-ray beam was scattered with a piece of polystyrene to produce a spatially
uniform exposure [7,9]. The detector was centered at a scattering angle of
26 = 23° and placed 1.04 m from the center of rotation. n; could be varied
by detuning the monochromator, and therefore modifying the incident flux,
or by varying the integration time 7 from | to 240 s. An ion chamber was
used to monitor the incident intensity on the sample, and a scintillation
detector, masked with a 4 mm circular aperture, was placed at the CCD
position and allowed us to determine n;. This way, the scintillator signal
was used to calibrate the ion chamber signal (Imon). Using the ratio of
areas and counts, the count rate per pixel was obtained, based on Iyqp.
The highest count rate was 1 photon/(22.4 ,u,m}z.-fscc,

wide square pixels. The depletion depth of the chipis 12 zm,
which gives a sufficient detective quantum efficiency for di-
rect X-ray illumination. Further detail is given in Table 2 and
elsewhere [18-21]. To characterize the detector, measure-
ments were made at the high brilliance wiggler beamline
X25 at NSLS with a Si(111) monochromator set at 7.0 keV.
Fig. 3 shows the experimental set up.

The ratio k = S7.y/(V), is shown in Fig. 4 as a function of
{ni)r. For a detector with a linear response, k is a constant,
independent of n;. We were quite surprised to see a non-
linear relationship for k because the response to visible light
had been measured to be linear to within 0.5% [18-21].
It was later discovered that an inappropriate amplifier was

10 1 1 s 1 1 sl

0 80 160 240
> (Photons)

Fig. 4. k = S, v/ (V)r versus the incident integrated intensity on the detector

(n;)r. The average and variance were calculated over a region of 100 by &

100 pixels. The solid line is a least squares fit.
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Fig. 5. Spatial average of the signal V(r, 1) over a region of 100 by 100
pixels versus the number of photons incident on the surface of a pixel {n;}r.
Two data sets taken ten days apart (squares and triangles) are shown. The
solid line is a least squares fit to the first calibration with n; = 0.35/0:84,
This function is applied to the measured signal to linearize it. V was less
than 75% of the saturation value for all points.

responsible for the non-linearity. When recently tested with
the correct operating electronics, the response to X-rays was
linear. Since the model used in Section 2 assumes linearity,
it will be generalized below to include a non-linear response.

4.1. A treatment for a non-linear detector

In many X-ray scattering experiments, one needs to de-
termine n; instead of ny. This is done by calibrating the
response of the PSD, V, for different n;. Fig. 5 shows the
mean of the CCD response over a region of 100x 100 pix-
els, (V),, versus n;. The calibration was checked ten days
later and remained mostly unchanged. The response of the
detector depends only on n;, since all the data points with
an equal integrated flux I fall on the same line in Fig. 5
although they differ widely in exposure times and incident
flux. Several functions were tried to obtain an analytic re-
lation for the CCD response. The solid line in Fig. 5, n; =
) = 0.35V"# s the best least squares fit found. This
function allows one to linearize the measured signal V with
sufficient accuracy.

The linearized signal, v*, is defined by v* = f~' (V). It
has the same units as n;, but its statistics is different from
the Poisson statistics of n;. In order to determine the noise
in the linearized signal, we evaluated the spatial variance
of v*, §2,., in a region of 100x 100 pixels versus n; (see
Fig. 6). The solid line is the relation expected for a Poisson
distribution (82,. = (ni),), while the dotted line is S7,+ =
1.63(n;),. The variance is larger because the spatial resolu-
tion of the CCD is larger than the area of a pixel, and @ is
smaller than one.

Fig. 7 shows averages of a single exposure of V(r,r)
taken over columns and rows of the detector. Pixels which

400 —————————— ]
350 - Ea
300 S
250 | .
200
150

s? (photonsz)

100 -

1

0% 80 160

| (photons)

— !
240

Fig. 6. The spatial variance of the linearized data measured in a region
of 100 by 100 pixels versus the linearized signal. One would expect the
variance Siu. to go as {m;)r in the case of a simple Poisson law (solid
line). The dotted line is 1.63(n;}r.

are in the rows 110 to 480 and columns 10 to 380, which
represent most of the detector area, are used for the aver-
ages. The mean is uniform in both directions with rms fluc-
tuations of 2%. Fig. 8 shows a bitmap of the variance Sf_v,
calculated from 23 frames, each exposed for 1 s. The vari-
ance is uniform over the whole detector area, except for a
few bad columns in the parallel transfer direction (y-axis),
where the variance is significantly lower. Pixels in columns
26-28, 72-73, 181-182, 208-209, have 40 to 80% less than
average variance. This is shown in Fig. 9, where the aver-
age of 87 over row 420 to 520 is displayed as a function of
the horizontal position. A similar average of (V), is shown
for comparison. The mean only fluctuates by a few percent.
It is important to measure the noise of each pixel to fully
characterize the detector.

The resolution function is extracted from the spatial cor-

N | | |
I i
g |

150 250 350 450
y (pixels)

490

48

[=}

\ |
ZH‘H
|

<V>x (ADU)

460

450

490} : ' !

|
ool | It bl ]
=N il il i
450 L ‘ BE:
Al lfo(pixeli?o C

(=]

<V>y (ADU)
S

Fig. 7. (a) Signals summed over 370 rows (top) and 370 columns.
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Fig. 8. Time averaged variance 5:2'/(’) of the pixels in row 20 to 520 and
column 10 to 380. 23 exposures of one seconds each were averaged. An
inverted grey scale is used to display the dal': On the top scale, the spatial
average and the standard deviation of S v (r) are marked. Note that the

variance is relatively uniform excepl for pixels in certain columns, where
the variance is much lower.

relation C(A4), defined by

((*(r, 0" (r+ 4,0)), — ((v™(r, r))2
rL‘(r)

c(4) =

(20)

where the displacement 4 is measured in units of pixels. This
definition is similar to Eq. (11). Sufficiently good statistics
can be achieved based on a single exposure of the CCD. A
fast calculation algorithm may be used [22]. Knowledge of
C(4) is necessary for coherent X-ray experiments, where
one is interested in the speckle size, which is of the order
of the pixel dimensions [4]. Fig. 10 shows two slices of
C(Ax,Ay), where the first index refers to the columns and
the second to the rows of the CCD array. The correlation
function C(4,0) decays more slowly than C (0, 4), i.e. the
resolution is worse along the serial transfer direction than
along the parallel transfer direction. The correlation coeffi-

—~ 3.0F , , - =
o
2 BE
=1
o 20
o el
ok
- 1.0
e 075
(7]
116
=)
S 114
A-i—?
= 112 B
e
2O OB (A OB
X

Fig. 9. Average of SZV(rJ calculated over a column between row 420
and 520 of the CCD, shown versus the index of the column. The pixels
in columns 26 to 28 and 72 to 73, have much lower variance than other
pixels. (V); is shown for comparison. The mean shows typical behavior for
these columns. It is important to measure the variance of the signal of each
pixel when one performs intensity fluctuation spectroscopy with a CcD.

cients are non-zero for the nearest and next nearest neigh-
bor of C(0,0), with C(1,0) = 0.52 & 0.05, c(0,1) =

0.124+0.01 and C(1,1) = C(—1,1) = 0.07 & 0.02. Note
that C(A) = C(—A4), based on Eq. (20). Thus the reso-
lution function has a range of one to two plxc]b Using the
simplest model, we choose A(r) to be non zero only for the
nearest neighbors, i.e. £(0,0) = hw, £(1,0) = h(—1,0) =
hio and h(0,1) = A(0, —1) = hg;. We choose to normalize
the integral of /(r) to unity, assuming that one photon will

-6 —4 =2 0 2
A (pixels)
Fig. 10. Two perpendicular slices of the space autocorrelation function,
defined by Eq. (20), for uniform scattering data. C(4,0) for the serial
transfer direction (circles) and C(0, 4) for the parallel transfer direction
(squares) are shown versus 4. The error bars are slightly larger than the
size of the squares. The correlation decays to 0 in about two pixels along
X, the serial transfer direction, and in one pixel perpendicular to it.
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be distributed amongst several pixels so that
hoo + 2o + 2ha = 1. . (21)

From Eq. (15), the correlation function of this disturbance
gives

2hgohio
C(1,0) = —————— =0.52, (22)
gy + 215, + %3.
and
G0 1) = i =0.12. (23)

h + 213, + 2k, B

Solving Egs. (21)-(23), we find how = 0.563,ho1 =
0.042, hio = 0.177. A larger fraction of the signal leaks to
the nearest neighbors along the serial transfer direction.
The resolution function alters the variance of the number
of detected photons. From Egs. (13) and (14), one finds

2
Sr.uu

i (na)r

Without leakage, K = 1, so that the variance is smaller than
what one expects from Poisson noise by a factor K. Using
(na(r))r = a(v* (r)),, assuming that e is the same for each
pixels, one gets

= hiy + 2h3, + 2R3, = 0.38. (24)

£, =a’8,. = Ka{v*)r. (25)

From a Taylor’s expansion of the linearization function, v* =
f~'(V), one obtains

§2,. =82y (dv*/dV)?, (26)

where SE‘,_,. is the variance of the linearized data. Recalling
that for the linearization function, dv*/dV = B{v™)./(V):
and substituting Eq. (26) into Eq. (25), one gets

Sy _ K {v™), _ K(V),
W)_"' - a(v>r( dU'de}z = a((;*)rBz 2 (27)

where B is the exponent of the power law fit in Fig. 5
equal to 0.84. This equations includes three different con-
tributions in the ratio: the smearing from the finite reso-
lution, the non-linear behavior and the detective quantum
efficiency. For a linear detector (B = 1), with a resolu-
tion of one pixel area (K = 1), Eq. (27) becomes equiv-
alent to Eq. (6). Therefore 7y /(V), is not constant (sce
Fig. 4), since (V),/{n;}, is non-linear. Fitting the measured
CCD response in Fig. 4 to Eq. (27) gives a detective quan-
tum efficiency a = 0.22. Eq. (19), with the values usi =
94.9 cm?/g, pme = 1.6 cm?/g [16], tsio, = 0 wm and fs; =
12 wm, gives @ = 0.22, which agrees well with the mea-
surement. Furthermore, Eq. (25) gives K/« = 1.5, which
corresponds to the ratio of S7,. /(v*)- in Fig. 6.

5. Conclusion

One must carefully characterize the response of a cur-
rent state-of-the-art PSD to obtain quantitative information.
For example, in our intensity fluctuation spectroscopy ex-
periments, it is essential to distinguish the noise of the de-
tector from measured scattered intensity fluctuations, and
we must know the spatial correlations of the detector’s res-
olution function quite accurately. We have shown that we
can characterize a PSD by measuring means, variances, and
spatial autocorrelation functions and comparing these mea-
surements to the statistical estimators expected for a Pois-
son distribution. The technique can measure the resolution
function, and gives an estimate of the detective quantum ef-
ficiency. It is easy to implement and can be very sensitive
when enough scans are averaged. The mean and variance ar-
rays are easily calculable in real time by storing only three
arrays in memory [23]. The technique can also handle de-
tector non-linearities. A simple extension of the technique
would be to measure the decay of the time correlation func-
tion of the CCD signal, when the detector is optically cou-
pled to a X-ray fluorescent material. The advantage of us-
ing the correlation function here is that no special hardware,
such as a fast shutter, is required for the experiment.’
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Appendix A

One often wants to evaluate the uncertainty in the esti-
mated average (x) and variance §? of a random variable X,
with theoretical mean g and variance o”. Assuming that the
probability density p(x) of the random variable X is sta-
tionary, the true mean and variance of p(x) are defined by

oo

= /xp(x) dx=p ¢ (A1)

— 00

and
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= ; . oy and oy are the standard deviations of the probability
(x—p)2= / (x—p) p(x) dv=0o", (A2) densities of (x) and §°. The N dependencein Eqgs. (A.5) and
=y (A.6) is not explicitly written in order to keep the notation

with f_mx plx) dx=1. The discussion below is limited to

distributions with finite g and o®. The statistical estimators
of the mean (x) and variance $* are defined by

N
(x) = # D (A3)
=l
and
I N
.5'2 = ‘ﬁ Z(I,‘ — (X}]z. (A4J
i=I

where x; is a measured outcome of the random variable X,
chosen from the same probability distribution p(x). The es-
timators (x) and S are unbiased estimators of the mean and
variance and on average are equal to & and o?. The uncer-
tainties in these statistical estimators depend on the number
of random events observed, N. For small N, the fluctuations
in the measured or estimated value are comparable to the ex-
pected value. Therefore, its dependence on N must be well
characterized.

The uncertainty on the mean is well known and goes as

v/ @*/N [11]. For a Gaussian distribution, the uncertainty
on the variance is 1/2/(N — 1)o? [11]. In Section A.1, we

derive a general relation for the uncertainty of the estimated
variance, and apply it to the Poisson distribution. In error
propagation analysis, one may want to evaluate the uncer-
tainty in a function of the mean and variance f((x),$?) as
required in Section 2. To evaluate the error in f, one uses
the uncertainty on (x) and §?, and needs to know the co-
variance between (x) and S*. A general expression for this
covariance is derived in Section A.2, and a derivation for
Eq. (7) is shown in Sections A.3 and A.4.

A.l. Uncertainty in the measured mean and variance

It is important to note that (x) and $? are themselves
random variables since they are functions of several random
variables. A useful estimator of the uncertainty of these new
random variables is their standard deviations o (,y and o5
defined in Ref. [11] by

— 2

oty = (X2 = (%), (AS)
and
o =5 -5, (A6)

where the horizontal line refers to an average over the joint
probability distribution of the random variable (x}, a func-
tion of N random variables x;, i.e.

EE /(I)(Xl-‘--,XN)P(XJ,.”,IN] dxp... dxw.

simple. From Eq. (A.3), recalling that X; = u, it is easy to
show that (x} = . In order to simplify the algebra below,
we introduce a new variable y; = x; — u, so that 3 = 0 and
y? = 0. One can now rewrite Eq. (A.5), using Eq. (A.3)
and square it to get

N
1
Oy = 7 E Y- (A7)
ij=1

Assuming that each y; is independent, i.e.
¥v; = 8ijo”, : (A8)

where &;; is a Kronecker delta, and replacing Eq. (A.8) in
Eq. (A.7), one gets ]

0_2

N’
which is a well known result valid for any N, and any prob-
ability distribution with finite mean and variance, given that
no correlation exists between the x;’s. This result states that
the probability density of (x), p((x)), is narrower than p( x)
by a factor 4/1/N.

InEq. (A.6), the $? term can be evaluated by substituting
x; by y: and replacing Eq. (A.3) into Eq. (A.4). Then, one
finds

1 [ I o
= (;yf—ﬁZ)m)-

ij=1

ol = (A.9)

(A.10)

Taking averages on both sides of Eq. (A.10), and evaluating
the sums with Eq. (A.8), one finds §2 = ¢, as stated before.
The N — 1 denominator comes from the fact that there is one
less degree of freedom used to evaluate the mean. Taking
the square of Eq. (A.10), and taking averages on the right
and left hand side of the equation, one finds

N N

— 1 s

8§t = (Nr____l)_g(zyi‘zy}_ N Z)’f)’j)’k
ij=1

iJk=1
i) e
+ N Z y.—y,-ygy;). (A.11)
ijkd=1

Evaluating the averages recalling that 37 = 0 and

¥y = 8;07, one finds

=TT . B 0

77 )y, fori=j, N terms, A2
¥i'Yj {(r", for i # j, N(N — 1) terms, )

y*, fori=j=k N terms,
yiyive=4{ o', fori # j=k N(N—1) terms,
0, otherwise,
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(A.13)
y, fori=j=k=1[, N terms,
4 = & .
—_— fori=j# k=1 3N(N-1)
YL terms,
0, otherwise.
(A.14)

Here, the nth order central moment is defined by y* =
[ ¥"p(y) dy. Using Egs. (A.12)-(A.14) to evaluate
the sums in Eq. (A.11), and replacing Eq. (A.11) into
Eq. (A.6), one finds

2 _Y(N=-1)+d'G-N)
T NN =1)

(A.15)

This result depends on the fourth order central moment
of the distribution, y*, and the standard deviation, ¢. For
a Gaussian distribution, y_4 = 3¢* [10] and Eq. (A.15)
gives as expected that, agz =20*/(N — 1). For a Poisson
distribution on the other hand, 37 =3u® + w [10] which
yields

2

R g
Note that for g < 1, the second term is an important correc-
tion and a Gaussian approximation would underestimate the
error on the variance. For large means, Eq. (A.16) becomes
identical to the error for a Gaussian with variance equal to
the mean, as expected since the Poisson distribution crosses
over to such a Gaussian for large means. Finally, note that
since in general p(SZ) is not Gaussian, one cannot easily
quantify the confidence limits of 2, but can nevertheless
calculate its variance.

(A.16)

A.2. Correlation of the sample mean and variance

One might think that there is no correlation between the
estimator of the mean {x) and the estimator of the variance
§7. The independence of the estimated mean and variance
is discussed in several statistical books for Gaussian dis-
tributions [8,11]. The measure of correlation between the
measured mean and variance, the covariance, is defined as

cov((x),5%)
= ((x) — u)(8* — 0?) = (y)$?

N N
_ 1 =
SNIN-1) ZJ:)U; N .;I Yi¥iYe | »
L= L=

(A.17)

since (y)o? = 0. Evaluating the averages as in Eqs. (A.12)-
(A.14), one finds

] Pi= = 5
ViVivk = {é , fori=j=k, N terms,

A.18
otherwise. ( )

The same results holds for y,_yf Replacing those in
Eq. (A.17) and simplifying, one gets

cov({x), &) = L,

5 (A.19)

where ? is the 3rd order central moment of the distribution.
Thus the covariance depends on N, and on how symmetric
with respect to the mean is the probability distributed. The
estimated mean and variance are independent only as N
goes to infinity, or if ;T = 0. For a Gaussian distribution,
the covariance is zero because odd powers of the central
moments are zero. For a Poisson distribution, y3 = u [10]
and

cov({x),8?) = £. (A.20)

A.3. Evaluation of the error on a function of §* and (x)

From standard error propagation analysis [8], one can
readily calculate the uncertainty of a function f((x), ) =
$2/(x). 1t is given by

oF 0% Ty 2cov(S, (x))

el 5

FRETE o (A21)

where the terms on the right hand side have been calculated
above. The approximate sign comes from the fact that o is
derived from a first order Taylor expansion of f around its
average. Replacing the uncertainties and covariance derived
previously for a Poisson distributed random variable X in
Egs. (A.9), (A.16) and (A.20), one finds

a} 2

? = N—:——l‘ (A.22)
The result is independent of the mean w and by averaging N
independent measurements, one can measure f accurately.
On the other hand, if the signal is Gaussian distributed, the
covariance term in Eq. {A.21) would be zeio, and one gets

o2
2TON—1 ' N

Depending on the mean and variance of the distribution, the
second term may be important.

AA4. Including electronic noise for an X-ray detector

For an X-ray detector, Eq. (A.22) is not sufficient to es-
timate the errors on k, defined in Eq. (5), because for weak
signals, the electronic noise will contribute significantly to
. Ve, the dark electronic noise, increases the relative error
on the time averaged mean (V), and variance 57, when the
contribution from the detected photons approaches zero. To
find o, the standard deviation of k, we can simply replace
in Eq. (A.21) (x) by (V),, and S$* by Sy — a%,, where o7,
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is the theoretical variance of the electronic noise probabil-
ity distribution. Then the first term of Eq. (A.21) can be
rewritten as

2 2 o
T2, Tpsy T s
(-0} (S —0})?
“N—1 Nng
2 4
1 Tve (A23)

(N —1)(8y — o} )2

To obtain this relationship, we used the equation Ji.; g2 =
(A Ve

‘721 and Eq. (3), and assumed that V. follows Gaussian
v

statistics. The first two terms are the detected photon contri-

butions which are included in Eq. (A.22), and the last term

is due to an error on the evaluation of the dark variance.

Next, we can evaluate the second term of Eq. (A.21) using

Eg. (3),

2 2] 2 2
Ty _ k Ty T Ty, v,

Na (V).

—2 ——2
(V) N(V)i

1 o, ( | 1 )
S a2 ([ = o] (A.24)
Nny (V),2 N = Ny

where nyq and (—ﬁ are the hypothesized means of the num-
ber of detected photons and of the detector signal, while o-ﬁd
and o'ffc are the theoretical variances of ny and of the dark
electronic noise. The first term in this equation comes from
the statistics of the detected photons and is already included
in Eq. (A.22). The second term explains the increased un-
certainty in k for small signals due to the electronic noise.
The third term is due to the statistical error in the measure-
ment of the dark pattern subtracted from V, where Ny scans
are averaged without X-rays. To minimize the error, one
should choose Ny = N. Finally, the last term in Eq. (A.21)
is unchanged from the Poisson case because the dark signal
and the detected photon signal are not correlated. Collecting
terms, we find

g 2 [, ak

k2 N—1 (S;z.v . U%{;)z

2
ay, 1 1
S (— + ~—) :
(V)r2 N Nd
2

It is therefore easier to measure & when (V)? and 87y are
much larger than a4, To evaluate o for a given experiment,

(A.25)

one would rep']ace o'fi_, 3‘?: and m by the experimentally
measured values S7y,, S7y and (V),.

Note that the error analysis approach developed above
can be extended to other problems, like the evaluation of the
error on the measured contrast in optics if the signal is not
Gaussian distributed. It is also useful to estimate the errors
in our coherent X-ray experiments.
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